
Subject: Re: [ckrm-tech] [RFC][PATCH 2/7] UBC: core (structures, API)
Posted by dev on Fri, 18 Aug 2006 11:34:22 GMT
View Forum Message <> Reply to Message

Matt Helsley wrote:

[snip]
>>+obj-$(CONFIG_USER_RESOURCE) += beancounter.o
>>--- /dev/null	2006-07-18 14:52:43.075228448 +0400
>>+++ ./kernel/ub/beancounter.c	2006-08-10 15:09:34.000000000 +0400
>>@@ -0,0 +1,398 @@
>>+/*
>>+ * kernel/ub/beancounter.c
>>+ *
>>+ * Copyright (C) 2006 OpenVZ. SWsoft Inc
>>+ * Original code by (C) 1998 Alan Cox
>>+ * 1998-2000 Andrey Savochkin <saw@saw.sw.com.sg>
>>+ */
>>+
>>+#include <linux/slab.h>
>>+#include <linux/module.h>
>>+
>>+#include <ub/beancounter.h>
>>+
>>+static kmem_cache_t *ub_cachep;
>>+static struct user_beancounter default_beancounter;
>>+static struct user_beancounter default_subbeancounter;
>>+
>>+static void init_beancounter_struct(struct user_beancounter *ub, uid_t id);
>>+
>>+struct user_beancounter ub0;
>>+
>>+const char *ub_rnames[] = {
>>+};
>>+
>>+#define ub_hash_fun(x) ((((x) >> 8) ^ (x)) & (UB_HASH_SIZE - 1))
>>+#define ub_subhash_fun(p, id) ub_hash_fun((p)->ub_uid + (id) * 17)
>>+
>>+struct hlist_head ub_hash[UB_HASH_SIZE];
>>+spinlock_t ub_hash_lock;
>>+
>>+EXPORT_SYMBOL(ub_hash);
>>+EXPORT_SYMBOL(ub_hash_lock);
>>+
>>+/*
>>+ *	Per user resource beancounting. Resources are tied to their luid.
>
>

Page 1 of 17 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=19
https://new-forum.openvz.org/index.php?t=rview&th=985&goto=5387#msg_5387
https://new-forum.openvz.org/index.php?t=post&reply_to=5387
https://new-forum.openvz.org/index.php

> You haven't explained what an luid is at this point in the patch series.
> Patch 0 says:
>
> diff-ubc-syscalls.patch:
> Patch adds system calls for UB management:
> 1. sys_getluid - get current UB id
>
> But I have no idea what that l is there for. Why not sys_get_ubid() for
> instance?
it is a historical name given by Alan Cox (imho) and Andrey Savochkin.
will rename it to sys_getubid, sys_setubid and field
ub_uid will be renamed into ub_id.

>>+ *	The resource structure itself is tagged both to the process and
>>+ *	the charging resources (a socket doesn't want to have to search for
>>+ *	things at irq time for example). Reference counters keep things in
>>+ *	hand.
>>+ *
>>+ *	The case where a user creates resource, kills all his processes and
>>+ *	then starts new ones is correctly handled this way. The refcounters
>>+ *	will mean the old entry is still around with resource tied to it.
>>+ */
>>+
>
>
> So we create one beancounter object for every resource the user's tasks
> allocate? For instance, one per socket? Or does "resource structure"
> refer to something else?
no, user_beancounter structure exists one for a set of processes and its resources.

>>+struct user_beancounter *beancounter_findcreate(uid_t uid,
>>+		struct user_beancounter *p, int mask)
>>+{
>>+	struct user_beancounter *new_ub, *ub, *tmpl_ub;
>>+	unsigned long flags;
>>+	struct hlist_head *slot;
>>+	struct hlist_node *pos;
>>+
>>+	if (mask & UB_LOOKUP_SUB) {
>>+		WARN_ON(p == NULL);
>>+		tmpl_ub = &default_subbeancounter;
>>+		slot = &ub_hash[ub_subhash_fun(p, uid)];
>>+	} else {
>>+		WARN_ON(p != NULL);
>>+		tmpl_ub = &default_beancounter;
>>+		slot = &ub_hash[ub_hash_fun(uid)];
>>+	}
>>+	new_ub = NULL;

