
Subject: Re: [PATCH 1/1, v6] cgroup/freezer: add per freezer duty ratio control
Posted by Matt Helsley on Thu, 10 Feb 2011 03:04:42 GMT
View Forum Message <> Reply to Message

On Tue, Feb 08, 2011 at 05:05:41PM -0800, jacob.jun.pan@linux.intel.com wrote:
> From: Jacob Pan <jacob.jun.pan@linux.intel.com>
>
> Freezer subsystem is used to manage batch jobs which can start
> stop at the same time. However, sometime it is desirable to let
> the kernel manage the freezer state automatically with a given
> duty ratio.
> For example, if we want to reduce the time that backgroup apps
> are allowed to run we can put them into a freezer subsystem and
> set the kernel to turn them THAWED/FROZEN at given duty ratio.
>
> This patch introduces two file nodes under cgroup
> freezer.duty_ratio_pct and freezer.period_sec
>
> Usage example: set period to be 5 seconds and frozen duty ratio 90%
> [root@localhost aoa]# echo 90 > freezer.duty_ratio_pct
> [root@localhost aoa]# echo 5000 > freezer.period_ms

I kept wondering how this was useful when we've got the "cpu" subsystem
because for some reason "duty cycle" made me think this was a scheduling
policy knob. In fact, I'm pretty sure it is -- it just happens to
sometimes reduce power consumption.

Have you tried using the cpu cgroup subsystem's share to see if it can
have a similar effect?

Can you modify the cpu subsystem to enable this instead of putting it
into the cgroup freezer subsystem?

The way it oscillates between FROZEN and THAWED also bothers me. The
oscillations can be described in millisecond granularity so its possible
that reading and manipulating the freezer state from userspace could be
largely useless. Also it's not obvious what should happen when the
state file is written after the duty cycle has been set (more below).

Perhaps you could fix that up by introducting another state called
"DUTY_CYCLE" or something.

What's the overhead of using the freezer as a scheduling mechanism at
that granularity? Is it really practical?

What happens to these groups using the duty cycle during suspend and
resume? Presumably they won't be accidentally thawed so long as there
aren't races between the kernel thread(s) and suspend. I don't think

Page 1 of 24 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=670
https://new-forum.openvz.org/index.php?t=rview&th=9397&goto=41607#msg_41607
https://new-forum.openvz.org/index.php?t=post&reply_to=41607
https://new-forum.openvz.org/index.php

we've ever had a kernel thread that could thaw a frozen task before
(unless it's part of the resume code itself) so I don't think this race
is covered by existing cgroup freezer code.

Overall I get the feeling this is a scheduling policy knob that doesn't
"belong" in the cgroup freezer subsystem -- though I don't have much
beyond the above questions and my personal aesthetic sense to go on :).

I think Rafael is maintaining the cgroup freezer subsystem since it makes
use of the suspend freezer so I've added him to Cc.

>
> Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
> ---
> Documentation/cgroups/freezer-subsystem.txt | 23 +++++
> kernel/cgroup_freezer.c | 132 ++++++++++++++++++++++++++-
> 2 files changed, 154 insertions(+), 1 deletions(-)
>
> diff --git a/Documentation/cgroups/freezer-subsystem.txt
b/Documentation/cgroups/freezer-subsystem.txt
> index 41f37fe..7f06f05 100644
> --- a/Documentation/cgroups/freezer-subsystem.txt
> +++ b/Documentation/cgroups/freezer-subsystem.txt
> @@ -100,3 +100,26 @@ things happens:
> 		and returns EINVAL)
> 	3) The tasks that blocked the cgroup from entering the "FROZEN"
> 		state disappear from the cgroup's set of tasks.
> +
> +In embedded systems, it is desirable to manage group of applications
> +for power saving. E.g. tasks that are not in the foreground may be
> +frozen unfrozen periodically to save power without affecting user

nit: probably should be "frozen and unfrozen periodically"

> +experience. In this case, user/management software can attach tasks
> +into freezer cgroup then specify duty ratio and period that the
> +managed tasks are allowed to run.

And presumably the applications either don't care about their power
consumption, have a bug, or are "malicious" apps -- either way assuming
cooperation from the applications and knowledgable users isn't acceptable.

