
Subject: [patch 0/4] Container Freezer: Reuse Suspend Freezer
Posted by Matt Helsley on Tue, 24 Jun 2008 13:58:23 GMT
View Forum Message <> Reply to Message

This patchset reuses the container infrastructure and the swsusp freezer to
freeze a group of tasks.

The freezer subsystem in the container filesystem defines a file named
freezer.state. Writing "FROZEN" to the state file will freeze all tasks in the
cgroup. Subsequently writing "RUNNING" will unfreeze the tasks in the cgroup.
Reading will return the current state.

* Examples of usage :

 # mkdir /containers/freezer
 # mount -t cgroup -ofreezer,signal freezer /containers
 # mkdir /containers/0
 # echo $some_pid > /containers/0/tasks

to get status of the freezer subsystem :

 # cat /containers/0/freezer.state
 RUNNING

to freeze all tasks in the container :

 # echo FROZEN > /containers/0/freezer.state
 # cat /containers/0/freezer.state
 FREEZING
 # cat /containers/0/freezer.state
 FROZEN

to unfreeze all tasks in the container :

 # echo RUNNING > /containers/0/freezer.state
 # cat /containers/0/freezer.state
 RUNNING

to kill all tasks in the container :

 # echo 9 > /containers/0/signal.kill

I've taken Cedric's patches, forward-ported them to 2.6.26-rc5-mm2 + Rafael's
NOSIG patches.

Paul, Pavel asked me to send these to Rafael next. They are patches to make
the freezer useful for checkpoint/restart using cgroups so it would be nice

Page 1 of 23 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=670
https://new-forum.openvz.org/index.php?t=rview&th=6345&goto=31305#msg_31305
https://new-forum.openvz.org/index.php?t=post&reply_to=31305
https://new-forum.openvz.org/index.php

to get an explicit [N]Ack from you first.

Rafael, if Paul agrees, please consider applying these patches.

Changes since v2:
v3:
	Ported to 2.6.26-rc5-mm2 with Rafael's freezer patches
	Tested on 24 combinations of 3 architectures (x86, x86_64, ppc64)
		with 8 different kernel configs varying power management
		and cgroup config variables. Each patch builds and boots
		in these 24 combinations.
	Passes functional testing.
v2 (roughly patches 3 and 5):
	Moved the "kill" file into a separate cgroup subsystem (signal) and
		it's own patch.
	Changed the name of the file from freezer.freeze to freezer.state.
	Switched from taking 1 and 0 as input to the strings "FROZEN" and
		"RUNNING", respectively. This helps keep the interface
		human-usable if/when we need to more states.
	Checked that stopped or interrupted is "frozen enough"
		Since try_to_freeze() is called upon wakeup of these tasks
		this should be fine. This idea comes from recent changes to
		the freezer.
	Checked that if (task == current) whilst freezing cgroup we're ok
	Fixed bug where -EBUSY would always be returned when freezing
	Added code to handle userspace retries for any remaining -EBUSY

Cheers,
	-Matt Helsley

--

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: [patch 2/4] Container Freezer: Make refrigerator always available
Posted by Matt Helsley on Tue, 24 Jun 2008 13:58:25 GMT
View Forum Message <> Reply to Message

From: Cedric Le Goater <clg@fr.ibm.com>
Subject: [patch 2/4] Container Freezer: Make refrigerator always available

Now that the TIF_FREEZE flag is available in all architectures,
extract the refrigerator() and freeze_task() from kernel/power/process.c
and make it available to all.

Page 2 of 23 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=670
https://new-forum.openvz.org/index.php?t=rview&th=6345&goto=31306#msg_31306
https://new-forum.openvz.org/index.php?t=post&reply_to=31306
https://new-forum.openvz.org/index.php

The refrigerator() can now be used in a control group subsystem
implementing a control group freezer.

Signed-off-by: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Matt Helsley <matthltc@us.ibm.com>
Tested-by: Matt Helsley <matthltc@us.ibm.com>

Changelog:
	Merged Roland's "STOPPED is frozen enough" changes. For details see:
		http://lkml.org/lkml/2008/3/3/676

 include/linux/freezer.h | 24 +++++----
 kernel/Makefile | 2
 kernel/freezer.c | 122 ++
 kernel/power/process.c | 116 ---
 4 files changed, 136 insertions(+), 128 deletions(-)

Index: linux-2.6.26-rc5-mm2/include/linux/freezer.h
===
--- linux-2.6.26-rc5-mm2.orig/include/linux/freezer.h
+++ linux-2.6.26-rc5-mm2/include/linux/freezer.h
@@ -4,11 +4,10 @@
 #define FREEZER_H_INCLUDED

 #include <linux/sched.h>
 #include <linux/wait.h>

-#ifdef CONFIG_PM_SLEEP
 /*
 * Check if a process has been frozen
 */
 static inline int frozen(struct task_struct *p)
 {
@@ -37,10 +36,15 @@ static inline void set_freeze_flag(struc
 static inline void clear_freeze_flag(struct task_struct *p)
 {
 	clear_tsk_thread_flag(p, TIF_FREEZE);
 }

+static inline bool should_send_signal(struct task_struct *p)
+{
+	return !(p->flags & PF_FREEZER_NOSIG);
+}
+
 /*
 * Wake up a frozen process
 *
 * task_lock() is taken to prevent the race with refrigerator() which may