Page 2 of 17 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>>+
>>+retry:
>>+	spin_lock_irqsave(&ub_hash_lock, flags);
>>+	hlist_for_each_entry (ub, pos, slot, hash)
>>+		if (ub->ub_uid == uid && ub->parent == p)
>>+			break;
>>+
>>+	if (pos != NULL) {
>>+		get_beancounter(ub);
>>+		spin_unlock_irqrestore(&ub_hash_lock, flags);
>>+
>>+		if (new_ub != NULL) {
>>+			put_beancounter(new_ub->parent);
>>+			kmem_cache_free(ub_cachep, new_ub);
>>+		}
>>+		return ub;
>>+	}
>>+
>>+	if (!(mask & UB_ALLOC))
>>+		goto out_unlock;
>>+
>>+	if (new_ub != NULL)
>>+		goto out_install;
>>+
>>+	if (mask & UB_ALLOC_ATOMIC) {
>
>
> This block..
>
>
>>+		new_ub = kmem_cache_alloc(ub_cachep, GFP_ATOMIC);
>>+		if (new_ub == NULL)
>>+			goto out_unlock;
>>+
>>+		memcpy(new_ub, tmpl_ub, sizeof(*new_ub));
>>+		init_beancounter_struct(new_ub, uid);
>>+		if (p)
>>+			new_ub->parent = get_beancounter(p);
>
>
> ending here is almost exactly the same as the block ..
>
>
>>+		goto out_install;
>>+	}
>>+
>>+	spin_unlock_irqrestore(&ub_hash_lock, flags);
>>+

Page 3 of 17 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>
>
>>From here..
>
>
>>+	new_ub = kmem_cache_alloc(ub_cachep, GFP_KERNEL);
>>+	if (new_ub == NULL)
>>+		goto out;
>>+
>>+	memcpy(new_ub, tmpl_ub, sizeof(*new_ub));
>>+	init_beancounter_struct(new_ub, uid);
>>+	if (p)
>>+		new_ub->parent = get_beancounter(p);
>
>
> to here. You could make a flag variable that holds GFP_ATOMIC or
> GFP_KERNEL based on mask & UB_ALLOC_ATOMIC and perhaps turn this block
> into a small helper.
yeah, Oleg Nesterov already pointed to this. will cleanup.

>>+	goto retry;
>>+
>>+out_install:
>>+	hlist_add_head(&new_ub->hash, slot);
>>+out_unlock:
>>+	spin_unlock_irqrestore(&ub_hash_lock, flags);
>>+out:
>>+	return new_ub;
>>+}
>>+
>>+EXPORT_SYMBOL(beancounter_findcreate);
>>+
>>+void ub_print_uid(struct user_beancounter *ub, char *str, int size)
>>+{
>>+	if (ub->parent != NULL)
>>+		snprintf(str, size, "%u.%u", ub->parent->ub_uid, ub->ub_uid);
>>+	else
>>+		snprintf(str, size, "%u", ub->ub_uid);
>>+}
>>+
>>+EXPORT_SYMBOL(ub_print_uid);
>
>
>>From what I can see this patch doesn't really justify the need for the
> EXPORT_SYMBOL. Shouldn't that be done in the patch where it's needed
> outside of the kernel/ub code itself?
AFAIK these exports were used in our checkpointing code (OpenVZ)
ok, will remove exports from this patch series...

Page 4 of 17 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>>+void ub_print_resource_warning(struct user_beancounter *ub, int res,
>>+		char *str, unsigned long val, unsigned long held)
>>+{
>>+	char uid[64];
>>+
>>+	ub_print_uid(ub, uid, sizeof(uid));
>>+	printk(KERN_WARNING "UB %s %s warning: %s "
>>+			"(held %lu, fails %lu, val %lu)\n",
>>+			uid, ub_rnames[res], str,
>>+			(res < UB_RESOURCES ? ub->ub_parms[res].held : held),
>>+			(res < UB_RESOURCES ? ub->ub_parms[res].failcnt : 0),
>>+			val);
>>+}
>>+
>>+EXPORT_SYMBOL(ub_print_resource_warning);
>>+
>>+static inline void verify_held(struct user_beancounter *ub)
>>+{
>>+	int i;
>>+
>>+	for (i = 0; i < UB_RESOURCES; i++)
>>+		if (ub->ub_parms[i].held != 0)
>>+			ub_print_resource_warning(ub, i,
>>+					"resource is held on put", 0, 0);
>>+}
>>+
>>+void __put_beancounter(struct user_beancounter *ub)
>>+{
>>+	unsigned long flags;
>>+	struct user_beancounter *parent;
>>+
>>+again:
>>+	parent = ub->parent;
>>+	/* equevalent to atomic_dec_and_lock_irqsave() */
>
>
> nit: s/que/qui/
thanks!