> +
> +Usage example:
> +Assuming freezer cgroup is already mounted, application being managed
> +are included the "tasks" file node of the given freezer cgroup.
> +To make the tasks frozen at 90% of the time every 5 seconds, do:
> +

Page 2 of 24 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> +[root@localhost]# echo 90 > freezer.duty_ratio_pct
> +[root@localhost]# echo 5000 > freezer.period_ms
> +
> +After that, the application in this freezer cgroup will only be
> +allowed to run at the following pattern.
> + __ __ __
> + | |<-- 90% frozen -->| | | |
> +____| |__________________| |__________________| |_____
> +
> + |<---- 5 seconds ---->|
> diff --git a/kernel/cgroup_freezer.c b/kernel/cgroup_freezer.c
> index e7bebb7..5808f28 100644
> --- a/kernel/cgroup_freezer.c
> +++ b/kernel/cgroup_freezer.c
> @@ -21,6 +21,7 @@
> #include <linux/uaccess.h>
> #include <linux/freezer.h>
> #include <linux/seq_file.h>
> +#include <linux/kthread.h>
>
> enum freezer_state {
> 	CGROUP_THAWED = 0,
> @@ -28,12 +29,28 @@ enum freezer_state {
> 	CGROUP_FROZEN,
> };
>
> +enum duty_ratio_params {
> +	FREEZER_DUTY_RATIO = 0,
> +	FREEZER_PERIOD,
> +};
> +
> +struct freezer_duty {
> +	u32 ratio; /* percentage of time frozen */
> +	u32 period_pct_ms; /* one percent of the period in miliseconds */
> +};
> +
> struct freezer {
> 	struct cgroup_subsys_state css;
> 	enum freezer_state state;
> +	struct freezer_duty duty;
> +	struct task_struct *fkh;
> 	spinlock_t lock; /* protects _writes_ to state */
> };
>
> +static struct task_struct *freezer_task;
> +static int try_to_freeze_cgroup(struct cgroup *cgroup, struct freezer *freezer);
> +static void unfreeze_cgroup(struct cgroup *cgroup, struct freezer *freezer);
> +

Page 3 of 24 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> static inline struct freezer *cgroup_freezer(
> 		struct cgroup *cgroup)
> {
> @@ -63,6 +80,31 @@ int cgroup_freezing_or_frozen(struct task_struct *task)
> 	return result;
> }
>
> +static DECLARE_WAIT_QUEUE_HEAD(freezer_wait);
> +
> +static int freezer_kh(void *data)

nit: What's "kh"? "Kernel Handler"?

> +{
> +	struct cgroup *cgroup = (struct cgroup *)data;
> +	struct freezer *freezer = cgroup_freezer(cgroup);
> +
> +	do {
> +		if (freezer->duty.ratio < 100 && freezer->duty.ratio > 0 &&
> +			freezer->duty.period_pct_ms) {
> +			if (try_to_freeze_cgroup(cgroup, freezer))
> +				pr_info("cannot freeze\n");
> +			msleep(freezer->duty.period_pct_ms *
> +				freezer->duty.ratio);
> +			unfreeze_cgroup(cgroup, freezer);
> +			msleep(freezer->duty.period_pct_ms *
> +				(100 - freezer->duty.ratio));
> +		} else {
> +			sleep_on(&freezer_wait);
> +			pr_debug("freezer thread wake up\n");
> +		}
> +	} while (!kthread_should_stop());
> +	return 0;
> +}

Seems to me you could avoid the thread-per-cgroup overhead and the
sleep-loop code by using one timer-per-cgroup. When the timer expires
you freeze/thaw the cgroup associated with the timer, setup the next
wakeup timer, and use only one kernel thread to do it all. If you
use workqueues you might even avoid the single kernel thread.

Seems to me like that'd be a good fit for embedded devices.

> +
> /*
> * cgroups_write_string() limits the size of freezer state strings to
> * CGROUP_LOCAL_BUFFER_SIZE
> @@ -150,7 +192,12 @@ static struct cgroup_subsys_state *freezer_create(struct