Page 3 of 23 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 * occur if the freezing of tasks fails. Namely, without the lock, if the
@@ -61,22 +65,28 @@ static inline int thaw_process(struct ta
 	task_unlock(p);
 	return 0;
 }

 extern void refrigerator(void);
-extern int freeze_processes(void);
-extern void thaw_processes(void);

 static inline int try_to_freeze(void)
 {
 	if (freezing(current)) {
 		refrigerator();
 		return 1;
 	} else
 		return 0;
 }

+extern bool freeze_task(struct task_struct *p, bool sig_only);
+extern void cancel_freezing(struct task_struct *p);
+
+#ifdef CONFIG_PM_SLEEP
+
+extern int freeze_processes(void);
+extern void thaw_processes(void);
+
 /*
 * The PF_FREEZER_SKIP flag should be set by a vfork parent right before it
 * calls wait_for_completion(&vfork) and reset right after it returns from this
 * function. Next, the parent should call try_to_freeze() to freeze itself
 * appropriately in case the child has exited before the freezing of tasks is
@@ -165,22 +175,14 @@ static inline void set_freezable_with_si
 				__retval); 				\
 	} while (try_to_freeze());					\
 	__retval;							\
 })
 #else /* !CONFIG_PM_SLEEP */
-static inline int frozen(struct task_struct *p) { return 0; }
-static inline int freezing(struct task_struct *p) { return 0; }
-static inline void set_freeze_flag(struct task_struct *p) {}
-static inline void clear_freeze_flag(struct task_struct *p) {}
-static inline int thaw_process(struct task_struct *p) { return 1; }

-static inline void refrigerator(void) {}
 static inline int freeze_processes(void) { BUG(); return 0; }
 static inline void thaw_processes(void) {}

Page 4 of 23 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-static inline int try_to_freeze(void) { return 0; }
-
 static inline void freezer_do_not_count(void) {}
 static inline void freezer_count(void) {}
 static inline int freezer_should_skip(struct task_struct *p) { return 0; }
 static inline void set_freezable(void) {}
 static inline void set_freezable_with_signal(void) {}
Index: linux-2.6.26-rc5-mm2/kernel/Makefile
===
--- linux-2.6.26-rc5-mm2.orig/kernel/Makefile
+++ linux-2.6.26-rc5-mm2/kernel/Makefile
@@ -3,11 +3,11 @@
 #

 obj-y = sched.o fork.o exec_domain.o panic.o printk.o \
 	 exit.o itimer.o time.o softirq.o resource.o \
 	 sysctl.o capability.o ptrace.o timer.o user.o \
-	 signal.o sys.o kmod.o workqueue.o pid.o \
+	 signal.o sys.o kmod.o workqueue.o pid.o freezer.o \
 	 rcupdate.o extable.o params.o posix-timers.o \
 	 kthread.o wait.o kfifo.o sys_ni.o posix-cpu-timers.o mutex.o \
 	 hrtimer.o rwsem.o nsproxy.o srcu.o semaphore.o \
 	 notifier.o ksysfs.o pm_qos_params.o sched_clock.o

Index: linux-2.6.26-rc5-mm2/kernel/freezer.c
===
--- /dev/null
+++ linux-2.6.26-rc5-mm2/kernel/freezer.c
@@ -0,0 +1,122 @@
+/*
+ * kernel/freezer.c - Function to freeze a process
+ *
+ * Originally from kernel/power/process.c
+ */
+
+#include <linux/interrupt.h>
+#include <linux/suspend.h>
+#include <linux/module.h>
+#include <linux/syscalls.h>
+#include <linux/freezer.h>
+
+/*
+ * freezing is complete, mark current process as frozen
+ */
+static inline void frozen_process(void)
+{
+	if (!unlikely(current->flags & PF_NOFREEZE)) {
+		current->flags |= PF_FROZEN;

Page 5 of 23 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+		wmb();
+	}
+	clear_freeze_flag(current);
+}
+
+/* Refrigerator is place where frozen processes are stored :-). */
+void refrigerator(void)
+{
+	/* Hmm, should we be allowed to suspend when there are realtime
+	 processes around? */
+	long save;
+
+	task_lock(current);
+	if (freezing(current)) {
+		frozen_process();
+		task_unlock(current);
+	} else {
+		task_unlock(current);
+		return;
+	}
+	save = current->state;
+	pr_debug("%s entered refrigerator\n", current->comm);
+
+	spin_lock_irq(¤t->sighand->siglock);
+	recalc_sigpending(); /* We sent fake signal, clean it up */
+	spin_unlock_irq(¤t->sighand->siglock);
+
+	for (;;) {
+		set_current_state(TASK_UNINTERRUPTIBLE);
+		if (!frozen(current))
+			break;
+		schedule();
+	}
+	pr_debug("%s left refrigerator\n", current->comm);
+	__set_current_state(save);
+}
+EXPORT_SYMBOL(refrigerator);
+
+static void fake_signal_wake_up(struct task_struct *p)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(&p->sighand->siglock, flags);
+	signal_wake_up(p, 0);
+	spin_unlock_irqrestore(&p->sighand->siglock, flags);
+}
+
+/**