>>+	local_irq_save(flags);
>>+	if (likely(!atomic_dec_and_lock(&ub->ub_refcount, &ub_hash_lock))) {
>>+		if (unlikely(atomic_read(&ub->ub_refcount) < 0))
>>+			printk(KERN_ERR "UB: Bad ub refcount: ub=%p, "
>>+					"luid=%d, ref=%d\n",
>>+					ub, ub->ub_uid,
>>+					atomic_read(&ub->ub_refcount));
>

Page 5 of 17 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>
> This seems to be for debugging purposes only. If not, perhaps this
> printk ought to be rate limited?
this is BUG_ON with more description. there is no much need to ratelimit it
as when it happens something really wrong happened in your system.

>>+		local_irq_restore(flags);
>>+		return;
>>+	}
>>+
>>+	if (unlikely(ub == &ub0)) {
>>+		printk(KERN_ERR "Trying to put ub0\n");
>
>
> Same thing for this printk.
will replace it with real BUG_ON here.

>>+		spin_unlock_irqrestore(&ub_hash_lock, flags);
>>+		return;
>>+	}
>>+
>>+	verify_held(ub);
>>+	hlist_del(&ub->hash);
>>+	spin_unlock_irqrestore(&ub_hash_lock, flags);
>>+
>>+	kmem_cache_free(ub_cachep, ub);
>>+
>>+	ub = parent;
>>+	if (ub != NULL)
>>+		goto again;
>
>
> Couldn't this be replaced by a do { } while (ub != NULL); loop?
this is ugly from indentation POV. also restarts are frequently used everywhere...

>>+}
>>+
>>+EXPORT_SYMBOL(__put_beancounter);
>>+
>>+/*
>>+ *	Generic resource charging stuff
>>+ */
>>+
>>+int __charge_beancounter_locked(struct user_beancounter *ub,
>>+		int resource, unsigned long val, enum severity strict)
>>+{
>>+	/*
>>+	 * ub_value <= UB_MAXVALUE, value <= UB_MAXVALUE, and only one addition

Page 6 of 17 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>>+	 * at the moment is possible so an overflow is impossible.
>>+	 */
>>+	ub->ub_parms[resource].held += val;
>>+
>>+	switch (strict) {
>>+		case UB_BARRIER:
>>+			if (ub->ub_parms[resource].held >
>>+					ub->ub_parms[resource].barrier)
>>+				break;
>>+			/* fallthrough */
>>+		case UB_LIMIT:
>>+			if (ub->ub_parms[resource].held >
>>+					ub->ub_parms[resource].limit)
>>+				break;
>>+			/* fallthrough */
>>+		case UB_FORCE:
>>+			ub_adjust_held_minmax(ub, resource);
>>+			return 0;
>>+		default:
>>+			BUG();
>>+	}
>>+
>>+	ub->ub_parms[resource].failcnt++;
>>+	ub->ub_parms[resource].held -= val;
>>+	return -ENOMEM;
>>+}
>>+
>>+int charge_beancounter(struct user_beancounter *ub,
>>+		int resource, unsigned long val, enum severity strict)
>>+{
>>+	int retval;
>>+	struct user_beancounter *p, *q;
>>+	unsigned long flags;
>>+
>>+	retval = -EINVAL;
>>+	BUG_ON(val > UB_MAXVALUE);
>>+
>>+	local_irq_save(flags);
>
>
> <factor>
>
>>+	for (p = ub; p != NULL; p = p->parent) {
>
>
> Seems rather expensive to walk up the tree for every charge. Especially
> if the administrator wants a fine degree of resource control and makes a
> tall tree. This would be a problem especially when it comes to resources

Page 7 of 17 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> that require frequent and fast allocation.
in heirarchical accounting you always have to update all the nodes :/
with flat UBC this doesn't introduce significant overhead.

