
Subject: [PATCH] cgroup: Remove RCU from task->cgroups
Posted by Colin Cross on Sun, 21 Nov 2010 02:00:24 GMT
View Forum Message <> Reply to Message

The synchronize_rcu call in cgroup_attach_task can be very
expensive. All fastpath accesses to task->cgroups already
use task_lock() or cgroup_lock() to protect against updates,
and only the CGROUP_DEBUG files have RCU read-side critical
sections.

This patch replaces rcu_read_lock() with task_lock(current)
around the debug file acceses to current->cgroups and removes
the synchronize_rcu call in cgroup_attach_task.

Signed-off-by: Colin Cross <ccross@android.com>

 kernel/cgroup.c | 22 ++++++++--------------
 1 files changed, 8 insertions(+), 14 deletions(-)

diff --git a/kernel/cgroup.c b/kernel/cgroup.c
index 66a416b..4a40183 100644
--- a/kernel/cgroup.c
+++ b/kernel/cgroup.c
@@ -725,14 +725,11 @@ static struct cgroup *task_cgroup_from_root(struct task_struct *task,
 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
 * another. It does so using cgroup_mutex, however there are
 * several performance critical places that need to reference
- * task->cgroup without the expense of grabbing a system global
+ * task->cgroups without the expense of grabbing a system global
 * mutex. Therefore except as noted below, when dereferencing or, as
- * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
+ * in cgroup_attach_task(), modifying a task's cgroups pointer we use
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
- *
- * P.S. One more locking exception. RCU is used to guard the
- * update of a tasks cgroup pointer by cgroup_attach_task()
 */

 /**
@@ -1786,7 +1783,7 @@ int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
 		retval = -ESRCH;
 		goto out;
 	}
-	rcu_assign_pointer(tsk->cgroups, newcg);
+	tsk->cgroups = newcg;
 	task_unlock(tsk);

Page 1 of 35 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5131
https://new-forum.openvz.org/index.php?t=rview&th=9475&goto=41911#msg_41911
https://new-forum.openvz.org/index.php?t=post&reply_to=41911
https://new-forum.openvz.org/index.php

 	/* Update the css_set linked lists if we're using them */
@@ -1802,7 +1799,6 @@ int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
 			ss->attach(ss, cgrp, oldcgrp, tsk, false);
 	}
 	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
-	synchronize_rcu();
 	put_css_set(cg);

 	/*
@@ -4827,9 +4823,9 @@ static u64 current_css_set_refcount_read(struct cgroup *cont,
 {
 	u64 count;

-	rcu_read_lock();
+	task_lock(current);
 	count = atomic_read(¤t->cgroups->refcount);
-	rcu_read_unlock();
+	task_unlock(current);
 	return count;
 }

@@ -4838,12 +4834,10 @@ static int current_css_set_cg_links_read(struct cgroup *cont,
 					 struct seq_file *seq)
 {
 	struct cg_cgroup_link *link;
-	struct css_set *cg;

 	read_lock(&css_set_lock);
-	rcu_read_lock();
-	cg = rcu_dereference(current->cgroups);
-	list_for_each_entry(link, &cg->cg_links, cg_link_list) {
+	task_lock(current);
+	list_for_each_entry(link, ¤t->cgroups->cg_links, cg_link_list) {
 		struct cgroup *c = link->cgrp;
 		const char *name;

@@ -4854,7 +4848,7 @@ static int current_css_set_cg_links_read(struct cgroup *cont,
 		seq_printf(seq, "Root %d group %s\n",
 			 c->root->hierarchy_id, name);
 	}
-	rcu_read_unlock();
+	task_unlock(current);
 	read_unlock(&css_set_lock);
 	return 0;
 }
--
1.7.3.1

Page 2 of 35 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Containers mailing list
Containers@lists.linux-foundation.org
 https://lists.linux-foundation.org/mailman/listinfo/containe rs

Subject: Re: [PATCH] cgroup: Remove RCU from task->cgroups
Posted by Colin Cross on Sun, 21 Nov 2010 23:02:28 GMT
View Forum Message <> Reply to Message

On Sat, Nov 20, 2010 at 6:00 PM, Colin Cross <ccross@android.com> wrote:
> The synchronize_rcu call in cgroup_attach_task can be very
> expensive. All fastpath accesses to task->cgroups already
> use task_lock() or cgroup_lock() to protect against updates,
> and only the CGROUP_DEBUG files have RCU read-side critical
> sections.
>
> This patch replaces rcu_read_lock() with task_lock(current)
> around the debug file acceses to current->cgroups and removes
> the synchronize_rcu call in cgroup_attach_task.
>
> Signed-off-by: Colin Cross <ccross@android.com>
> ---
> kernel/cgroup.c | 22 ++++++++--------------
> 1 files changed, 8 insertions(+), 14 deletions(-)
>

This patch isn't correct, there's an rcu_dereference I missed inside
task_group(), and that's the important one.

Containers mailing list
Containers@lists.linux-foundation.org
 https://lists.linux-foundation.org/mailman/listinfo/containe rs

Subject: [PATCH] cgroup: Convert synchronize_rcu to call_rcu in
cgroup_attach_task
Posted by Colin Cross on Mon, 22 Nov 2010 04:06:07 GMT
View Forum Message <> Reply to Message

The synchronize_rcu call in cgroup_attach_task can be very
expensive. All fastpath accesses to task->cgroups that expect
task->cgroups not to change already use task_lock() or
cgroup_lock() to protect against updates, and, in cgroup.c,
only the CGROUP_DEBUG files have RCU read-side critical
sections.

Page 3 of 35 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5131
https://new-forum.openvz.org/index.php?t=rview&th=9475&goto=41916#msg_41916
https://new-forum.openvz.org/index.php?t=post&reply_to=41916
https://new-forum.openvz.org/index.php?t=usrinfo&id=5131
https://new-forum.openvz.org/index.php?t=rview&th=9475&goto=41917#msg_41917
https://new-forum.openvz.org/index.php?t=post&reply_to=41917
https://new-forum.openvz.org/index.php

sched.c uses RCU read-side-critical sections on task->cgroups,
but only to ensure that a dereference of task->cgroups does
not become invalid, not that it doesn't change.

This patch adds a function put_css_set_rcu, which delays the
put until after a grace period has elapsed. This ensures that
any RCU read-side critical sections that dereferenced
task->cgroups in sched.c have completed before the css_set is
deleted. The synchronize_rcu()/put_css_set() combo in
cgroup_attach_task() can then be replaced with
put_css_set_rcu().

Also converts the CGROUP_DEBUG files that access
current->cgroups to use task_lock(current) instead of
rcu_read_lock().

Signed-off-by: Colin Cross <ccross@android.com>

This version fixes the problems with the previous patch by
keeping the use of RCU in cgroup_attach_task, but allowing
cgroup_attach_task to return immediately by deferring the
final put_css_reg to an rcu callback.

 include/linux/cgroup.h | 4 +++
 kernel/cgroup.c | 58 ++++++++++++++++++++++++++++++++++++++----------
 2 files changed, 50 insertions(+), 12 deletions(-)

diff --git a/include/linux/cgroup.h b/include/linux/cgroup.h
index ed4ba11..fd26218 100644
--- a/include/linux/cgroup.h
+++ b/include/linux/cgroup.h
@@ -287,6 +287,10 @@ struct css_set {

 	/* For RCU-protected deletion */
 	struct rcu_head rcu_head;
+
+	/* For RCU-delayed puts */
+	atomic_t delayed_put_count;
+	struct work_struct delayed_put_work;
 };

 /*
diff --git a/kernel/cgroup.c b/kernel/cgroup.c
index 66a416b..c7348e7 100644
--- a/kernel/cgroup.c
+++ b/kernel/cgroup.c

Page 4 of 35 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

@@ -298,7 +298,8 @@ static int cgroup_init_idr(struct cgroup_subsys *ss,

 /* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set. Nests outside task->alloc_lock
- * due to cgroup_iter_start() */
+ * due to cgroup_iter_start(). Never locked in irq context, so
+ * the non-irq variants of write_lock and read_lock are used. */
 static DEFINE_RWLOCK(css_set_lock);
 static int css_set_count;

@@ -396,6 +397,39 @@ static inline void put_css_set_taskexit(struct css_set *cg)
 	__put_css_set(cg, 1);
 }