Page 4 of 24 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

cgroup_subsys *ss,
> static void freezer_destroy(struct cgroup_subsys *ss,
> 			 struct cgroup *cgroup)
> {
> -	kfree(cgroup_freezer(cgroup));
> +	struct freezer *freezer;
> +
> +	freezer = cgroup_freezer(cgroup);
> +	if (freezer->fkh)
> +		kthread_stop(freezer->fkh);
> +	kfree(freezer);
> }
>
> /*
> @@ -282,6 +329,16 @@ static int freezer_read(struct cgroup *cgroup, struct cftype *cft,
> 	return 0;
> }
>
> +static u64 freezer_read_duty_ratio(struct cgroup *cgroup, struct cftype *cft)
> +{
> +	return cgroup_freezer(cgroup)->duty.ratio;
> +}
> +
> +static u64 freezer_read_period(struct cgroup *cgroup, struct cftype *cft)
> +{
> +	return cgroup_freezer(cgroup)->duty.period_pct_ms * 100;
> +}
> +
> static int try_to_freeze_cgroup(struct cgroup *cgroup, struct freezer *freezer)
> {
> 	struct cgroup_iter it;
> @@ -368,12 +425,85 @@ static int freezer_write(struct cgroup *cgroup,
> 	return retval;
> }
>
> +#define FREEZER_KH_PREFIX "freezer_"
> +static int freezer_write_param(struct cgroup *cgroup, struct cftype *cft,
> +		u64 val)
> +{
> +	struct freezer *freezer;
> +	char thread_name[32];
> +	int ret = 0;
> +
> +	freezer = cgroup_freezer(cgroup);
> +
> +	if (!cgroup_lock_live_group(cgroup))
> +		return -ENODEV;
> +

Page 5 of 24 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> +	switch (cft->private) {
> +	case FREEZER_DUTY_RATIO:
> +		if (val >= 100 || val < 0) {
> +			ret = -EINVAL;
> +			goto exit;
> +		}
> +		freezer->duty.ratio = val;

Why can't val == 100? At that point it's always THAWED and no kernel
thread is necessary (just like at 0 it's always FROZEN and no kernel
thread is necessary).

> +		break;
> +	case FREEZER_PERIOD:
> +		if (val)
> +			do_div(val, 100);
> +			freezer->duty.period_pct_ms = val;

Wrong indent level at least. Possible bug?
Shouldn't you disallow duty.period_pct_ms being set to 0? Then userspace
can pin a kernel thread at 100% cpu just doing freeze/thaws couldn't
it?

> +		break;
> +	default:
> +		BUG();
> +	}
> +
> +	/* start/stop management kthread as needed, the rule is that
> +	 * if both duty ratio and period values are zero, then no management
> +	 * kthread is created. when both are non-zero, we create a kthread
> +	 * for the cgroup. When user set zero to duty ratio and period again
> +	 * the kthread is stopped.
> +	 */
> +	if (freezer->duty.ratio && freezer->duty.period_pct_ms) {
> +		if (!freezer->fkh) {
> +			snprintf(thread_name, 32, "%s%s", FREEZER_KH_PREFIX,
> +				cgroup->dentry->d_name.name);
> +			freezer->fkh = kthread_run(freezer_kh, (void *)cgroup,
> +						thread_name);
> +			if (IS_ERR(freezer_task)) {
> +				pr_err("create %s failed\n", thread_name);
> +				ret = PTR_ERR(freezer_task);
> +				goto exit;
> +			}
> +		} else
> +			wake_up(&freezer_wait);
> +	} else if ((!freezer->duty.ratio || !freezer->duty.period_pct_ms) &&

Page 6 of 24 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> +		freezer->fkh) {
> +			kthread_stop(freezer->fkh);
> +			freezer->fkh = NULL;
> +	}
> +
> +exit:
> +	cgroup_unlock();
> +	return ret;
> +}
> +
> static struct cftype files[] = {
> 	{
> 		.name = "state",
> 		.read_seq_string = freezer_read,
> 		.write_string = freezer_write,

It's not clear what should happen when userspace writes the state
file after writing a duty_ratio_pct.

If the new state file write takes priority then:
	Writing THAWED to the state should set duty_ratio_pct to 100.
	Writing FROZEN to the state should set it to 0.

	This means existing code will get the behavior it expects.

Else, if you want duty_ratio_pct to take priority then you ought to make
the state file read-only when duty_ratio_pct is set. Otherwise existing
userspace code will happily chug along without noticing that their groups
aren't doing what they expected. This is also another good reason to
introduce a new state as suggested above (with the tenative name
"DUTY_CYCLE").