>>+		spin_lock(&p->ub_lock);
>>+		retval = __charge_beancounter_locked(p, resource, val, strict);
>>+		spin_unlock(&p->ub_lock);
>>+		if (retval)
>>+			goto unroll;
>
>
> This can be factored by passing a flag that breaks the loop on an error:
>
> 		if (retval && do_break_err)
> 			return retval;
how about uncharge here?
didn't get your idea, sorry...

>
>
>>+	}
>
>
> </factor>
>
>>+out_restore:
>>+	local_irq_restore(flags);
>>+	return retval;
>>+
>
>
> <factor>
>
>>+unroll:
>>+	for (q = ub; q != p; q = q->parent) {
>>+		spin_lock(&q->ub_lock);
>>+		__uncharge_beancounter_locked(q, resource, val);
>>+		spin_unlock(&q->ub_lock);
>>+	}
>
>
> </factor>
>
>>+	goto out_restore;
>>+}
>>+
>>+EXPORT_SYMBOL(charge_beancounter);

Page 8 of 17 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>>+
>>+void charge_beancounter_notop(struct user_beancounter *ub,
>>+		int resource, unsigned long val)
>>+{
>>+	struct user_beancounter *p;
>>+	unsigned long flags;
>>+
>>+	local_irq_save(flags);
>
>
> <factor>
>
>>+	for (p = ub; p->parent != NULL; p = p->parent) {
>>+		spin_lock(&p->ub_lock);
>>+		__charge_beancounter_locked(p, resource, val, UB_FORCE);
>>+		spin_unlock(&p->ub_lock);
>>+	}
>
>
> <factor>
>
>>+	local_irq_restore(flags);
>
>
> Again, this could be factored with charge_beancounter using a helper
> function.
>
>
>>+}
>>+
>>+EXPORT_SYMBOL(charge_beancounter_notop);
>>+
>>+void __uncharge_beancounter_locked(struct user_beancounter *ub,
>>+		int resource, unsigned long val)
>>+{
>>+	if (unlikely(ub->ub_parms[resource].held < val)) {
>>+		ub_print_resource_warning(ub, resource,
>>+				"uncharging too much", val, 0);
>>+		val = ub->ub_parms[resource].held;
>>+	}
>>+	ub->ub_parms[resource].held -= val;
>>+	ub_adjust_held_minmax(ub, resource);
>>+}
>>+
>>+void uncharge_beancounter(struct user_beancounter *ub,
>>+		int resource, unsigned long val)
>>+{
>>+	unsigned long flags;

Page 9 of 17 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>>+	struct user_beancounter *p;
>>+
>>+	for (p = ub; p != NULL; p = p->parent) {
>>+		spin_lock_irqsave(&p->ub_lock, flags);
>>+		__uncharge_beancounter_locked(p, resource, val);
>>+		spin_unlock_irqrestore(&p->ub_lock, flags);
>>+	}
>>+}
>
>
> Looks like your unroll: label in charge_beancounter above.
ok, will introduce helpers.
>
>
>>+
>>+EXPORT_SYMBOL(uncharge_beancounter);
>>+
>>+void uncharge_beancounter_notop(struct user_beancounter *ub,
>>+		int resource, unsigned long val)
>>+{
>>+	struct user_beancounter *p;
>>+	unsigned long flags;
>>+
>>+	local_irq_save(flags);
>
>
> <factor>
>
>>+	for (p = ub; p->parent != NULL; p = p->parent) {
>>+		spin_lock(&p->ub_lock);
>>+		__uncharge_beancounter_locked(p, resource, val);
>>+		spin_unlock(&p->ub_lock);
>>+	}
>
>
> </factor>
>
>>+	local_irq_restore(flags);
>>+}
>>+
>>+EXPORT_SYMBOL(uncharge_beancounter_notop);
>>+
>>+/*
>>+ *	Initialization
>>+ *
>>+ *	struct user_beancounter contains
>>+ *	 - limits and other configuration settings
>>+ *	 - structural fields: lists, spinlocks and so on.