Page 6 of 23 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ *	freeze_task - send a freeze request to given task
+ *	@p: task to send the request to
+ *	@sig_only: if set, the request will only be sent if the task has the
+ *		PF_FREEZER_NOSIG flag unset
+ *	Return value: 'false', if @sig_only is set and the task has
+ *		PF_FREEZER_NOSIG set or the task is frozen, 'true', otherwise
+ *
+ *	The freeze request is sent by setting the tasks's TIF_FREEZE flag and
+ *	either sending a fake signal to it or waking it up, depending on whether
+ *	or not it has PF_FREEZER_NOSIG set. If @sig_only is set and the task
+ *	has PF_FREEZER_NOSIG set (ie. it is a typical kernel thread), its
+ *	TIF_FREEZE flag will not be set.
+ */
+bool freeze_task(struct task_struct *p, bool sig_only)
+{
+	/*
+	 * We first check if the task is freezing and next if it has already
+	 * been frozen to avoid the race with frozen_process() which first marks
+	 * the task as frozen and next clears its TIF_FREEZE.
+	 */
+	if (!freezing(p)) {
+		rmb();
+		if (frozen(p))
+			return false;
+
+		if (!sig_only || should_send_signal(p))
+			set_freeze_flag(p);
+		else
+			return false;
+	}
+
+	if (should_send_signal(p)) {
+		if (!signal_pending(p))
+			fake_signal_wake_up(p);
+	} else if (sig_only) {
+		return false;
+	} else {
+		wake_up_state(p, TASK_INTERRUPTIBLE);
+	}
+
+	return true;
+}
+
+void cancel_freezing(struct task_struct *p)
+{
+	unsigned long flags;
+
+	if (freezing(p)) {

Page 7 of 23 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+		pr_debug(" clean up: %s\n", p->comm);
+		clear_freeze_flag(p);
+		spin_lock_irqsave(&p->sighand->siglock, flags);
+		recalc_sigpending_and_wake(p);
+		spin_unlock_irqrestore(&p->sighand->siglock, flags);
+	}
+}
Index: linux-2.6.26-rc5-mm2/kernel/power/process.c
===
--- linux-2.6.26-rc5-mm2.orig/kernel/power/process.c
+++ linux-2.6.26-rc5-mm2/kernel/power/process.c
@@ -26,125 +26,10 @@ static inline int freezeable(struct task
 	 (p->exit_state != 0))
 		return 0;
 	return 1;
 }

-/*
- * freezing is complete, mark current process as frozen
- */
-static inline void frozen_process(void)
-{
-	if (!unlikely(current->flags & PF_NOFREEZE)) {
-		current->flags |= PF_FROZEN;
-		wmb();
-	}
-	clear_freeze_flag(current);
-}
-
-/* Refrigerator is place where frozen processes are stored :-). */
-void refrigerator(void)
-{
-	/* Hmm, should we be allowed to suspend when there are realtime
-	 processes around? */
-	long save;
-
-	task_lock(current);
-	if (freezing(current)) {
-		frozen_process();
-		task_unlock(current);
-	} else {
-		task_unlock(current);
-		return;
-	}
-	save = current->state;
-	pr_debug("%s entered refrigerator\n", current->comm);
-
-	spin_lock_irq(¤t->sighand->siglock);

Page 8 of 23 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-	recalc_sigpending(); /* We sent fake signal, clean it up */
-	spin_unlock_irq(¤t->sighand->siglock);
-
-	for (;;) {
-		set_current_state(TASK_UNINTERRUPTIBLE);
-		if (!frozen(current))
-			break;
-		schedule();
-	}
-	pr_debug("%s left refrigerator\n", current->comm);
-	__set_current_state(save);
-}
-
-static void fake_signal_wake_up(struct task_struct *p)
-{
-	unsigned long flags;
-
-	spin_lock_irqsave(&p->sighand->siglock, flags);
-	signal_wake_up(p, 0);
-	spin_unlock_irqrestore(&p->sighand->siglock, flags);
-}
-
-static inline bool should_send_signal(struct task_struct *p)
-{
-	return !(p->flags & PF_FREEZER_NOSIG);
-}
-
-/**
- *	freeze_task - send a freeze request to given task
- *	@p: task to send the request to
- *	@sig_only: if set, the request will only be sent if the task has the
- *		PF_FREEZER_NOSIG flag unset
- *	Return value: 'false', if @sig_only is set and the task has
- *		PF_FREEZER_NOSIG set or the task is frozen, 'true', otherwise
- *
- *	The freeze request is sent by setting the tasks's TIF_FREEZE flag and
- *	either sending a fake signal to it or waking it up, depending on whether
- *	or not it has PF_FREEZER_NOSIG set. If @sig_only is set and the task
- *	has PF_FREEZER_NOSIG set (ie. it is a typical kernel thread), its
- *	TIF_FREEZE flag will not be set.
- */
-static bool freeze_task(struct task_struct *p, bool sig_only)
-{
-	/*
-	 * We first check if the task is freezing and next if it has already
-	 * been frozen to avoid the race with frozen_process() which first marks
-	 * the task as frozen and next clears its TIF_FREEZE.
-	 */