> 	},
> +	{
> +		.name = "duty_ratio_pct",
> +		.private = FREEZER_DUTY_RATIO,
> +		.read_u64 = freezer_read_duty_ratio,
> +		.write_u64 = freezer_write_param,
> +	},

nit: Why use a u64 for a value that can only be 0-100? (or perhaps
0-1000 if you wanted sub-1% granularity...)

Cheers,
	-Matt Helsley

Containers mailing list
Containers@lists.linux-foundation.org

Page 7 of 24 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 https://lists.linux-foundation.org/mailman/listinfo/containe rs

Subject: Re: [PATCH 1/1, v6] cgroup/freezer: add per freezer duty ratio control
Posted by Arjan van de Ven on Thu, 10 Feb 2011 03:06:15 GMT
View Forum Message <> Reply to Message

On 2/9/2011 7:04 PM, Matt Helsley wrote:
> On Tue, Feb 08, 2011 at 05:05:41PM -0800, jacob.jun.pan@linux.intel.com wrote:
>> From: Jacob Pan<jacob.jun.pan@linux.intel.com>
>>
>> Freezer subsystem is used to manage batch jobs which can start
>> stop at the same time. However, sometime it is desirable to let
>> the kernel manage the freezer state automatically with a given
>> duty ratio.
>> For example, if we want to reduce the time that backgroup apps
>> are allowed to run we can put them into a freezer subsystem and
>> set the kernel to turn them THAWED/FROZEN at given duty ratio.
>>
>> This patch introduces two file nodes under cgroup
>> freezer.duty_ratio_pct and freezer.period_sec
>>
>> Usage example: set period to be 5 seconds and frozen duty ratio 90%
>> [root@localhost aoa]# echo 90> freezer.duty_ratio_pct
>> [root@localhost aoa]# echo 5000> freezer.period_ms
> I kept wondering how this was useful when we've got the "cpu" subsystem
> because for some reason "duty cycle" made me think this was a scheduling
> policy knob. In fact, I'm pretty sure it is -- it just happens to
> sometimes reduce power consumption.
>
> Have you tried using the cpu cgroup subsystem's share to see if it can
> have a similar effect?

does the cpu cgroup system work on a 20 to 30 second time window?
the objective is to have the CPU idle, without wakeups, for that long...
(to save power)

Containers mailing list
Containers@lists.linux-foundation.org
 https://lists.linux-foundation.org/mailman/listinfo/containe rs

Subject: Re: [PATCH 1/1, v6] cgroup/freezer: add per freezer duty ratio control
Posted by Kirill A. Shutsemov on Thu, 10 Feb 2011 09:15:22 GMT
View Forum Message <> Reply to Message

Page 8 of 24 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=293
https://new-forum.openvz.org/index.php?t=rview&th=9397&goto=41608#msg_41608
https://new-forum.openvz.org/index.php?t=post&reply_to=41608
https://new-forum.openvz.org/index.php?t=usrinfo&id=5071
https://new-forum.openvz.org/index.php?t=rview&th=9397&goto=41615#msg_41615
https://new-forum.openvz.org/index.php?t=post&reply_to=41615
https://new-forum.openvz.org/index.php

On Wed, Feb 09, 2011 at 07:04:42PM -0800, Matt Helsley wrote:
> > +{
> > +	struct cgroup *cgroup = (struct cgroup *)data;
> > +	struct freezer *freezer = cgroup_freezer(cgroup);
> > +
> > +	do {
> > +		if (freezer->duty.ratio < 100 && freezer->duty.ratio > 0 &&
> > +			freezer->duty.period_pct_ms) {
> > +			if (try_to_freeze_cgroup(cgroup, freezer))
> > +				pr_info("cannot freeze\n");
> > +			msleep(freezer->duty.period_pct_ms *
> > +				freezer->duty.ratio);
> > +			unfreeze_cgroup(cgroup, freezer);
> > +			msleep(freezer->duty.period_pct_ms *
> > +				(100 - freezer->duty.ratio));
> > +		} else {
> > +			sleep_on(&freezer_wait);
> > +			pr_debug("freezer thread wake up\n");
> > +		}
> > +	} while (!kthread_should_stop());
> > +	return 0;
> > +}
>
> Seems to me you could avoid the thread-per-cgroup overhead and the
> sleep-loop code by using one timer-per-cgroup. When the timer expires
> you freeze/thaw the cgroup associated with the timer, setup the next
> wakeup timer, and use only one kernel thread to do it all. If you
> use workqueues you might even avoid the single kernel thread.
>
> Seems to me like that'd be a good fit for embedded devices.