+/* work function, executes in process context */
+static void __put_css_set_rcu(struct work_struct *work)
+{
+	struct css_set *cg;
+	cg = container_of(work, struct css_set, delayed_put_work);
+
+	while (atomic_add_unless(&cg->delayed_put_count, -1, 0))
+		put_css_set(cg);
+}
+
+/* rcu callback, executes in softirq context */
+static void _put_css_set_rcu(struct rcu_head *obj)
+{
+	struct css_set *cg = container_of(obj, struct css_set, rcu_head);
+
+	/* the rcu callback happens in softirq context, but css_set_lock
+	 * is not irq safe, so bounce to process context.
+	 */
+	schedule_work(&cg->delayed_put_work);
+}
+
+/* put_css_set_rcu - helper function to delay a put until after an rcu
+ * grace period
+ *
+ * free_css_set_rcu can never be called if there are outstanding
+ * put_css_set_rcu calls, so we can reuse cg->rcu_head.
+ */
+static inline void put_css_set_rcu(struct css_set *cg)
+{
+	if (atomic_inc_return(&cg->delayed_put_count) == 1)
+		call_rcu(&cg->rcu_head, _put_css_set_rcu);
+}
+
 /*

Page 5 of 35 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 * compare_css_sets - helper function for find_existing_css_set().
 * @cg: candidate css_set being tested
@@ -620,9 +654,11 @@ static struct css_set *find_css_set(
 	}

 	atomic_set(&res->refcount, 1);
+	atomic_set(&res->delayed_put_count, 0);
 	INIT_LIST_HEAD(&res->cg_links);
 	INIT_LIST_HEAD(&res->tasks);
 	INIT_HLIST_NODE(&res->hlist);
+	INIT_WORK(&res->delayed_put_work, __put_css_set_rcu);

 	/* Copy the set of subsystem state objects generated in
 	 * find_existing_css_set() */
@@ -725,9 +761,9 @@ static struct cgroup *task_cgroup_from_root(struct task_struct *task,
 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
 * another. It does so using cgroup_mutex, however there are
 * several performance critical places that need to reference
- * task->cgroup without the expense of grabbing a system global
+ * task->cgroups without the expense of grabbing a system global
 * mutex. Therefore except as noted below, when dereferencing or, as
- * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
+ * in cgroup_attach_task(), modifying a task's cgroups pointer we use
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
@@ -1802,8 +1838,7 @@ int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
 			ss->attach(ss, cgrp, oldcgrp, tsk, false);
 	}
 	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
-	synchronize_rcu();
-	put_css_set(cg);
+	put_css_set_rcu(cg);

 	/*
 	 * wake up rmdir() waiter. the rmdir should fail since the cgroup
@@ -3900,6 +3935,7 @@ int __init cgroup_init_early(void)
 	INIT_LIST_HEAD(&init_css_set.cg_links);
 	INIT_LIST_HEAD(&init_css_set.tasks);
 	INIT_HLIST_NODE(&init_css_set.hlist);
+	INIT_WORK(&init_css_set.delayed_put_work, __put_css_set_rcu);
 	css_set_count = 1;
 	init_cgroup_root(&rootnode);
 	root_count = 1;
@@ -4827,9 +4863,9 @@ static u64 current_css_set_refcount_read(struct cgroup *cont,
 {
 	u64 count;

Page 6 of 35 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-	rcu_read_lock();
+	task_lock(current);
 	count = atomic_read(¤t->cgroups->refcount);
-	rcu_read_unlock();
+	task_unlock(current);
 	return count;
 }

@@ -4838,12 +4874,10 @@ static int current_css_set_cg_links_read(struct cgroup *cont,
 					 struct seq_file *seq)
 {
 	struct cg_cgroup_link *link;
-	struct css_set *cg;

 	read_lock(&css_set_lock);
-	rcu_read_lock();
-	cg = rcu_dereference(current->cgroups);
-	list_for_each_entry(link, &cg->cg_links, cg_link_list) {
+	task_lock(current);
+	list_for_each_entry(link, ¤t->cgroups->cg_links, cg_link_list) {
 		struct cgroup *c = link->cgrp;
 		const char *name;

@@ -4854,7 +4888,7 @@ static int current_css_set_cg_links_read(struct cgroup *cont,
 		seq_printf(seq, "Root %d group %s\n",
 			 c->root->hierarchy_id, name);
 	}
-	rcu_read_unlock();
+	task_unlock(current);
 	read_unlock(&css_set_lock);
 	return 0;
 }
--
1.7.3.1

Containers mailing list
Containers@lists.linux-foundation.org
 https://lists.linux-foundation.org/mailman/listinfo/containe rs

Subject: Re: [PATCH] cgroup: Convert synchronize_rcu to call_rcu in
cgroup_attach_task
Posted by Colin Cross on Tue, 23 Nov 2010 08:58:39 GMT
View Forum Message <> Reply to Message

On Tue, Nov 23, 2010 at 12:14 AM, Li Zefan <lizf@cn.fujitsu.com> wrote:
> 12:06, Colin Cross wrote:

Page 7 of 35 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5131
https://new-forum.openvz.org/index.php?t=rview&th=9475&goto=41918#msg_41918
https://new-forum.openvz.org/index.php?t=post&reply_to=41918
https://new-forum.openvz.org/index.php

>> The synchronize_rcu call in cgroup_attach_task can be very
>> expensive. All fastpath accesses to task->cgroups that expect
>> task->cgroups not to change already use task_lock() or
>> cgroup_lock() to protect against updates, and, in cgroup.c,
>> only the CGROUP_DEBUG files have RCU read-side critical
>> sections.
>>
>> sched.c uses RCU read-side-critical sections on task->cgroups,
>> but only to ensure that a dereference of task->cgroups does
>> not become invalid, not that it doesn't change.
>>
>
> Other cgroup subsystems also use rcu_read_lock to access task->cgroups,
> for example net_cls cgroup and device cgroup.
I believe the same comment applies as sched.c, I'll update the commit message.

> I don't think the performance of task attaching is so critically
> important that we have to use call_rcu() instead of synchronize_rcu()?
On my desktop, moving a task between cgroups averages 100 ms, and on
an Tegra2 SMP ARM platform it takes 20 ms. Moving a task with many
threads can take hundreds of milliseconds or more. With this patch it
takes 50 microseconds to move one task, a 400x improvement.

>> This patch adds a function put_css_set_rcu, which delays the
>> put until after a grace period has elapsed. This ensures that
>> any RCU read-side critical sections that dereferenced
>> task->cgroups in sched.c have completed before the css_set is
>> deleted. The synchronize_rcu()/put_css_set() combo in
>> cgroup_attach_task() can then be replaced with
>> put_css_set_rcu().
>>
>
>> Also converts the CGROUP_DEBUG files that access
>> current->cgroups to use task_lock(current) instead of
>> rcu_read_lock().
>>
>
> What for? What do we gain from doing this for those debug
> interfaces?
Left over from the previous patch that incorrectly dropped RCU
completely. I'll put the rcu_read_locks back.

>> Signed-off-by: Colin Cross <ccross@android.com>
>>
>> ---
>>
>> This version fixes the problems with the previous patch by
>> keeping the use of RCU in cgroup_attach_task, but allowing

Page 8 of 35 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>> cgroup_attach_task to return immediately by deferring the
>> final put_css_reg to an rcu callback.
>>
>> include/linux/cgroup.h | 4 +++
>> kernel/cgroup.c | 58 ++++++++++++++++++++++++++++++++++++++----------
>> 2 files changed, 50 insertions(+), 12 deletions(-)
>

Containers mailing list
Containers@lists.linux-foundation.org
 https://lists.linux-foundation.org/mailman/listinfo/containe rs

Subject: Re: [PATCH] cgroup: Convert synchronize_rcu to call_rcu in
cgroup_attach_task
Posted by Colin Cross on Tue, 23 Nov 2010 20:22:45 GMT
View Forum Message <> Reply to Message