Page 9 of 23 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-	if (!freezing(p)) {
-		rmb();
-		if (frozen(p))
-			return false;
-
-		if (!sig_only || should_send_signal(p))
-			set_freeze_flag(p);
-		else
-			return false;
-	}
-
-	if (should_send_signal(p)) {
-		if (!signal_pending(p))
-			fake_signal_wake_up(p);
-	} else if (sig_only) {
-		return false;
-	} else {
-		wake_up_state(p, TASK_INTERRUPTIBLE);
-	}
-
-	return true;
-}
-
-static void cancel_freezing(struct task_struct *p)
-{
-	unsigned long flags;
-
-	if (freezing(p)) {
-		pr_debug(" clean up: %s\n", p->comm);
-		clear_freeze_flag(p);
-		spin_lock_irqsave(&p->sighand->siglock, flags);
-		recalc_sigpending_and_wake(p);
-		spin_unlock_irqrestore(&p->sighand->siglock, flags);
-	}
-}
-
 static int try_to_freeze_tasks(bool sig_only)
 {
 	struct task_struct *g, *p;
 	unsigned long end_time;
 	unsigned int todo;
@@ -262,6 +147,5 @@ void thaw_processes(void)
 	thaw_tasks(false);
 	schedule();
 	printk("done.\n");
 }

-EXPORT_SYMBOL(refrigerator);

Page 10 of 23 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

--

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH 0/4] Container Freezer: Reuse Suspend Freezer
Posted by Paul Menage on Tue, 08 Jul 2008 20:06:32 GMT
View Forum Message <> Reply to Message

On Tue, Jul 8, 2008 at 12:39 PM, Matt Helsley <matthltc@us.ibm.com> wrote:
>
> One is to try and disallow users from moving frozen tasks. That doesn't
> seem like a good approach since it would require a new cgroups interface
> "can_detach()".

Detaching from the old cgroup happens at the same time as attaching to
the new cgroup, so can_attach() would work here.

Paul

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH 0/4] Container Freezer: Reuse Suspend Freezer
Posted by Paul Menage on Tue, 08 Jul 2008 20:07:09 GMT
View Forum Message <> Reply to Message

On Tue, Jul 8, 2008 at 1:06 PM, Paul Menage <menage@google.com> wrote:
> On Tue, Jul 8, 2008 at 12:39 PM, Matt Helsley <matthltc@us.ibm.com> wrote:
>>
>> One is to try and disallow users from moving frozen tasks. That doesn't
>> seem like a good approach since it would require a new cgroups interface
>> "can_detach()".
>
> Detaching from the old cgroup happens at the same time as attaching to
> the new cgroup, so can_attach() would work here.

And the whole can_attach()/attach() protocol needs reworking anyway,
see my email (hopefully) later today.

Paul

Page 11 of 23 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=6345&goto=31750#msg_31750
https://new-forum.openvz.org/index.php?t=post&reply_to=31750
https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=6345&goto=31751#msg_31751
https://new-forum.openvz.org/index.php?t=post&reply_to=31751
https://new-forum.openvz.org/index.php

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH 0/4] Container Freezer: Reuse Suspend Freezer
Posted by Matt Helsley on Wed, 09 Jul 2008 21:58:43 GMT
View Forum Message <> Reply to Message

On Tue, 2008-07-08 at 13:07 -0700, Paul Menage wrote:
> On Tue, Jul 8, 2008 at 1:06 PM, Paul Menage <menage@google.com> wrote:
> > On Tue, Jul 8, 2008 at 12:39 PM, Matt Helsley <matthltc@us.ibm.com> wrote:
> >>
> >> One is to try and disallow users from moving frozen tasks. That doesn't
> >> seem like a good approach since it would require a new cgroups interface
> >> "can_detach()".
> >
> > Detaching from the old cgroup happens at the same time as attaching to
> > the new cgroup, so can_attach() would work here.

Update: I've made a patch implementing this. However it might be better
to just modify attach() to thaw the moving task rather than disallow
moving the frozen task. Serge, Cedric, Kame-san, do you have any
thoughts on which is more useful and/or intuitive?

> And the whole can_attach()/attach() protocol needs reworking anyway,
> see my email (hopefully) later today.
>
> Paul

Interesting. I look forward to seeing this.

Cheers,
	-Matt

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH 0/4] Container Freezer: Reuse Suspend Freezer
Posted by KAMEZAWA Hiroyuki on Thu, 10 Jul 2008 00:39:43 GMT
View Forum Message <> Reply to Message

On Wed, 09 Jul 2008 14:58:43 -0700
Matt Helsley <matthltc@us.ibm.com> wrote:

Page 12 of 23 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=670
https://new-forum.openvz.org/index.php?t=rview&th=6345&goto=31781#msg_31781
https://new-forum.openvz.org/index.php?t=post&reply_to=31781
https://new-forum.openvz.org/index.php?t=usrinfo&id=777
https://new-forum.openvz.org/index.php?t=rview&th=6345&goto=31788#msg_31788
https://new-forum.openvz.org/index.php?t=post&reply_to=31788
https://new-forum.openvz.org/index.php

>
> On Tue, 2008-07-08 at 13:07 -0700, Paul Menage wrote:
> > On Tue, Jul 8, 2008 at 1:06 PM, Paul Menage <menage@google.com> wrote:
> > > On Tue, Jul 8, 2008 at 12:39 PM, Matt Helsley <matthltc@us.ibm.com> wrote:
> > >>
> > >> One is to try and disallow users from moving frozen tasks. That doesn't
> > >> seem like a good approach since it would require a new cgroups interface
> > >> "can_detach()".
> > >
> > > Detaching from the old cgroup happens at the same time as attaching to
> > > the new cgroup, so can_attach() would work here.
>
> Update: I've made a patch implementing this. However it might be better
> to just modify attach() to thaw the moving task rather than disallow
> moving the frozen task. Serge, Cedric, Kame-san, do you have any
> thoughts on which is more useful and/or intuitive?
>

Thank you for explanation in previous mail.