I proposed to use delayed workqueues (schedule_delayed_work()).

> > +#define FREEZER_KH_PREFIX "freezer_"
> > +static int freezer_write_param(struct cgroup *cgroup, struct cftype *cft,
> > +		u64 val)
> > +{
> > +	struct freezer *freezer;
> > +	char thread_name[32];
> > +	int ret = 0;
> > +
> > +	freezer = cgroup_freezer(cgroup);
> > +
> > +	if (!cgroup_lock_live_group(cgroup))
> > +		return -ENODEV;
> > +
> > +	switch (cft->private) {
> > +	case FREEZER_DUTY_RATIO:

Page 9 of 24 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> > +		if (val >= 100 || val < 0) {
> > +			ret = -EINVAL;
> > +			goto exit;
> > +		}
> > +		freezer->duty.ratio = val;
>
> Why can't val == 100? At that point it's always THAWED and no kernel
> thread is necessary (just like at 0 it's always FROZEN and no kernel
> thread is necessary).

val == 100 is interface abuse, I think. I just turn off the feature, if
you want.
> > static struct cftype files[] = {
> > 	{
> > 		.name = "state",
> > 		.read_seq_string = freezer_read,
> > 		.write_string = freezer_write,
>
> It's not clear what should happen when userspace writes the state
> file after writing a duty_ratio_pct.

It should return -EBUSY, I think.

> > 	},
> > +	{
> > +		.name = "duty_ratio_pct",
> > +		.private = FREEZER_DUTY_RATIO,
> > +		.read_u64 = freezer_read_duty_ratio,
> > +		.write_u64 = freezer_write_param,
> > +	},
>
> nit: Why use a u64 for a value that can only be 0-100? (or perhaps
> 0-1000 if you wanted sub-1% granularity...)

.read_u64/.write_64 is a standard cgroup's interface.

--
 Kirill A. Shutemov

Containers mailing list
Containers@lists.linux-foundation.org
 https://lists.linux-foundation.org/mailman/listinfo/containe rs

Subject: Re: [PATCH 1/1, v6] cgroup/freezer: add per freezer duty ratio control
Posted by Matt Helsley on Thu, 10 Feb 2011 18:58:52 GMT
View Forum Message <> Reply to Message

Page 10 of 24 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=670
https://new-forum.openvz.org/index.php?t=rview&th=9397&goto=41624#msg_41624
https://new-forum.openvz.org/index.php?t=post&reply_to=41624
https://new-forum.openvz.org/index.php

On Thu, Feb 10, 2011 at 11:15:22AM +0200, Kirill A. Shutemov wrote:
> On Wed, Feb 09, 2011 at 07:04:42PM -0800, Matt Helsley wrote:
> > > +{
> > > +	struct cgroup *cgroup = (struct cgroup *)data;
> > > +	struct freezer *freezer = cgroup_freezer(cgroup);
> > > +
> > > +	do {
> > > +		if (freezer->duty.ratio < 100 && freezer->duty.ratio > 0 &&
> > > +			freezer->duty.period_pct_ms) {
> > > +			if (try_to_freeze_cgroup(cgroup, freezer))
> > > +				pr_info("cannot freeze\n");
> > > +			msleep(freezer->duty.period_pct_ms *
> > > +				freezer->duty.ratio);
> > > +			unfreeze_cgroup(cgroup, freezer);
> > > +			msleep(freezer->duty.period_pct_ms *
> > > +				(100 - freezer->duty.ratio));
> > > +		} else {
> > > +			sleep_on(&freezer_wait);
> > > +			pr_debug("freezer thread wake up\n");
> > > +		}
> > > +	} while (!kthread_should_stop());
> > > +	return 0;
> > > +}
> >
> > Seems to me you could avoid the thread-per-cgroup overhead and the
> > sleep-loop code by using one timer-per-cgroup. When the timer expires
> > you freeze/thaw the cgroup associated with the timer, setup the next
> > wakeup timer, and use only one kernel thread to do it all. If you
> > use workqueues you might even avoid the single kernel thread.
> >
> > Seems to me like that'd be a good fit for embedded devices.
>
> I proposed to use delayed workqueues (schedule_delayed_work()).

Even better.