On Tue, Nov 23, 2010 at 12:58 AM, Colin Cross <ccross@android.com> wrote:
> On Tue, Nov 23, 2010 at 12:14 AM, Li Zefan <lizf@cn.fujitsu.com> wrote:
>> 12:06, Colin Cross wrote:
>>> The synchronize_rcu call in cgroup_attach_task can be very
>>> expensive. All fastpath accesses to task->cgroups that expect
>>> task->cgroups not to change already use task_lock() or
>>> cgroup_lock() to protect against updates, and, in cgroup.c,
>>> only the CGROUP_DEBUG files have RCU read-side critical
>>> sections.
>>>
>>> sched.c uses RCU read-side-critical sections on task->cgroups,
>>> but only to ensure that a dereference of task->cgroups does
>>> not become invalid, not that it doesn't change.
>>>
>>
>> Other cgroup subsystems also use rcu_read_lock to access task->cgroups,
>> for example net_cls cgroup and device cgroup.
> I believe the same comment applies as sched.c, I'll update the commit message.
>
>> I don't think the performance of task attaching is so critically
>> important that we have to use call_rcu() instead of synchronize_rcu()?
> On my desktop, moving a task between cgroups averages 100 ms, and on
> an Tegra2 SMP ARM platform it takes 20 ms. Moving a task with many
> threads can take hundreds of milliseconds or more. With this patch it
> takes 50 microseconds to move one task, a 400x improvement.
>
>>> This patch adds a function put_css_set_rcu, which delays the
>>> put until after a grace period has elapsed. This ensures that
>>> any RCU read-side critical sections that dereferenced
>>> task->cgroups in sched.c have completed before the css_set is

Page 9 of 35 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5131
https://new-forum.openvz.org/index.php?t=rview&th=9475&goto=41919#msg_41919
https://new-forum.openvz.org/index.php?t=post&reply_to=41919
https://new-forum.openvz.org/index.php

>>> deleted. The synchronize_rcu()/put_css_set() combo in
>>> cgroup_attach_task() can then be replaced with
>>> put_css_set_rcu().
>>>
>>
>>> Also converts the CGROUP_DEBUG files that access
>>> current->cgroups to use task_lock(current) instead of
>>> rcu_read_lock().
>>>
>>
>> What for? What do we gain from doing this for those debug
>> interfaces?
> Left over from the previous patch that incorrectly dropped RCU
> completely. I'll put the rcu_read_locks back.
>
>>> Signed-off-by: Colin Cross <ccross@android.com>
>>>
>>> ---
>>>
>>> This version fixes the problems with the previous patch by
>>> keeping the use of RCU in cgroup_attach_task, but allowing
>>> cgroup_attach_task to return immediately by deferring the
>>> final put_css_reg to an rcu callback.
>>>
>>> include/linux/cgroup.h | 4 +++
>>> kernel/cgroup.c | 58 ++++++++++++++++++++++++++++++++++++++----------
>>> 2 files changed, 50 insertions(+), 12 deletions(-)
>>
>

This patch has another problem - calling put_css_set_rcu twice before
an rcu grace period has elapsed would not guarantee the appropriate
rcu grace period for the second call. I'll try a new approach, moving
the parts of put_css_set that need to be protected by rcu into
free_css_set_rcu.

Containers mailing list
Containers@lists.linux-foundation.org
 https://lists.linux-foundation.org/mailman/listinfo/containe rs

Subject: Re: [PATCH] cgroup: Convert synchronize_rcu to call_rcu in
cgroup_attach_task
Posted by Colin Cross on Wed, 24 Nov 2010 02:10:58 GMT
View Forum Message <> Reply to Message

On Tue, Nov 23, 2010 at 6:06 PM, Li Zefan <lizf@cn.fujitsu.com> wrote:
> Paul Menage wrote:

Page 10 of 35 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5131
https://new-forum.openvz.org/index.php?t=rview&th=9475&goto=41921#msg_41921
https://new-forum.openvz.org/index.php?t=post&reply_to=41921
https://new-forum.openvz.org/index.php

>> On Sun, Nov 21, 2010 at 8:06 PM, Colin Cross <ccross@android.com> wrote:
>>> The synchronize_rcu call in cgroup_attach_task can be very
>>> expensive. All fastpath accesses to task->cgroups that expect
>>> task->cgroups not to change already use task_lock() or
>>> cgroup_lock() to protect against updates, and, in cgroup.c,
>>> only the CGROUP_DEBUG files have RCU read-side critical
>>> sections.
>>
>> I definitely agree with the goal of using lighter-weight
>> synchronization than the current synchronize_rcu() call. However,
>> there are definitely some subtleties to worry about in this code.
>>
>> One of the reasons originally for the current synchronization was to
>> avoid the case of calling subsystem destroy() callbacks while there
>> could still be threads with RCU references to the subsystem state. The
>> fact that synchronize_rcu() was called within a cgroup_mutex critical
>> section meant that an rmdir (or any other significant cgrooup
>> management action) couldn't possibly start until any RCU read sections
>> were done.
>>
>> I suspect that when we moved a lot of the cgroup teardown code from
>> cgroup_rmdir() to cgroup_diput() (which also has a synchronize_rcu()
>> call in it) this restriction could have been eased, but I think I left
>> it as it was mostly out of paranoia that I was missing/forgetting some
>> crucial reason for keeping it in place.
>>
>> I'd suggest trying the following approach, which I suspect is similar
>> to what you were suggesting in your last email
>>
>> 1) make find_existing_css_set ignore css_set objects with a zero refcount
>> 2) change __put_css_set to be simply
>>
>> if (atomic_dec_and_test(&cg->refcount)) {
>> call_rcu(&cg->rcu_head, free_css_set_rcu);
>> }
>
> If we do this, it's not anymore safe to use get_css_set(), which just
> increments the refcount without checking if it's zero.

I used an alternate approach, removing the css_set from the hash table
in put_css_set, but delaying the deletion to free_css_set_rcu. That
way, nothing can get another reference to the css_set to call
get_css_set on.

Containers mailing list
Containers@lists.linux-foundation.org
 https://lists.linux-foundation.org/mailman/listinfo/containe rs

Page 11 of 35 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Subject: [PATCH 1/2] cgroup: Set CGRP_RELEASABLE when adding to a cgroup
Posted by Colin Cross on Wed, 24 Nov 2010 05:37:03 GMT
View Forum Message <> Reply to Message

Changes the meaning of CGRP_RELEASABLE to be set on any cgroup
that has ever had a task or cgroup in it, or had css_get called
on it. The bit is set in cgroup_attach_task, cgroup_create,
and __css_get. It is not necessary to set the bit in
cgroup_fork, as the task is either in the root cgroup, in
which can never be released, or the task it was forked from
already set the bit in croup_attach_task.

Signed-off-by: Colin Cross <ccross@android.com>

 include/linux/cgroup.h | 12 +--------
 kernel/cgroup.c | 54 ++++++++++++++++++++---------------------------
 2 files changed, 25 insertions(+), 41 deletions(-)

diff --git a/include/linux/cgroup.h b/include/linux/cgroup.h
index ed4ba11..9e13078 100644
--- a/include/linux/cgroup.h
+++ b/include/linux/cgroup.h
@@ -84,12 +84,6 @@ enum {
 	CSS_REMOVED, /* This CSS is dead */
 };

-/* Caller must verify that the css is not for root cgroup */
-static inline void __css_get(struct cgroup_subsys_state *css, int count)
-{
-	atomic_add(count, &css->refcnt);
-}
-
 /*
 * Call css_get() to hold a reference on the css; it can be used
 * for a reference obtained via:
@@ -97,6 +91,7 @@ static inline void __css_get(struct cgroup_subsys_state *css, int count)
 * - task->cgroups for a locked task
 */

+extern void __css_get(struct cgroup_subsys_state *css, int count);
 static inline void css_get(struct cgroup_subsys_state *css)
 {
 	/* We don't need to reference count the root state */
@@ -143,10 +138,7 @@ static inline void css_put(struct cgroup_subsys_state *css)
 enum {
 	/* Control Group is dead */
 	CGRP_REMOVED,
-	/*
-	 * Control Group has previously had a child cgroup or a task,

Page 12 of 35 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5131
https://new-forum.openvz.org/index.php?t=rview&th=9475&goto=41924#msg_41924
https://new-forum.openvz.org/index.php?t=post&reply_to=41924
https://new-forum.openvz.org/index.php

-	 * but no longer (only if CGRP_NOTIFY_ON_RELEASE is set)
-	 */
+	/* Control Group has ever had a child cgroup or a task */
 	CGRP_RELEASABLE,
 	/* Control Group requires release notifications to userspace */
 	CGRP_NOTIFY_ON_RELEASE,
diff --git a/kernel/cgroup.c b/kernel/cgroup.c
index 66a416b..34e855e 100644
--- a/kernel/cgroup.c
+++ b/kernel/cgroup.c
@@ -338,7 +338,15 @@ static void free_css_set_rcu(struct rcu_head *obj)
 * compiled into their kernel but not actually in use */
 static int use_task_css_set_links __read_mostly;