Page 10 of 17 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>>+ *
>>+ *	Before these parts are initialized, the structure should be memset
>>+ *	to 0 or copied from a known clean structure. That takes care of a lot
>>+ *	of fields not initialized explicitly.
>>+ */
>>+
>>+static void init_beancounter_struct(struct user_beancounter *ub, uid_t id)
>>+{
>>+	atomic_set(&ub->ub_refcount, 1);
>>+	spin_lock_init(&ub->ub_lock);
>>+	ub->ub_uid = id;
>>+}
>>+
>>+static void init_beancounter_nolimits(struct user_beancounter *ub)
>>+{
>>+	int k;
>>+
>>+	for (k = 0; k < UB_RESOURCES; k++) {
>>+		ub->ub_parms[k].limit = UB_MAXVALUE;
>>+		ub->ub_parms[k].barrier = UB_MAXVALUE;
>>+	}
>>+}
>>+
>>+static void init_beancounter_syslimits(struct user_beancounter *ub)
>>+{
>>+	int k;
>>+
>>+	for (k = 0; k < UB_RESOURCES; k++)
>>+		ub->ub_parms[k].barrier = ub->ub_parms[k].limit;
>>+}
>>+
>>+void __init ub_init_early(void)
>>+{
>>+	struct user_beancounter *ub;
>>+	struct hlist_head *slot;
>>+
>>+	ub = &ub0;
>>+
>
>
> <factor>
>
>>+	memset(ub, 0, sizeof(*ub));
>>+	init_beancounter_nolimits(ub);
>>+	init_beancounter_struct(ub, 0);
>>+
>
>

Page 11 of 17 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> </factor>
???
>
>>+	spin_lock_init(&ub_hash_lock);
>>+	slot = &ub_hash[ub_hash_fun(ub->ub_uid)];
>>+	hlist_add_head(&ub->hash, slot);
>>+}
>>+
>>+void __init ub_init_late(void)
>>+{
>>+	struct user_beancounter *ub;
>>+
>>+	ub_cachep = kmem_cache_create("user_beancounters",
>>+			sizeof(struct user_beancounter),
>>+			0, SLAB_HWCACHE_ALIGN, NULL, NULL);
>>+	if (ub_cachep == NULL)
>>+		panic("Can't create ubc caches\n");
>>+
>>+	ub = &default_beancounter;
>
>
> <factor>
>
>>+	memset(ub, 0, sizeof(default_beancounter));
>>+	init_beancounter_syslimits(ub);
<<<< this one is different from the above :)
>>+	init_beancounter_struct(ub, 0);
>>+
>
>
> </factor>
>
>>+	ub = &default_subbeancounter;
>
>
> <factor>
>
>>+	memset(ub, 0, sizeof(default_subbeancounter));
>>+	init_beancounter_nolimits(ub);
>>+	init_beancounter_struct(ub, 0);
>
>
> </factor>
>
>>+}
>
>
> Cheers,

Page 12 of 17 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> 	-Matt Helsley
>
>

Subject: Re: [ckrm-tech] [RFC][PATCH 2/7] UBC: core (structures, API)
Posted by Matt Helsley on Sat, 19 Aug 2006 02:38:36 GMT
View Forum Message <> Reply to Message

On Fri, 2006-08-18 at 15:36 +0400, Kirill Korotaev wrote:
> Matt Helsley wrote:

<snip>

> >>+		spin_unlock_irqrestore(&ub_hash_lock, flags);
> >>+		return;
> >>+	}
> >>+
> >>+	verify_held(ub);
> >>+	hlist_del(&ub->hash);
> >>+	spin_unlock_irqrestore(&ub_hash_lock, flags);
> >>+
> >>+	kmem_cache_free(ub_cachep, ub);
> >>+
> >>+	ub = parent;
> >>+	if (ub != NULL)
> >>+		goto again;
> >
> >
> > Couldn't this be replaced by a do { } while (ub != NULL); loop?
> this is ugly from indentation POV. also restarts are frequently used everywhere...

Then perhaps the body could be made into a small function or set of
functions.

I know the retry pattern is common. Though, as I remember it the control
flow was much more complex when goto was used for retry. Also, I seem to
recall do {} while () has favorable properties that goto lacks when it
comes to compiler optimization.