>
> > > +#define FREEZER_KH_PREFIX "freezer_"
> > > +static int freezer_write_param(struct cgroup *cgroup, struct cftype *cft,
> > > +		u64 val)
> > > +{
> > > +	struct freezer *freezer;
> > > +	char thread_name[32];
> > > +	int ret = 0;
> > > +
> > > +	freezer = cgroup_freezer(cgroup);
> > > +
> > > +	if (!cgroup_lock_live_group(cgroup))

Page 11 of 24 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> > > +		return -ENODEV;
> > > +
> > > +	switch (cft->private) {
> > > +	case FREEZER_DUTY_RATIO:
> > > +		if (val >= 100 || val < 0) {
> > > +			ret = -EINVAL;
> > > +			goto exit;
> > > +		}
> > > +		freezer->duty.ratio = val;
> >
> > Why can't val == 100? At that point it's always THAWED and no kernel
> > thread is necessary (just like at 0 it's always FROZEN and no kernel
> > thread is necessary).
>
> val == 100 is interface abuse, I think. I just turn off the feature, if
> you want.

And how is userspace supposed to do that at runtime if we can't disable
it by writing to the state file (see below)? Then I don't see anyway
to get rid of the duty cycling unless you clear out the cgroup and
recreate it.

Frankly, I think 0 and 100 percent aren't interface abuse. Anybody
who knows it's a percent value will naturally try to put 0 or 100
there.

> > > static struct cftype files[] = {
> > > 	{
> > > 		.name = "state",
> > > 		.read_seq_string = freezer_read,
> > > 		.write_string = freezer_write,
> >
> > It's not clear what should happen when userspace writes the state
> > file after writing a duty_ratio_pct.
>
> It should return -EBUSY, I think.

Ahh, that is another solution I hadn't considered. That further proves my
point though :). It's not obvious what should happen and that's a red-flag
that we're defining policy and should be careful which solution we select.

>
> > > 	},
> > > +	{
> > > +		.name = "duty_ratio_pct",
> > > +		.private = FREEZER_DUTY_RATIO,
> > > +		.read_u64 = freezer_read_duty_ratio,
> > > +		.write_u64 = freezer_write_param,

Page 12 of 24 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> > > +	},
> >
> > nit: Why use a u64 for a value that can only be 0-100? (or perhaps
> > 0-1000 if you wanted sub-1% granularity...)
>
> .read_u64/.write_64 is a standard cgroup's interface.

Oops -- I was thinking there was a smaller variant of these.

Cheers,
	-Matt Helsley

Containers mailing list
Containers@lists.linux-foundation.org
 https://lists.linux-foundation.org/mailman/listinfo/containe rs

Subject: Re: [PATCH 1/1, v6] cgroup/freezer: add per freezer duty ratio control
Posted by Matt Helsley on Thu, 10 Feb 2011 19:11:17 GMT
View Forum Message <> Reply to Message

On Wed, Feb 09, 2011 at 07:06:15PM -0800, Arjan van de Ven wrote:
> On 2/9/2011 7:04 PM, Matt Helsley wrote:
> >On Tue, Feb 08, 2011 at 05:05:41PM -0800, jacob.jun.pan@linux.intel.com wrote:
> >>From: Jacob Pan<jacob.jun.pan@linux.intel.com>
> >>
> >>Freezer subsystem is used to manage batch jobs which can start
> >>stop at the same time. However, sometime it is desirable to let
> >>the kernel manage the freezer state automatically with a given
> >>duty ratio.
> >>For example, if we want to reduce the time that backgroup apps
> >>are allowed to run we can put them into a freezer subsystem and
> >>set the kernel to turn them THAWED/FROZEN at given duty ratio.
> >>
> >>This patch introduces two file nodes under cgroup
> >>freezer.duty_ratio_pct and freezer.period_sec
> >>
> >>Usage example: set period to be 5 seconds and frozen duty ratio 90%
> >>[root@localhost aoa]# echo 90> freezer.duty_ratio_pct
> >>[root@localhost aoa]# echo 5000> freezer.period_ms
> >I kept wondering how this was useful when we've got the "cpu" subsystem
> >because for some reason "duty cycle" made me think this was a scheduling
> >policy knob. In fact, I'm pretty sure it is -- it just happens to
> >sometimes reduce power consumption.
> >
> >Have you tried using the cpu cgroup subsystem's share to see if it can
> >have a similar effect?
>

Page 13 of 24 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=670
https://new-forum.openvz.org/index.php?t=rview&th=9397&goto=41625#msg_41625
https://new-forum.openvz.org/index.php?t=post&reply_to=41625
https://new-forum.openvz.org/index.php

> does the cpu cgroup system work on a 20 to 30 second time window?