Hmm, just thawing seems atractive but it will confuse people (I think).

I think some kind of process-group is freezed by this freezer and "moving
freezed task" is wrong(unexpected) operation in general. And there will
be no demand to do that from users.
I think just taking "moving freezed task" as error-operation and returning
-EBUSY is better.

Thanks,
-Kame

> > And the whole can_attach()/attach() protocol needs reworking anyway,
> > see my email (hopefully) later today.
> >
> > Paul
>
> Interesting. I look forward to seeing this.
>
> Cheers,
> 	-Matt
>
>

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 13 of 23 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Subject: [RFC][PATCH] Container Freezer: Don't Let Frozen Stuff Change
Posted by Matt Helsley on Thu, 10 Jul 2008 02:18:29 GMT
View Forum Message <> Reply to Message

On Thu, 2008-07-10 at 09:42 +0900, KAMEZAWA Hiroyuki wrote:
> On Wed, 09 Jul 2008 14:58:43 -0700
> Matt Helsley <matthltc@us.ibm.com> wrote:
>
> >
> > On Tue, 2008-07-08 at 13:07 -0700, Paul Menage wrote:
> > > On Tue, Jul 8, 2008 at 1:06 PM, Paul Menage <menage@google.com> wrote:
> > > > On Tue, Jul 8, 2008 at 12:39 PM, Matt Helsley <matthltc@us.ibm.com> wrote:
> > > >>
> > > >> One is to try and disallow users from moving frozen tasks. That doesn't
> > > >> seem like a good approach since it would require a new cgroups interface
> > > >> "can_detach()".
> > > >
> > > > Detaching from the old cgroup happens at the same time as attaching to
> > > > the new cgroup, so can_attach() would work here.
> >
> > Update: I've made a patch implementing this. However it might be better
> > to just modify attach() to thaw the moving task rather than disallow
> > moving the frozen task. Serge, Cedric, Kame-san, do you have any
> > thoughts on which is more useful and/or intuitive?
> >
>
> Thank you for explanation in previous mail.
>
> Hmm, just thawing seems atractive but it will confuse people (I think).
>
> I think some kind of process-group is freezed by this freezer and "moving
> freezed task" is wrong(unexpected) operation in general. And there will
> be no demand to do that from users.
> I think just taking "moving freezed task" as error-operation and returning
> -EBUSY is better.

Kame-san,

	I've been working on changes to the can_attach() code so it was pretty
easy to try this out.

	Don't let frozen tasks or cgroups change. This means frozen tasks can't
leave their current cgroup for another cgroup. It also means that tasks
cannot be added to or removed from a cgroup in the FROZEN state. We
enforce these rules by checking for frozen tasks and cgroups in the
can_attach() function.

Signed-off-by: Matt Helsley <matthltc@us.ibm.com>

Page 14 of 23 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=670
https://new-forum.openvz.org/index.php?t=rview&th=6345&goto=31794#msg_31794
https://new-forum.openvz.org/index.php?t=post&reply_to=31794
https://new-forum.openvz.org/index.php

Builds, boots, passes testing against 2.6.26-rc5-mm2

 kernel/cgroup_freezer.c | 42 +++++++++++++++++++++++++-----------------
 1 file changed, 25 insertions(+), 17 deletions(-)

Index: linux-2.6.26-rc5-mm2/kernel/cgroup_freezer.c
===
--- linux-2.6.26-rc5-mm2.orig/kernel/cgroup_freezer.c
+++ linux-2.6.26-rc5-mm2/kernel/cgroup_freezer.c
@@ -89,26 +89,43 @@ static void freezer_destroy(struct cgrou
 			 struct cgroup *cgroup)
 {
 	kfree(cgroup_freezer(cgroup));
 }

+/* Task is frozen or will freeze immediately when next it gets woken */
+static bool is_task_frozen_enough(struct task_struct *task)
+{
+	return (frozen(task) || (task_is_stopped_or_traced(task) && freezing(task)));
+}

+/*
+ * The call to cgroup_lock() in the freezer.state write method prevents
+ * a write to that file racing against an attach, and hence the
+ * can_attach() result will remain valid until the attach completes.
+ */
 static int freezer_can_attach(struct cgroup_subsys *ss,
 			 struct cgroup *new_cgroup,
 			 struct task_struct *task)
 {
 	struct freezer *freezer;
-	int retval = 0;
+	int retval;
+
+	/* Anything frozen can't move or be moved to/from */
+
+	if (is_task_frozen_enough(task))
+		return -EBUSY;

-	/*
-	 * The call to cgroup_lock() in the freezer.state write method prevents
-	 * a write to that file racing against an attach, and hence the
-	 * can_attach() result will remain valid until the attach completes.
-	 */
 	freezer = cgroup_freezer(new_cgroup);
 	if (freezer->state == STATE_FROZEN)
+		return -EBUSY;
+