<snip>

> >>+int charge_beancounter(struct user_beancounter *ub,
> >>+		int resource, unsigned long val, enum severity strict)
> >>+{
> >>+	int retval;
> >>+	struct user_beancounter *p, *q;
> >>+	unsigned long flags;

Page 13 of 17 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=670
https://new-forum.openvz.org/index.php?t=rview&th=985&goto=5447#msg_5447
https://new-forum.openvz.org/index.php?t=post&reply_to=5447
https://new-forum.openvz.org/index.php

> >>+
> >>+	retval = -EINVAL;
> >>+	BUG_ON(val > UB_MAXVALUE);
> >>+
> >>+	local_irq_save(flags);
> >
> >
> > <factor>
> >
> >>+	for (p = ub; p != NULL; p = p->parent) {
> >
> >
> > Seems rather expensive to walk up the tree for every charge. Especially
> > if the administrator wants a fine degree of resource control and makes a
> > tall tree. This would be a problem especially when it comes to resources
> > that require frequent and fast allocation.
> in heirarchical accounting you always have to update all the nodes :/
> with flat UBC this doesn't introduce significant overhead.

Except that you eventually have to lock ub0. Seems that the cache line
for that spinlock could bounce quite a bit in such a hot path.

Chandra, doesn't Resource Groups avoid walking more than 1 level up the
hierarchy in the "charge" paths?

> >>+		spin_lock(&p->ub_lock);
> >>+		retval = __charge_beancounter_locked(p, resource, val, strict);
> >>+		spin_unlock(&p->ub_lock);
> >>+		if (retval)
> >>+			goto unroll;
> >
> >
> > This can be factored by passing a flag that breaks the loop on an error:
> >
> > 		if (retval && do_break_err)
> > 			return retval;
> how about uncharge here?
> didn't get your idea, sorry...

	The only structural difference between this loop and another you have
is the "break" here. I was saying that you could pass a parameter into
the factored portion that tells it to return early if there is an error.

Cheers,
	-Matt Helsley

Page 14 of 17 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Subject: Re: [ckrm-tech] [RFC][PATCH 2/7] UBC: core (structures, API)
Posted by dev on Mon, 21 Aug 2006 10:59:55 GMT
View Forum Message <> Reply to Message

>>>>+	for (p = ub; p != NULL; p = p->parent) {
>>>
>>>
>>>Seems rather expensive to walk up the tree for every charge. Especially
>>>if the administrator wants a fine degree of resource control and makes a
>>>tall tree. This would be a problem especially when it comes to resources
>>>that require frequent and fast allocation.
>>
>>in heirarchical accounting you always have to update all the nodes :/
>>with flat UBC this doesn't introduce significant overhead.
>
>
> Except that you eventually have to lock ub0. Seems that the cache line
> for that spinlock could bounce quite a bit in such a hot path.
do you mean by ub0 host system ub which we call ub0
or you mean a top ub?

> Chandra, doesn't Resource Groups avoid walking more than 1 level up the
> hierarchy in the "charge" paths?

Kirill

Subject: Re: [ckrm-tech] [RFC][PATCH 2/7] UBC: core (structures, API)
Posted by Chandra Seetharaman on Mon, 21 Aug 2006 17:35:16 GMT
View Forum Message <> Reply to Message

On Fri, 2006-08-18 at 19:38 -0700, Matt Helsley wrote:

<snip>

> > >
> > >>+	for (p = ub; p != NULL; p = p->parent) {
> > >
> > >
> > > Seems rather expensive to walk up the tree for every charge. Especially
> > > if the administrator wants a fine degree of resource control and makes a
> > > tall tree. This would be a problem especially when it comes to resources
> > > that require frequent and fast allocation.
> > in heirarchical accounting you always have to update all the nodes :/
> > with flat UBC this doesn't introduce significant overhead.
>
> Except that you eventually have to lock ub0. Seems that the cache line
> for that spinlock could bounce quite a bit in such a hot path.

Page 15 of 17 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=19
https://new-forum.openvz.org/index.php?t=rview&th=985&goto=5482#msg_5482
https://new-forum.openvz.org/index.php?t=post&reply_to=5482
https://new-forum.openvz.org/index.php?t=usrinfo&id=665
https://new-forum.openvz.org/index.php?t=rview&th=985&goto=5489#msg_5489
https://new-forum.openvz.org/index.php?t=post&reply_to=5489
https://new-forum.openvz.org/index.php

>
> Chandra, doesn't Resource Groups avoid walking more than 1 level up the
> hierarchy in the "charge" paths?