-static void __put_css_set(struct css_set *cg, int taskexit)
+/*
+ * refcounted get/put for css_set objects
+ */
+static inline void get_css_set(struct css_set *cg)
+{
+	atomic_inc(&cg->refcount);
+}
+
+static void put_css_set(struct css_set *cg)
 {
 	struct cg_cgroup_link *link;
 	struct cg_cgroup_link *saved_link;
@@ -364,12 +372,8 @@ static void __put_css_set(struct css_set *cg, int taskexit)
 		struct cgroup *cgrp = link->cgrp;
 		list_del(&link->cg_link_list);
 		list_del(&link->cgrp_link_list);
-		if (atomic_dec_and_test(&cgrp->count) &&
-		 notify_on_release(cgrp)) {
-			if (taskexit)
-				set_bit(CGRP_RELEASABLE, &cgrp->flags);
+		if (atomic_dec_and_test(&cgrp->count))
 			check_for_release(cgrp);
-		}

 		kfree(link);
 	}
@@ -379,24 +383,6 @@ static void __put_css_set(struct css_set *cg, int taskexit)
 }

 /*
- * refcounted get/put for css_set objects
- */
-static inline void get_css_set(struct css_set *cg)

Page 13 of 35 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-{
-	atomic_inc(&cg->refcount);
-}
-
-static inline void put_css_set(struct css_set *cg)
-{
-	__put_css_set(cg, 0);
-}
-
-static inline void put_css_set_taskexit(struct css_set *cg)
-{
-	__put_css_set(cg, 1);
-}
-
-/*
 * compare_css_sets - helper function for find_existing_css_set().
 * @cg: candidate css_set being tested
 * @old_cg: existing css_set for a task
@@ -1801,7 +1787,7 @@ int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
 		if (ss->attach)
 			ss->attach(ss, cgrp, oldcgrp, tsk, false);
 	}
-	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
+	set_bit(CGRP_RELEASABLE, &cgrp->flags);
 	synchronize_rcu();
 	put_css_set(cg);

@@ -3427,6 +3413,8 @@ static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
 	if (err < 0)
 		goto err_remove;

+	set_bit(CGRP_RELEASABLE, &parent->flags);
+
 	/* The cgroup directory was pre-locked for us */
 	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));

@@ -3645,7 +3633,6 @@ again:
 	cgroup_d_remove_dir(d);
 	dput(d);

-	set_bit(CGRP_RELEASABLE, &parent->flags);
 	check_for_release(parent);

 	/*
@@ -4240,7 +4227,7 @@ void cgroup_exit(struct task_struct *tsk, int run_callbacks)
 	tsk->cgroups = &init_css_set;
 	task_unlock(tsk);
 	if (cg)

Page 14 of 35 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-		put_css_set_taskexit(cg);
+		put_css_set(cg);
 }

 /**
@@ -4410,6 +4397,14 @@ static void check_for_release(struct cgroup *cgrp)
 }

 /* Caller must verify that the css is not for root cgroup */
+void __css_get(struct cgroup_subsys_state *css, int count)
+{
+	atomic_add(count, &css->refcnt);
+	set_bit(CGRP_RELEASABLE, &css->cgroup->flags);
+}
+EXPORT_SYMBOL_GPL(__css_get);
+
+/* Caller must verify that the css is not for root cgroup */
 void __css_put(struct cgroup_subsys_state *css, int count)
 {
 	struct cgroup *cgrp = css->cgroup;
@@ -4417,10 +4412,7 @@ void __css_put(struct cgroup_subsys_state *css, int count)
 	rcu_read_lock();
 	val = atomic_sub_return(count, &css->refcnt);
 	if (val == 1) {
-		if (notify_on_release(cgrp)) {
-			set_bit(CGRP_RELEASABLE, &cgrp->flags);
-			check_for_release(cgrp);
-		}
+		check_for_release(cgrp);
 		cgroup_wakeup_rmdir_waiter(cgrp);
 	}
 	rcu_read_unlock();
--
1.7.3.1

Containers mailing list
Containers@lists.linux-foundation.org
 https://lists.linux-foundation.org/mailman/listinfo/containe rs

Subject: [PATCH 2/2] cgroup: Remove call to synchronize_rcu in
cgroup_attach_task
Posted by Colin Cross on Wed, 24 Nov 2010 05:37:04 GMT
View Forum Message <> Reply to Message

synchronize_rcu can be very expensive, averaging 100 ms in
some cases. In cgroup_attach_task, it is used to prevent

Page 15 of 35 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5131
https://new-forum.openvz.org/index.php?t=rview&th=9475&goto=41923#msg_41923
https://new-forum.openvz.org/index.php?t=post&reply_to=41923
https://new-forum.openvz.org/index.php

a task->cgroups pointer dereferenced in an RCU read side
critical section from being invalidated, by delaying the
call to put_css_set until after an RCU grace period.

To avoid the call to synchronize_rcu, make the put_css_set
call rcu-safe by moving the deletion of the css_set links
into free_css_set_work, scheduled by the rcu callback
free_css_set_rcu.

The decrement of the cgroup refcount is no longer
synchronous with the call to put_css_set, which can result
in the cgroup refcount staying positive after the last call
to cgroup_attach_task returns. To allow the cgroup to be
deleted with cgroup_rmdir synchronously after
cgroup_attach_task, have rmdir check the refcount of all
associated css_sets. If cgroup_rmdir is called on a cgroup
for which the css_sets all have refcount zero but the
cgroup refcount is nonzero, reuse the rmdir waitqueue to
block the rmdir until free_css_set_work is called.

Signed-off-by: Colin Cross <ccross@android.com>

 include/linux/cgroup.h | 1 +
 kernel/cgroup.c | 120 +++++++++++++++++++++++++++++-------------------
 2 files changed, 74 insertions(+), 47 deletions(-)

diff --git a/include/linux/cgroup.h b/include/linux/cgroup.h
index 9e13078..49fdff0 100644
--- a/include/linux/cgroup.h
+++ b/include/linux/cgroup.h
@@ -279,6 +279,7 @@ struct css_set {

 	/* For RCU-protected deletion */
 	struct rcu_head rcu_head;
+	struct work_struct work;
 };

 /*
diff --git a/kernel/cgroup.c b/kernel/cgroup.c
index 34e855e..e752c83 100644
--- a/kernel/cgroup.c
+++ b/kernel/cgroup.c
@@ -267,6 +267,33 @@ static void cgroup_release_agent(struct work_struct *work);
 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
 static void check_for_release(struct cgroup *cgrp);

+/*
+ * A queue for waiters to do rmdir() cgroup. A tasks will sleep when

Page 16 of 35 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
+ * reference to css->refcnt. In general, this refcnt is expected to goes down
+ * to zero, soon.
+ *
+ * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
+ */
+DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
+
+static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
+{
+	if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
+		wake_up_all(&cgroup_rmdir_waitq);
+}
+
+void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
+{
+	css_get(css);
+}
+
+void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
+{
+	cgroup_wakeup_rmdir_waiter(css->cgroup);
+	css_put(css);
+}
+
 /* Link structure for associating css_set objects with cgroups */
 struct cg_cgroup_link {
 	/*
@@ -326,10 +353,35 @@ static struct hlist_head *css_set_hash(struct cgroup_subsys_state
*css[])
 	return &css_set_table[index];
 }

+static void free_css_set_work(struct work_struct *work)
+{
+	struct css_set *cg = container_of(work, struct css_set, work);
+	struct cg_cgroup_link *link;
+	struct cg_cgroup_link *saved_link;
+
+	write_lock(&css_set_lock);
+	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
+				 cg_link_list) {
+		struct cgroup *cgrp = link->cgrp;
+		list_del(&link->cg_link_list);
+		list_del(&link->cgrp_link_list);
+		if (atomic_dec_and_test(&cgrp->count)) {
+			check_for_release(cgrp);
+			cgroup_wakeup_rmdir_waiter(cgrp);

Page 17 of 35 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+		}
+		kfree(link);
+	}
+	write_unlock(&css_set_lock);
+
+	kfree(cg);
+}
+
 static void free_css_set_rcu(struct rcu_head *obj)
 {
 	struct css_set *cg = container_of(obj, struct css_set, rcu_head);
-	kfree(cg);
+
+	INIT_WORK(&cg->work, free_css_set_work);
+	schedule_work(&cg->work);
 }

 /* We don't maintain the lists running through each css_set to its
@@ -348,8 +400,6 @@ static inline void get_css_set(struct css_set *cg)

 static void put_css_set(struct css_set *cg)
 {
-	struct cg_cgroup_link *link;
-	struct cg_cgroup_link *saved_link;
 	/*
 	 * Ensure that the refcount doesn't hit zero while any readers
 	 * can see it. Similar to atomic_dec_and_lock(), but for an
@@ -363,21 +413,9 @@ static void put_css_set(struct css_set *cg)
 		return;
 	}