Page 15 of 23 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+	retval = 0;
+	task_lock(task);
+	freezer = task_freezer(task);
+	if (freezer->state == STATE_FROZEN)
 		retval = -EBUSY;
+	task_unlock(task);
 	return retval;
 }

 static void freezer_fork(struct cgroup_subsys *ss, struct task_struct *task)
 {
@@ -139,16 +156,11 @@ static void check_if_frozen(struct cgrou
 	unsigned int nfrozen = 0, ntotal = 0;

 	cgroup_iter_start(cgroup, &it);
 	while ((task = cgroup_iter_next(cgroup, &it))) {
 		ntotal++;
-		/*
-		 * Task is frozen or will freeze immediately when next it gets
-		 * woken
-		 */
-		if (frozen(task) ||
-		 (task_is_stopped_or_traced(task) && freezing(task)))
+		if (is_task_frozen_enough(task))
 			nfrozen++;
 	}

 	/*
 	 * Transition to FROZEN when no new tasks can be added ensures
@@ -195,15 +207,11 @@ static int try_to_freeze_cgroup(struct c
 	freezer->state = STATE_FREEZING;
 	cgroup_iter_start(cgroup, &it);
 	while ((task = cgroup_iter_next(cgroup, &it))) {
 		if (!freeze_task(task, true))
 			continue;
-		if (task_is_stopped_or_traced(task) && freezing(task))
-			/*
-			 * The freeze flag is set so these tasks will
-			 * immediately go into the fridge upon waking.
-			 */
+		if (is_task_frozen_enough(task))
 			continue;
 		if (!freezing(task) && !freezer_should_skip(task))
 			num_cant_freeze_now++;
 	}
 	cgroup_iter_end(cgroup, &it);

Page 16 of 23 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC][PATCH] Container Freezer: Don't Let Frozen Stuff Change
Posted by Li Zefan on Thu, 10 Jul 2008 03:20:12 GMT
View Forum Message <> Reply to Message

Matt Helsley wrote:
> On Thu, 2008-07-10 at 09:42 +0900, KAMEZAWA Hiroyuki wrote:
>> On Wed, 09 Jul 2008 14:58:43 -0700
>> Matt Helsley <matthltc@us.ibm.com> wrote:
>>
>>> On Tue, 2008-07-08 at 13:07 -0700, Paul Menage wrote:
>>>> On Tue, Jul 8, 2008 at 1:06 PM, Paul Menage <menage@google.com> wrote:
>>>>> On Tue, Jul 8, 2008 at 12:39 PM, Matt Helsley <matthltc@us.ibm.com> wrote:
>>>>>> One is to try and disallow users from moving frozen tasks. That doesn't
>>>>>> seem like a good approach since it would require a new cgroups interface
>>>>>> "can_detach()".
>>>>> Detaching from the old cgroup happens at the same time as attaching to
>>>>> the new cgroup, so can_attach() would work here.
>>> Update: I've made a patch implementing this. However it might be better
>>> to just modify attach() to thaw the moving task rather than disallow
>>> moving the frozen task. Serge, Cedric, Kame-san, do you have any
>>> thoughts on which is more useful and/or intuitive?
>>>
>> Thank you for explanation in previous mail.
>>
>> Hmm, just thawing seems atractive but it will confuse people (I think).
>>
>> I think some kind of process-group is freezed by this freezer and "moving
>> freezed task" is wrong(unexpected) operation in general. And there will
>> be no demand to do that from users.
>> I think just taking "moving freezed task" as error-operation and returning
>> -EBUSY is better.
>
> Kame-san,
>
> 	I've been working on changes to the can_attach() code so it was pretty
> easy to try this out.
>
> 	Don't let frozen tasks or cgroups change. This means frozen tasks can't
> leave their current cgroup for another cgroup. It also means that tasks
> cannot be added to or removed from a cgroup in the FROZEN state. We
> enforce these rules by checking for frozen tasks and cgroups in the
> can_attach() function.

Page 17 of 23 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=2371
https://new-forum.openvz.org/index.php?t=rview&th=6345&goto=31796#msg_31796
https://new-forum.openvz.org/index.php?t=post&reply_to=31796
https://new-forum.openvz.org/index.php

>
> Signed-off-by: Matt Helsley <matthltc@us.ibm.com>
> ---
> Builds, boots, passes testing against 2.6.26-rc5-mm2
>
> kernel/cgroup_freezer.c | 42 +++++++++++++++++++++++++-----------------
> 1 file changed, 25 insertions(+), 17 deletions(-)
>
> Index: linux-2.6.26-rc5-mm2/kernel/cgroup_freezer.c
> ===
> --- linux-2.6.26-rc5-mm2.orig/kernel/cgroup_freezer.c
> +++ linux-2.6.26-rc5-mm2/kernel/cgroup_freezer.c
> @@ -89,26 +89,43 @@ static void freezer_destroy(struct cgrou
> 			 struct cgroup *cgroup)
> {
> 	kfree(cgroup_freezer(cgroup));
> }
>
> +/* Task is frozen or will freeze immediately when next it gets woken */
> +static bool is_task_frozen_enough(struct task_struct *task)
> +{
> +	return (frozen(task) || (task_is_stopped_or_traced(task) && freezing(task)));
> +}
>
> +/*
> + * The call to cgroup_lock() in the freezer.state write method prevents
> + * a write to that file racing against an attach, and hence the
> + * can_attach() result will remain valid until the attach completes.
> + */
> static int freezer_can_attach(struct cgroup_subsys *ss,
> 			 struct cgroup *new_cgroup,
> 			 struct task_struct *task)
> {
> 	struct freezer *freezer;
> -	int retval = 0;
> +	int retval;
> +
> +	/* Anything frozen can't move or be moved to/from */
> +
> +	if (is_task_frozen_enough(task))
> +		return -EBUSY;
>

cgroup_lock() can prevent the state change of old_cgroup and new_cgroup, but
will the following racy happen ?
 1 2
can_attach(tsk)
 is_task_frozen_enough(tsk) == false