Yes, charging happens at one level only (except the case where the group
is over its guarantee, it has to borrow from its parent, it will go up).

<snip>
--

 -- ----------
 Chandra Seetharaman | Be careful what you choose....
 - sekharan@us.ibm.com | you may get it.
 -- ----------

Subject: Re: [ckrm-tech] [RFC][PATCH 2/7] UBC: core (structures, API)
Posted by Srivatsa Vaddagiri on Tue, 22 Aug 2006 12:23:29 GMT
View Forum Message <> Reply to Message

On Mon, Aug 21, 2006 at 03:02:17PM +0400, Kirill Korotaev wrote:
> > Except that you eventually have to lock ub0. Seems that the cache line
> > for that spinlock could bounce quite a bit in such a hot path.
> do you mean by ub0 host system ub which we call ub0
> or you mean a top ub?

If this were used for pure resource management purpose (w/o containers)
then the top ub would be ub0 right? "How bad would the contention on the
ub0->lock be then" is I guess Matt's question.

--
Regards,
vatsa

Subject: Re: [ckrm-tech] [RFC][PATCH 2/7] UBC: core (structures, API)
Posted by dev on Tue, 22 Aug 2006 12:46:25 GMT
View Forum Message <> Reply to Message

Srivatsa Vaddagiri wrote:
> On Mon, Aug 21, 2006 at 03:02:17PM +0400, Kirill Korotaev wrote:
>
>>>Except that you eventually have to lock ub0. Seems that the cache line
>>>for that spinlock could bounce quite a bit in such a hot path.
>>
>>do you mean by ub0 host system ub which we call ub0
>>or you mean a top ub?

Page 16 of 17 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=667
https://new-forum.openvz.org/index.php?t=rview&th=985&goto=5524#msg_5524
https://new-forum.openvz.org/index.php?t=post&reply_to=5524
https://new-forum.openvz.org/index.php?t=usrinfo&id=19
https://new-forum.openvz.org/index.php?t=rview&th=985&goto=5525#msg_5525
https://new-forum.openvz.org/index.php?t=post&reply_to=5525
https://new-forum.openvz.org/index.php

>
>
> If this were used for pure resource management purpose (w/o containers)
> then the top ub would be ub0 right? "How bad would the contention on the
> ub0->lock be then" is I guess Matt's question.
Probably we still misunderstand here each other.
top ub can be any UB. it's children do account resources
to the whole chain of UBs to the top parent.

i.e. ub0 is not a tree root.

Kirill

Subject: Re: [ckrm-tech] [RFC][PATCH 2/7] UBC: core (structures, API)
Posted by Srivatsa Vaddagiri on Tue, 22 Aug 2006 14:38:31 GMT
View Forum Message <> Reply to Message

On Tue, Aug 22, 2006 at 04:46:50PM +0400, Kirill Korotaev wrote:
> Srivatsa Vaddagiri wrote:
> > On Mon, Aug 21, 2006 at 03:02:17PM +0400, Kirill Korotaev wrote:
> >
> >>>Except that you eventually have to lock ub0. Seems that the cache line
> >>>for that spinlock could bounce quite a bit in such a hot path.
> >>
> >>do you mean by ub0 host system ub which we call ub0
> >>or you mean a top ub?
> >
> >
> > If this were used for pure resource management purpose (w/o containers)
> > then the top ub would be ub0 right? "How bad would the contention on the
> > ub0->lock be then" is I guess Matt's question.
> Probably we still misunderstand here each other.
> top ub can be any UB. it's children do account resources
> to the whole chain of UBs to the top parent.
>
> i.e. ub0 is not a tree root.

Hmm ..if I understand you correctly, there is no one single root of the
ubc tree? In other words, there can be several roots (each representing
a distinct group of processes)? CKRM has one single root afaik, under
which multiple resource/task groups are derived.

--
Regards,
vatsa

Page 17 of 17 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=667
https://new-forum.openvz.org/index.php?t=rview&th=985&goto=5529#msg_5529
https://new-forum.openvz.org/index.php?t=post&reply_to=5529
https://new-forum.openvz.org/index.php