-	/* This css_set is dead. unlink it and release cgroup refcounts */
 	hlist_del(&cg->hlist);
 	css_set_count--;

-	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
-				 cg_link_list) {
-		struct cgroup *cgrp = link->cgrp;
-		list_del(&link->cg_link_list);
-		list_del(&link->cgrp_link_list);
-		if (atomic_dec_and_test(&cgrp->count))
-			check_for_release(cgrp);
-
-		kfree(link);
-	}
-
 	write_unlock(&css_set_lock);
 	call_rcu(&cg->rcu_head, free_css_set_rcu);

Page 18 of 35 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 }
@@ -711,9 +749,9 @@ static struct cgroup *task_cgroup_from_root(struct task_struct *task,
 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
 * another. It does so using cgroup_mutex, however there are
 * several performance critical places that need to reference
- * task->cgroup without the expense of grabbing a system global
+ * task->cgroups without the expense of grabbing a system global
 * mutex. Therefore except as noted below, when dereferencing or, as
- * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
+ * in cgroup_attach_task(), modifying a task's cgroups pointer we use
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
@@ -895,33 +933,6 @@ static void cgroup_d_remove_dir(struct dentry *dentry)
 }

 /*
- * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
- * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
- * reference to css->refcnt. In general, this refcnt is expected to goes down
- * to zero, soon.
- *
- * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
- */
-DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
-
-static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
-{
-	if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
-		wake_up_all(&cgroup_rmdir_waitq);
-}
-
-void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
-{
-	css_get(css);
-}
-
-void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
-{
-	cgroup_wakeup_rmdir_waiter(css->cgroup);
-	css_put(css);
-}
-
-/*
 * Call with cgroup_mutex held. Drops reference counts on modules, including
 * any duplicate ones that parse_cgroupfs_options took. If this function
 * returns an error, no reference counts are touched.
@@ -1788,7 +1799,7 @@ int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)

Page 19 of 35 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 			ss->attach(ss, cgrp, oldcgrp, tsk, false);
 	}
 	set_bit(CGRP_RELEASABLE, &cgrp->flags);
-	synchronize_rcu();
+	/* put_css_set will not destroy cg until after an RCU grace period */
 	put_css_set(cg);

 	/*
@@ -3546,6 +3557,21 @@ static int cgroup_clear_css_refs(struct cgroup *cgrp)
 	return !failed;
 }

+/* checks if all of the css_sets attached to a cgroup have a refcount of 0.
+ * Must be called with css_set_lock held */
+static int cgroup_css_sets_empty(struct cgroup *cgrp)
+{
+	struct cg_cgroup_link *link;
+
+	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
+		struct css_set *cg = link->cg;
+		if (atomic_read(&cg->refcount) > 0)
+			return 0;
+	}
+
+	return 1;
+}
+
 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
 {
 	struct cgroup *cgrp = dentry->d_fsdata;
@@ -3558,7 +3584,7 @@ static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
 	/* the vfs holds both inode->i_mutex already */
 again:
 	mutex_lock(&cgroup_mutex);
-	if (atomic_read(&cgrp->count) != 0) {
+	if (!cgroup_css_sets_empty(cgrp)) {
 		mutex_unlock(&cgroup_mutex);
 		return -EBUSY;
 	}
@@ -3591,7 +3617,7 @@ again:

 	mutex_lock(&cgroup_mutex);
 	parent = cgrp->parent;
-	if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
+	if (!cgroup_css_sets_empty(cgrp) || !list_empty(&cgrp->children)) {
 		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
 		mutex_unlock(&cgroup_mutex);
 		return -EBUSY;

Page 20 of 35 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

--
1.7.3.1

Containers mailing list
Containers@lists.linux-foundation.org
 https://lists.linux-foundation.org/mailman/listinfo/containe rs

Subject: Re: [PATCH 1/2] cgroup: Set CGRP_RELEASABLE when adding to a
cgroup
Posted by Colin Cross on Thu, 25 Nov 2010 00:11:34 GMT
View Forum Message <> Reply to Message

On Wed, Nov 24, 2010 at 3:54 PM, Paul Menage <menage@google.com> wrote:
> On Tue, Nov 23, 2010 at 9:37 PM, Colin Cross <ccross@android.com> wrote:
>> @@ -364,12 +372,8 @@ static void __put_css_set(struct css_set *cg, int taskexit)
>> struct cgroup *cgrp = link->cgrp;
>> list_del(&link->cg_link_list);
>> list_del(&link->cgrp_link_list);
>> - if (atomic_dec_and_test(&cgrp->count) &&
>> - notify_on_release(cgrp)) {
>> - if (taskexit)
>> - set_bit(CGRP_RELEASABLE, &cgrp->flags);
>> + if (atomic_dec_and_test(&cgrp->count))
>> check_for_release(cgrp);
>> - }
>
> We seem to have lost some notify_on_release() checks - maybe move that
> to check_for_release()?
check_for_release immediately calls cgroup_is_releasable, which checks
for the same bit as notify_on_release. There's no need for
CGRP_RELEASABLE to depend on notify_on_release, or to check
notify_on_release before calling check_for_release.

>> /* Caller must verify that the css is not for root cgroup */
>> +void __css_get(struct cgroup_subsys_state *css, int count)
>> +{
>> + atomic_add(count, &css->refcnt);
>> + set_bit(CGRP_RELEASABLE, &css->cgroup->flags);
>> +}
>
> Is css_get() the right place to be putting this? It's not clear to me
> why a subsystem taking a refcount on a cgroup's state should render it
> releasable when it drops that refcount.
I matched the existing behavior, __css_put sets CGRP_RELEASABLE when
refcnt goes to 0.

Page 21 of 35 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5131
https://new-forum.openvz.org/index.php?t=rview&th=9475&goto=41925#msg_41925
https://new-forum.openvz.org/index.php?t=post&reply_to=41925
https://new-forum.openvz.org/index.php

> Should we maybe clear the CGRP_RELEASABLE flag right before doing the
> userspace callback?
Actually, I think CGRP_RELEASABLE can be dropped entirely.
check_for_release is only called from __css_put, cgroup_rmdir, and
__put_css_set (or free_css_set_work after my second patch). Those all
imply that __css_get, get_css_set, or cgroup_create have been
previously called, which are the functions that set CGRP_RELEASABLE.

Containers mailing list
Containers@lists.linux-foundation.org
 https://lists.linux-foundation.org/mailman/listinfo/containe rs

Subject: Re: [PATCH 1/2] cgroup: Set CGRP_RELEASABLE when adding to a
cgroup
Posted by Colin Cross on Thu, 25 Nov 2010 00:18:59 GMT
View Forum Message <> Reply to Message

On Wed, Nov 24, 2010 at 4:11 PM, Colin Cross <ccross@android.com> wrote:
> On Wed, Nov 24, 2010 at 3:54 PM, Paul Menage <menage@google.com> wrote:
>> On Tue, Nov 23, 2010 at 9:37 PM, Colin Cross <ccross@android.com> wrote:
>>> @@ -364,12 +372,8 @@ static void __put_css_set(struct css_set *cg, int taskexit)
>>> struct cgroup *cgrp = link->cgrp;
>>> list_del(&link->cg_link_list);
>>> list_del(&link->cgrp_link_list);
>>> - if (atomic_dec_and_test(&cgrp->count) &&
>>> - notify_on_release(cgrp)) {
>>> - if (taskexit)
>>> - set_bit(CGRP_RELEASABLE, &cgrp->flags);
>>> + if (atomic_dec_and_test(&cgrp->count))
>>> check_for_release(cgrp);
>>> - }
>>
>> We seem to have lost some notify_on_release() checks - maybe move that
>> to check_for_release()?
> check_for_release immediately calls cgroup_is_releasable, which checks
> for the same bit as notify_on_release. There's no need for
> CGRP_RELEASABLE to depend on notify_on_release, or to check
> notify_on_release before calling check_for_release.
>
>>> /* Caller must verify that the css is not for root cgroup */
>>> +void __css_get(struct cgroup_subsys_state *css, int count)
>>> +{
>>> + atomic_add(count, &css->refcnt);
>>> + set_bit(CGRP_RELEASABLE, &css->cgroup->flags);
>>> +}
>>
>> Is css_get() the right place to be putting this? It's not clear to me

Page 22 of 35 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5131
https://new-forum.openvz.org/index.php?t=rview&th=9475&goto=41926#msg_41926
https://new-forum.openvz.org/index.php?t=post&reply_to=41926
https://new-forum.openvz.org/index.php

>> why a subsystem taking a refcount on a cgroup's state should render it
>> releasable when it drops that refcount.
> I matched the existing behavior, __css_put sets CGRP_RELEASABLE when
> refcnt goes to 0.
>
>> Should we maybe clear the CGRP_RELEASABLE flag right before doing the
>> userspace callback?
> Actually, I think CGRP_RELEASABLE can be dropped entirely.
> check_for_release is only called from __css_put, cgroup_rmdir, and
> __put_css_set (or free_css_set_work after my second patch). Those all
> imply that __css_get, get_css_set, or cgroup_create have been
> previously called, which are the functions that set CGRP_RELEASABLE.
Nevermind, that's not true - get_css_set does not set CGRP_RELEASABLE,
cgroup_attach_task does.