Page 18 of 23 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 freeze_task(tsk)
attach(tsk)

i.e., will is_task_frozen_enough(tsk) remain valid through can_attach() and attach()?

> -	/*
> -	 * The call to cgroup_lock() in the freezer.state write method prevents
> -	 * a write to that file racing against an attach, and hence the
> -	 * can_attach() result will remain valid until the attach completes.
> -	 */
> 	freezer = cgroup_freezer(new_cgroup);
> 	if (freezer->state == STATE_FROZEN)
> +		return -EBUSY;
> +
> +	retval = 0;
> +	task_lock(task);
> +	freezer = task_freezer(task);
> +	if (freezer->state == STATE_FROZEN)
> 		retval = -EBUSY;
> +	task_unlock(task);
> 	return retval;
> }
>
> static void freezer_fork(struct cgroup_subsys *ss, struct task_struct *task)
> {
> @@ -139,16 +156,11 @@ static void check_if_frozen(struct cgrou
> 	unsigned int nfrozen = 0, ntotal = 0;
>
> 	cgroup_iter_start(cgroup, &it);
> 	while ((task = cgroup_iter_next(cgroup, &it))) {
> 		ntotal++;
> -		/*
> -		 * Task is frozen or will freeze immediately when next it gets
> -		 * woken
> -		 */
> -		if (frozen(task) ||
> -		 (task_is_stopped_or_traced(task) && freezing(task)))
> +		if (is_task_frozen_enough(task))
> 			nfrozen++;
> 	}
>
> 	/*
> 	 * Transition to FROZEN when no new tasks can be added ensures
> @@ -195,15 +207,11 @@ static int try_to_freeze_cgroup(struct c
> 	freezer->state = STATE_FREEZING;
> 	cgroup_iter_start(cgroup, &it);
> 	while ((task = cgroup_iter_next(cgroup, &it))) {
> 		if (!freeze_task(task, true))

Page 19 of 23 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> 			continue;
> -		if (task_is_stopped_or_traced(task) && freezing(task))
> -			/*
> -			 * The freeze flag is set so these tasks will
> -			 * immediately go into the fridge upon waking.
> -			 */
> +		if (is_task_frozen_enough(task))
> 			continue;
> 		if (!freezing(task) && !freezer_should_skip(task))
> 			num_cant_freeze_now++;
> 	}
> 	cgroup_iter_end(cgroup, &it);
>

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH 0/4] Container Freezer: Reuse Suspend Freezer
Posted by serue on Thu, 10 Jul 2008 14:40:09 GMT
View Forum Message <> Reply to Message

Quoting KAMEZAWA Hiroyuki (kamezawa.hiroyu@jp.fujitsu.com):
> On Wed, 09 Jul 2008 14:58:43 -0700
> Matt Helsley <matthltc@us.ibm.com> wrote:
>
> >
> > On Tue, 2008-07-08 at 13:07 -0700, Paul Menage wrote:
> > > On Tue, Jul 8, 2008 at 1:06 PM, Paul Menage <menage@google.com> wrote:
> > > > On Tue, Jul 8, 2008 at 12:39 PM, Matt Helsley <matthltc@us.ibm.com> wrote:
> > > >>
> > > >> One is to try and disallow users from moving frozen tasks. That doesn't
> > > >> seem like a good approach since it would require a new cgroups interface
> > > >> "can_detach()".
> > > >
> > > > Detaching from the old cgroup happens at the same time as attaching to
> > > > the new cgroup, so can_attach() would work here.
> >
> > Update: I've made a patch implementing this. However it might be better
> > to just modify attach() to thaw the moving task rather than disallow
> > moving the frozen task. Serge, Cedric, Kame-san, do you have any
> > thoughts on which is more useful and/or intuitive?
> >
>
> Thank you for explanation in previous mail.
>
> Hmm, just thawing seems atractive but it will confuse people (I think).

Page 20 of 23 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=204
https://new-forum.openvz.org/index.php?t=rview&th=6345&goto=31822#msg_31822
https://new-forum.openvz.org/index.php?t=post&reply_to=31822
https://new-forum.openvz.org/index.php

>
> I think some kind of process-group is freezed by this freezer and "moving
> freezed task" is wrong(unexpected) operation in general. And there will
> be no demand to do that from users.
> I think just taking "moving freezed task" as error-operation and returning
> -EBUSY is better.
>
> Thanks,
> -Kame

I'm torn. Allowing the moves is kind of cool, but I think I agree that
we should start out with the simpler semantics, which in this case is
disallowing the move. The race Li may have found will only become more
complicated when both sides of the race can change the task's frozen
state.

-serge

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC][PATCH] Container Freezer: Don't Let Frozen Stuff Change
Posted by Matt Helsley on Fri, 11 Jul 2008 23:51:54 GMT
View Forum Message <> Reply to Message

On Thu, 2008-07-10 at 11:20 +0800, Li Zefan wrote:
> Matt Helsley wrote:
> > On Thu, 2008-07-10 at 09:42 +0900, KAMEZAWA Hiroyuki wrote:
> >> On Wed, 09 Jul 2008 14:58:43 -0700
> >> Matt Helsley <matthltc@us.ibm.com> wrote:
> >>
> >>> On Tue, 2008-07-08 at 13:07 -0700, Paul Menage wrote:
> >>>> On Tue, Jul 8, 2008 at 1:06 PM, Paul Menage <menage@google.com> wrote:
> >>>>> On Tue, Jul 8, 2008 at 12:39 PM, Matt Helsley <matthltc@us.ibm.com> wrote:
> >>>>>> One is to try and disallow users from moving frozen tasks. That doesn't
> >>>>>> seem like a good approach since it would require a new cgroups interface
> >>>>>> "can_detach()".
> >>>>> Detaching from the old cgroup happens at the same time as attaching to
> >>>>> the new cgroup, so can_attach() would work here.
> >>> Update: I've made a patch implementing this. However it might be better
> >>> to just modify attach() to thaw the moving task rather than disallow
> >>> moving the frozen task. Serge, Cedric, Kame-san, do you have any
> >>> thoughts on which is more useful and/or intuitive?
> >>>
> >> Thank you for explanation in previous mail.
> >>

Page 21 of 23 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=670
https://new-forum.openvz.org/index.php?t=rview&th=6345&goto=31889#msg_31889
https://new-forum.openvz.org/index.php?t=post&reply_to=31889
https://new-forum.openvz.org/index.php

> >> Hmm, just thawing seems atractive but it will confuse people (I think).
> >>
> >> I think some kind of process-group is freezed by this freezer and "moving
> >> freezed task" is wrong(unexpected) operation in general. And there will
> >> be no demand to do that from users.
> >> I think just taking "moving freezed task" as error-operation and returning
> >> -EBUSY is better.
> >
> > Kame-san,
> >
> > 	I've been working on changes to the can_attach() code so it was pretty
> > easy to try this out.
> >
> > 	Don't let frozen tasks or cgroups change. This means frozen tasks can't
> > leave their current cgroup for another cgroup. It also means that tasks
> > cannot be added to or removed from a cgroup in the FROZEN state. We
> > enforce these rules by checking for frozen tasks and cgroups in the
> > can_attach() function.
> >
> > Signed-off-by: Matt Helsley <matthltc@us.ibm.com>
> > ---
> > Builds, boots, passes testing against 2.6.26-rc5-mm2
> >
> > kernel/cgroup_freezer.c | 42 +++++++++++++++++++++++++-----------------
> > 1 file changed, 25 insertions(+), 17 deletions(-)
> >
> > Index: linux-2.6.26-rc5-mm2/kernel/cgroup_freezer.c
> > ===
> > --- linux-2.6.26-rc5-mm2.orig/kernel/cgroup_freezer.c
> > +++ linux-2.6.26-rc5-mm2/kernel/cgroup_freezer.c
> > @@ -89,26 +89,43 @@ static void freezer_destroy(struct cgrou
> > 			 struct cgroup *cgroup)
> > {
> > 	kfree(cgroup_freezer(cgroup));
> > }
> >
> > +/* Task is frozen or will freeze immediately when next it gets woken */
> > +static bool is_task_frozen_enough(struct task_struct *task)
> > +{
> > +	return (frozen(task) || (task_is_stopped_or_traced(task) && freezing(task)));
> > +}
> >
> > +/*
> > + * The call to cgroup_lock() in the freezer.state write method prevents
> > + * a write to that file racing against an attach, and hence the
> > + * can_attach() result will remain valid until the attach completes.
> > + */
> > static int freezer_can_attach(struct cgroup_subsys *ss,

Page 22 of 23 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> > 			 struct cgroup *new_cgroup,
> > 			 struct task_struct *task)
> > {
> > 	struct freezer *freezer;
> > -	int retval = 0;
> > +	int retval;
> > +
> > +	/* Anything frozen can't move or be moved to/from */
> > +
> > +	if (is_task_frozen_enough(task))
> > +		return -EBUSY;
> >
>
> cgroup_lock() can prevent the state change of old_cgroup and new_cgroup, but
> will the following racy happen ?
> 1 2

For most of the paths using these functions we have:

cgroup_lock() cgroup_lock()
... ...
> can_attach(tsk)
> is_task_frozen_enough(tsk) == false
> freeze_task(tsk)
 or thaw_process(tsk)
> attach(tsk)
... ...
cgroup_unlock() cgroup_unlock()

	I've checked the cgroup freezer subsystem and the cgroup "core" and
this interleaving isn't possible between those two pieces. Only the
swsusp invocation of freeze_task() does not protect freeze/thaw with the
cgroup_lock. I'll be looking into this some more to see if that's really
a problem and if so how we might solve it.

	Thanks for this excellent question.

Cheers,
	-Matt Helsley

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 23 of 23 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