If CGRP_RELEASABLE is not cleared before the callback, the
release_agent would be run once when the last task was removed from
the cgroup, and then again if a task failed to be added to the empty
cgroup because the task was exiting, so clearing the flag sounds like
a good idea.

Containers mailing list
Containers@lists.linux-foundation.org
 https://lists.linux-foundation.org/mailman/listinfo/containe rs

Subject: Re: [PATCH 1/2] cgroup: Set CGRP_RELEASABLE when adding to a
cgroup
Posted by Colin Cross on Fri, 03 Dec 2010 03:07:12 GMT
View Forum Message <> Reply to Message

On Wed, Nov 24, 2010 at 4:21 PM, Paul Menage <menage@google.com> wrote:
> On Wed, Nov 24, 2010 at 4:11 PM, Colin Cross <ccross@android.com> wrote:
>>>
>>> We seem to have lost some notify_on_release() checks - maybe move that
>>> to check_for_release()?
>> check_for_release immediately calls cgroup_is_releasable, which checks
>> for the same bit as notify_on_release. There's no need for
>> CGRP_RELEASABLE to depend on notify_on_release, or to check
>> notify_on_release before calling check_for_release.
>
> OK.
>
>> I matched the existing behavior, __css_put sets CGRP_RELEASABLE when
>> refcnt goes to 0.
>>
>
> Ah, we do appear to have had that behaviour for a while. I don't

Page 23 of 35 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5131
https://new-forum.openvz.org/index.php?t=rview&th=9475&goto=41928#msg_41928
https://new-forum.openvz.org/index.php?t=post&reply_to=41928
https://new-forum.openvz.org/index.php

> remember the justification for it at this point :-)
>
>> check_for_release is only called from __css_put, cgroup_rmdir, and
>> __put_css_set (or free_css_set_work after my second patch). Those all
>> imply that __css_get, get_css_set, or cgroup_create have been
>> previously called, which are the functions that set CGRP_RELEASABLE.
>
> Not in one case - if we create a new cgroup and try to move a thread
> into it, but the thread is exiting as we move it, we'll call
> put_css_set() on the new css_set, which will drop the refcount on the
> target cgroup back to 0. We wouldn't want the auto-release
> notification to kick in in that situation, I think.

Clearing the CGRP_RELEASABLE bit any time after the tests in
check_for_release introduces a race if __css_get is called between the
check and clearing the bit - the cgroup will have an entry, but the
bit will not be set. Without additional locking in __css_get, I don't
see any way to safely clear CGRP_RELEASABLE.

Containers mailing list
Containers@lists.linux-foundation.org
 https://lists.linux-foundation.org/mailman/listinfo/containe rs

Subject: Re: [PATCH 1/2] cgroup: Set CGRP_RELEASABLE when adding to a
cgroup
Posted by Colin Cross on Fri, 17 Dec 2010 01:12:42 GMT
View Forum Message <> Reply to Message

On Thu, Dec 16, 2010 at 4:54 PM, Paul Menage <menage@google.com> wrote:
> On Thu, Dec 2, 2010 at 7:07 PM, Colin Cross <ccross@android.com> wrote:
>>> Not in one case - if we create a new cgroup and try to move a thread
>>> into it, but the thread is exiting as we move it, we'll call
>>> put_css_set() on the new css_set, which will drop the refcount on the
>>> target cgroup back to 0. We wouldn't want the auto-release
>>> notification to kick in in that situation, I think.
>>
>> Clearing the CGRP_RELEASABLE bit any time after the tests in
>> check_for_release introduces a race if __css_get is called between the
>> check and clearing the bit - the cgroup will have an entry, but the
>> bit will not be set. Without additional locking in __css_get, I don't
>> see any way to safely clear CGRP_RELEASABLE.
>
> I don't quite follow your argument here. Are you saying that the
> problem is that you could end up spawning a release agent for a cgroup
> that was no longer releasable since it now had a process in it again?
> If so, then I don't think that's a problem - spurious release agent
> invocations for non-empty cgroups will always happen occasionally due

Page 24 of 35 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5131
https://new-forum.openvz.org/index.php?t=rview&th=9475&goto=41941#msg_41941
https://new-forum.openvz.org/index.php?t=post&reply_to=41941
https://new-forum.openvz.org/index.php

> to races between the kernel and userspace. But a failed move of a task
> into a previously-empty cgroup shouldn't trigger the agent.

No, if you add a new process to the group while check_for_release, the
bit could get set by the add for the new process, then cleared by the
concurrently running check_for_release. The release agent would be
spawned with a process in the group, which is fine, but when
RELEASABLE bit would be clear. When the new process was removed,
check_for_release would not call the release agent at all.

Containers mailing list
Containers@lists.linux-foundation.org
 https://lists.linux-foundation.org/mailman/listinfo/containe rs

Subject: Re: [PATCH 2/2] cgroup: Remove call to synchronize_rcu in
cgroup_attach_task
Posted by Bryan Huntsman on Fri, 28 Jan 2011 01:17:26 GMT
View Forum Message <> Reply to Message

On 11/23/2010 09:37 PM, Colin Cross wrote:
> synchronize_rcu can be very expensive, averaging 100 ms in
> some cases. In cgroup_attach_task, it is used to prevent
> a task->cgroups pointer dereferenced in an RCU read side
> critical section from being invalidated, by delaying the
> call to put_css_set until after an RCU grace period.
>
> To avoid the call to synchronize_rcu, make the put_css_set
> call rcu-safe by moving the deletion of the css_set links
> into free_css_set_work, scheduled by the rcu callback
> free_css_set_rcu.
>
> The decrement of the cgroup refcount is no longer
> synchronous with the call to put_css_set, which can result
> in the cgroup refcount staying positive after the last call
> to cgroup_attach_task returns. To allow the cgroup to be
> deleted with cgroup_rmdir synchronously after
> cgroup_attach_task, have rmdir check the refcount of all
> associated css_sets. If cgroup_rmdir is called on a cgroup
> for which the css_sets all have refcount zero but the
> cgroup refcount is nonzero, reuse the rmdir waitqueue to
> block the rmdir until free_css_set_work is called.
>
> Signed-off-by: Colin Cross <ccross@android.com>
> ---
> include/linux/cgroup.h | 1 +
> kernel/cgroup.c | 120 +++++++++++++++++++++++++++++-------------------
> 2 files changed, 74 insertions(+), 47 deletions(-)

Page 25 of 35 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5139
https://new-forum.openvz.org/index.php?t=rview&th=9475&goto=41949#msg_41949
https://new-forum.openvz.org/index.php?t=post&reply_to=41949
https://new-forum.openvz.org/index.php

>
> diff --git a/include/linux/cgroup.h b/include/linux/cgroup.h
> index 9e13078..49fdff0 100644
> --- a/include/linux/cgroup.h
> +++ b/include/linux/cgroup.h
> @@ -279,6 +279,7 @@ struct css_set {
>
> 	/* For RCU-protected deletion */
> 	struct rcu_head rcu_head;
> +	struct work_struct work;
> };
>
> /*
> diff --git a/kernel/cgroup.c b/kernel/cgroup.c
> index 34e855e..e752c83 100644
> --- a/kernel/cgroup.c
> +++ b/kernel/cgroup.c
> @@ -267,6 +267,33 @@ static void cgroup_release_agent(struct work_struct *work);
> static DECLARE_WORK(release_agent_work, cgroup_release_agent);
> static void check_for_release(struct cgroup *cgrp);
>
> +/*
> + * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
> + * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
> + * reference to css->refcnt. In general, this refcnt is expected to goes down
> + * to zero, soon.
> + *
> + * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
> + */
> +DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
> +
> +static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
> +{
> +	if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
> +		wake_up_all(&cgroup_rmdir_waitq);
> +}
> +
> +void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
> +{
> +	css_get(css);
> +}
> +
> +void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
> +{
> +	cgroup_wakeup_rmdir_waiter(css->cgroup);
> +	css_put(css);
> +}
> +

Page 26 of 35 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> /* Link structure for associating css_set objects with cgroups */
> struct cg_cgroup_link {
> 	/*
> @@ -326,10 +353,35 @@ static struct hlist_head *css_set_hash(struct cgroup_subsys_state
*css[])
> 	return &css_set_table[index];
> }
>
> +static void free_css_set_work(struct work_struct *work)
> +{
> +	struct css_set *cg = container_of(work, struct css_set, work);
> +	struct cg_cgroup_link *link;
> +	struct cg_cgroup_link *saved_link;
> +
> +	write_lock(&css_set_lock);
> +	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
> +				 cg_link_list) {
> +		struct cgroup *cgrp = link->cgrp;
> +		list_del(&link->cg_link_list);
> +		list_del(&link->cgrp_link_list);
> +		if (atomic_dec_and_test(&cgrp->count)) {
> +			check_for_release(cgrp);
> +			cgroup_wakeup_rmdir_waiter(cgrp);
> +		}
> +		kfree(link);
> +	}
> +	write_unlock(&css_set_lock);
> +
> +	kfree(cg);
> +}
> +
> static void free_css_set_rcu(struct rcu_head *obj)
> {
> 	struct css_set *cg = container_of(obj, struct css_set, rcu_head);
> -	kfree(cg);
> +
> +	INIT_WORK(&cg->work, free_css_set_work);
> +	schedule_work(&cg->work);
> }
>
> /* We don't maintain the lists running through each css_set to its
> @@ -348,8 +400,6 @@ static inline void get_css_set(struct css_set *cg)
>
> static void put_css_set(struct css_set *cg)
> {
> -	struct cg_cgroup_link *link;
> -	struct cg_cgroup_link *saved_link;
> 	/*

Page 27 of 35 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> 	 * Ensure that the refcount doesn't hit zero while any readers
> 	 * can see it. Similar to atomic_dec_and_lock(), but for an
> @@ -363,21 +413,9 @@ static void put_css_set(struct css_set *cg)
> 		return;
> 	}
>
> -	/* This css_set is dead. unlink it and release cgroup refcounts */
> 	hlist_del(&cg->hlist);
> 	css_set_count--;
>
> -	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
> -				 cg_link_list) {
> -		struct cgroup *cgrp = link->cgrp;
> -		list_del(&link->cg_link_list);
> -		list_del(&link->cgrp_link_list);
> -		if (atomic_dec_and_test(&cgrp->count))
> -			check_for_release(cgrp);
> -
> -		kfree(link);
> -	}
> -
> 	write_unlock(&css_set_lock);
> 	call_rcu(&cg->rcu_head, free_css_set_rcu);
> }
> @@ -711,9 +749,9 @@ static struct cgroup *task_cgroup_from_root(struct task_struct *task,
> * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
> * another. It does so using cgroup_mutex, however there are
> * several performance critical places that need to reference
> - * task->cgroup without the expense of grabbing a system global
> + * task->cgroups without the expense of grabbing a system global
> * mutex. Therefore except as noted below, when dereferencing or, as
> - * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
> + * in cgroup_attach_task(), modifying a task's cgroups pointer we use
> * task_lock(), which acts on a spinlock (task->alloc_lock) already in
> * the task_struct routinely used for such matters.
> *
> @@ -895,33 +933,6 @@ static void cgroup_d_remove_dir(struct dentry *dentry)
> }
>
> /*
> - * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
> - * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
> - * reference to css->refcnt. In general, this refcnt is expected to goes down
> - * to zero, soon.
> - *
> - * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
> - */
> -DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);

Page 28 of 35 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> -
> -static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
> -{
> -	if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
> -		wake_up_all(&cgroup_rmdir_waitq);
> -}
> -
> -void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
> -{
> -	css_get(css);
> -}
> -
> -void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
> -{
> -	cgroup_wakeup_rmdir_waiter(css->cgroup);
> -	css_put(css);
> -}
> -
> -/*
> * Call with cgroup_mutex held. Drops reference counts on modules, including
> * any duplicate ones that parse_cgroupfs_options took. If this function
> * returns an error, no reference counts are touched.
> @@ -1788,7 +1799,7 @@ int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
> 			ss->attach(ss, cgrp, oldcgrp, tsk, false);
> 	}
> 	set_bit(CGRP_RELEASABLE, &cgrp->flags);
> -	synchronize_rcu();
> +	/* put_css_set will not destroy cg until after an RCU grace period */
> 	put_css_set(cg);
>
> 	/*
> @@ -3546,6 +3557,21 @@ static int cgroup_clear_css_refs(struct cgroup *cgrp)
> 	return !failed;
> }
>
> +/* checks if all of the css_sets attached to a cgroup have a refcount of 0.
> + * Must be called with css_set_lock held */
> +static int cgroup_css_sets_empty(struct cgroup *cgrp)
> +{
> +	struct cg_cgroup_link *link;
> +
> +	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
> +		struct css_set *cg = link->cg;
> +		if (atomic_read(&cg->refcount) > 0)
> +			return 0;
> +	}
> +
> +	return 1;

Page 29 of 35 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> +}
> +
> static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
> {
> 	struct cgroup *cgrp = dentry->d_fsdata;
> @@ -3558,7 +3584,7 @@ static int cgroup_rmdir(struct inode *unused_dir, struct dentry
*dentry)
> 	/* the vfs holds both inode->i_mutex already */
> again:
> 	mutex_lock(&cgroup_mutex);
> -	if (atomic_read(&cgrp->count) != 0) {
> +	if (!cgroup_css_sets_empty(cgrp)) {
> 		mutex_unlock(&cgroup_mutex);
> 		return -EBUSY;
> 	}
> @@ -3591,7 +3617,7 @@ again:
>
> 	mutex_lock(&cgroup_mutex);
> 	parent = cgrp->parent;
> -	if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
> +	if (!cgroup_css_sets_empty(cgrp) || !list_empty(&cgrp->children)) {
> 		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
> 		mutex_unlock(&cgroup_mutex);
> 		return -EBUSY;

Tested-by: Mike Bohan <mbohan@codeaurora.org>

I'm responding on Mike's behalf and adding him to this thread. This
patch improves launch time of a test app from ~700ms to ~250ms on MSM,
with much lower variance across tests. We also see UI latency
improvements, but have not quantified the gains.

- Bryan

--
Sent by an employee of the Qualcomm Innovation Center, Inc.
The Qualcomm Innovation Center, Inc. is a member of the Code Aurora Forum.

Containers mailing list
Containers@lists.linux-foundation.org
 https://lists.linux-foundation.org/mailman/listinfo/containe rs

Subject: Re: [PATCH 1/2] cgroup: Set CGRP_RELEASABLE when adding to a
cgroup
Posted by Bryan Huntsman on Fri, 28 Jan 2011 01:17:32 GMT
View Forum Message <> Reply to Message

Page 30 of 35 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5139
https://new-forum.openvz.org/index.php?t=rview&th=9475&goto=41950#msg_41950
https://new-forum.openvz.org/index.php?t=post&reply_to=41950
https://new-forum.openvz.org/index.php

On 11/23/2010 09:37 PM, Colin Cross wrote:
> Changes the meaning of CGRP_RELEASABLE to be set on any cgroup
> that has ever had a task or cgroup in it, or had css_get called
> on it. The bit is set in cgroup_attach_task, cgroup_create,
> and __css_get. It is not necessary to set the bit in
> cgroup_fork, as the task is either in the root cgroup, in
> which can never be released, or the task it was forked from
> already set the bit in croup_attach_task.
>
> Signed-off-by: Colin Cross <ccross@android.com>
> ---
> include/linux/cgroup.h | 12 +--------
> kernel/cgroup.c | 54 ++++++++++++++++++++---------------------------
> 2 files changed, 25 insertions(+), 41 deletions(-)
>
> diff --git a/include/linux/cgroup.h b/include/linux/cgroup.h
> index ed4ba11..9e13078 100644
> --- a/include/linux/cgroup.h
> +++ b/include/linux/cgroup.h
> @@ -84,12 +84,6 @@ enum {
> 	CSS_REMOVED, /* This CSS is dead */
> };
>
> -/* Caller must verify that the css is not for root cgroup */
> -static inline void __css_get(struct cgroup_subsys_state *css, int count)
> -{
> -	atomic_add(count, &css->refcnt);
> -}
> -
> /*
> * Call css_get() to hold a reference on the css; it can be used
> * for a reference obtained via:
> @@ -97,6 +91,7 @@ static inline void __css_get(struct cgroup_subsys_state *css, int count)
> * - task->cgroups for a locked task
> */
>
> +extern void __css_get(struct cgroup_subsys_state *css, int count);
> static inline void css_get(struct cgroup_subsys_state *css)
> {
> 	/* We don't need to reference count the root state */
> @@ -143,10 +138,7 @@ static inline void css_put(struct cgroup_subsys_state *css)
> enum {
> 	/* Control Group is dead */
> 	CGRP_REMOVED,
> -	/*
> -	 * Control Group has previously had a child cgroup or a task,
> -	 * but no longer (only if CGRP_NOTIFY_ON_RELEASE is set)
> -	 */

Page 31 of 35 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> +	/* Control Group has ever had a child cgroup or a task */
> 	CGRP_RELEASABLE,
> 	/* Control Group requires release notifications to userspace */
> 	CGRP_NOTIFY_ON_RELEASE,
> diff --git a/kernel/cgroup.c b/kernel/cgroup.c
> index 66a416b..34e855e 100644
> --- a/kernel/cgroup.c
> +++ b/kernel/cgroup.c
> @@ -338,7 +338,15 @@ static void free_css_set_rcu(struct rcu_head *obj)
> * compiled into their kernel but not actually in use */
> static int use_task_css_set_links __read_mostly;
>
> -static void __put_css_set(struct css_set *cg, int taskexit)
> +/*
> + * refcounted get/put for css_set objects
> + */
> +static inline void get_css_set(struct css_set *cg)
> +{
> +	atomic_inc(&cg->refcount);
> +}
> +
> +static void put_css_set(struct css_set *cg)
> {
> 	struct cg_cgroup_link *link;
> 	struct cg_cgroup_link *saved_link;
> @@ -364,12 +372,8 @@ static void __put_css_set(struct css_set *cg, int taskexit)
> 		struct cgroup *cgrp = link->cgrp;
> 		list_del(&link->cg_link_list);
> 		list_del(&link->cgrp_link_list);
> -		if (atomic_dec_and_test(&cgrp->count) &&
> -		 notify_on_release(cgrp)) {
> -			if (taskexit)
> -				set_bit(CGRP_RELEASABLE, &cgrp->flags);
> +		if (atomic_dec_and_test(&cgrp->count))
> 			check_for_release(cgrp);
> -		}
>
> 		kfree(link);
> 	}
> @@ -379,24 +383,6 @@ static void __put_css_set(struct css_set *cg, int taskexit)
> }
>
> /*
> - * refcounted get/put for css_set objects
> - */
> -static inline void get_css_set(struct css_set *cg)
> -{
> -	atomic_inc(&cg->refcount);

Page 32 of 35 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> -}
> -
> -static inline void put_css_set(struct css_set *cg)
> -{
> -	__put_css_set(cg, 0);
> -}
> -
> -static inline void put_css_set_taskexit(struct css_set *cg)
> -{
> -	__put_css_set(cg, 1);
> -}
> -
> -/*
> * compare_css_sets - helper function for find_existing_css_set().
> * @cg: candidate css_set being tested
> * @old_cg: existing css_set for a task
> @@ -1801,7 +1787,7 @@ int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
> 		if (ss->attach)
> 			ss->attach(ss, cgrp, oldcgrp, tsk, false);
> 	}
> -	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
> +	set_bit(CGRP_RELEASABLE, &cgrp->flags);
> 	synchronize_rcu();
> 	put_css_set(cg);
>
> @@ -3427,6 +3413,8 @@ static long cgroup_create(struct cgroup *parent, struct dentry
*dentry,
> 	if (err < 0)
> 		goto err_remove;
>
> +	set_bit(CGRP_RELEASABLE, &parent->flags);
> +
> 	/* The cgroup directory was pre-locked for us */
> 	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
>
> @@ -3645,7 +3633,6 @@ again:
> 	cgroup_d_remove_dir(d);
> 	dput(d);
>
> -	set_bit(CGRP_RELEASABLE, &parent->flags);
> 	check_for_release(parent);
>
> 	/*
> @@ -4240,7 +4227,7 @@ void cgroup_exit(struct task_struct *tsk, int run_callbacks)
> 	tsk->cgroups = &init_css_set;
> 	task_unlock(tsk);
> 	if (cg)
> -		put_css_set_taskexit(cg);

Page 33 of 35 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> +		put_css_set(cg);
> }
>
> /**
> @@ -4410,6 +4397,14 @@ static void check_for_release(struct cgroup *cgrp)
> }
>
> /* Caller must verify that the css is not for root cgroup */
> +void __css_get(struct cgroup_subsys_state *css, int count)
> +{
> +	atomic_add(count, &css->refcnt);
> +	set_bit(CGRP_RELEASABLE, &css->cgroup->flags);
> +}
> +EXPORT_SYMBOL_GPL(__css_get);
> +
> +/* Caller must verify that the css is not for root cgroup */
> void __css_put(struct cgroup_subsys_state *css, int count)
> {
> 	struct cgroup *cgrp = css->cgroup;
> @@ -4417,10 +4412,7 @@ void __css_put(struct cgroup_subsys_state *css, int count)
> 	rcu_read_lock();
> 	val = atomic_sub_return(count, &css->refcnt);
> 	if (val == 1) {
> -		if (notify_on_release(cgrp)) {
> -			set_bit(CGRP_RELEASABLE, &cgrp->flags);
> -			check_for_release(cgrp);
> -		}
> +		check_for_release(cgrp);
> 		cgroup_wakeup_rmdir_waiter(cgrp);
> 	}
> 	rcu_read_unlock();

Tested-by: Mike Bohan <mbohan@codeaurora.org>

I'm responding on Mike's behalf and adding him to this thread. This
patch improves launch time of a test app from ~700ms to ~250ms on MSM,
with much lower variance across tests. We also see UI latency
improvements, but have not quantified the gains.

- Bryan

--
Sent by an employee of the Qualcomm Innovation Center, Inc.
The Qualcomm Innovation Center, Inc. is a member of the Code Aurora Forum.

Containers mailing list
Containers@lists.linux-foundation.org
 https://lists.linux-foundation.org/mailman/listinfo/containe rs

Page 34 of 35 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Subject: Re: [PATCH 1/2] cgroup: Set CGRP_RELEASABLE when adding to a
cgroup
Posted by Michael Bohan on Fri, 28 Jan 2011 01:48:01 GMT
View Forum Message <> Reply to Message

On 1/27/2011 5:30 PM, Paul Menage wrote:
> On Thu, Jan 27, 2011 at 5:17 PM, Bryan Huntsman<bryanh@codeaurora.org> wrote:
>>
>> Tested-by: Mike Bohan<mbohan@codeaurora.org>
>>
>> I'm responding on Mike's behalf and adding him to this thread. This
>> patch improves launch time of a test app from ~700ms to ~250ms on MSM,
>> with much lower variance across tests. We also see UI latency
>> improvements, but have not quantified the gains.
>>
>
> Is this attached to the wrong patch? I'd thought that it was the other
> patch (removing the rcu_synchronize()) that's the performance booster.
> This one is more about preserving the semantics of the notification
> API.

You are correct. "[PATCH 2/2] cgroup: Remove call to synchronize_rcu in
cgroup_attach_task" improved the performance.

To be more correct, I tested this patch (eg. "cgroup: Set
CGRP_RELEASABLE when adding to a cgroup") to the degree that it didn't
appear to cause any stability or functional regressions when performing
the simple benchmark procedure described above. I did also test "[PATCH
2/2] cgroup: Remove call to synchronize_rcu in cgroup_attach_task"
independently of this patch to verify that it alone improved the
performance.

Thanks,
Mike

--
Employee of Qualcomm Innovation Center, Inc.
Qualcomm Innovation Center, Inc. is a member of Code Aurora Forum

Containers mailing list
Containers@lists.linux-foundation.org
 https://lists.linux-foundation.org/mailman/listinfo/containe rs

Page 35 of 35 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5155
https://new-forum.openvz.org/index.php?t=rview&th=9475&goto=42024#msg_42024
https://new-forum.openvz.org/index.php?t=post&reply_to=42024
https://new-forum.openvz.org/index.php