I don't think so -- it works directly with the scheduler IIRC.

> the objective is to have the CPU idle, without wakeups, for that long...
> (to save power)

Hmm. Maybe these need some "scheduler slack" so that when they're
runnable they'll either run with other scheduled entities that are
keeping the cpu awake or wait until the slack runs out before doing
a wakeup. Then you can toss this in the cgroup timer slack subsystem
and rename it to the "wakeup slack" subsystem or something. That
will probably get you better race-to-idle behavior, avoid/reduce
latencies added by duty cycles, and avoid shoehorning into the cgroup
freezer subsystem. Of course it would require some scheduler hacking
which will probably be much more controversial than modifying a cgroup
subsystem :).

Cheers,
	-Matt Helsley

Containers mailing list
Containers@lists.linux-foundation.org
 https://lists.linux-foundation.org/mailman/listinfo/containe rs

Subject: Re: [PATCH 1/1, v6] cgroup/freezer: add per freezer duty ratio control
Posted by jacob.jun.pan on Thu, 10 Feb 2011 22:22:21 GMT
View Forum Message <> Reply to Message

On Thu, 10 Feb 2011 11:11:17 -0800
Matt Helsley <matthltc@us.ibm.com> wrote:

> On Wed, Feb 09, 2011 at 07:06:15PM -0800, Arjan van de Ven wrote:
> > On 2/9/2011 7:04 PM, Matt Helsley wrote:
> > >On Tue, Feb 08, 2011 at 05:05:41PM -0800,
> > >jacob.jun.pan@linux.intel.com wrote:
> > >>From: Jacob Pan<jacob.jun.pan@linux.intel.com>
> > >>
> > >>Freezer subsystem is used to manage batch jobs which can start
> > >>stop at the same time. However, sometime it is desirable to let
> > >>the kernel manage the freezer state automatically with a given
> > >>duty ratio.
> > >>For example, if we want to reduce the time that backgroup apps
> > >>are allowed to run we can put them into a freezer subsystem and
> > >>set the kernel to turn them THAWED/FROZEN at given duty ratio.
> > >>
> > >>This patch introduces two file nodes under cgroup

Page 14 of 24 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5148
https://new-forum.openvz.org/index.php?t=rview&th=9397&goto=42068#msg_42068
https://new-forum.openvz.org/index.php?t=post&reply_to=42068
https://new-forum.openvz.org/index.php

> > >>freezer.duty_ratio_pct and freezer.period_sec
> > >>
> > >>Usage example: set period to be 5 seconds and frozen duty ratio
> > >>90% [root@localhost aoa]# echo 90> freezer.duty_ratio_pct
> > >>[root@localhost aoa]# echo 5000> freezer.period_ms
> > >I kept wondering how this was useful when we've got the "cpu"
> > >subsystem because for some reason "duty cycle" made me think this
> > >was a scheduling policy knob. In fact, I'm pretty sure it is -- it
> > >just happens to sometimes reduce power consumption.
> > >
> > >Have you tried using the cpu cgroup subsystem's share to see if it
> > >can have a similar effect?
> >
> > does the cpu cgroup system work on a 20 to 30 second time window?
>
> I don't think so -- it works directly with the scheduler IIRC.
>
I played with cpu subsystem a little today, it is for real-time tasks
only. By data type of cpu.rt_period_us cpu.rt_runtime_us, it
actually has a pretty long time window (35 mins, int type at usec
resolution).
For some reason, I could not even get cpu subsystem to work with RT
task to work on 38-rc2 kernel. Here is what I did
- mount and create cpu cgroup fs
- launch task with SCHED_RR
- attach task to my newly created cgroup
- adjust cpu.rt_period_us cpu.rt_runtime_us
But it never changed percentage of runtime. The ask in the cpu cgroup
always run at 100% or more than the runtime_us as I specified. I have
tried both with system idle and background tasks.

I do agree that dealing with group scheduler directly might be more
natural. but the hurdle might be changing cpu subsystem to support
non-rt, and deal with scheduler heuristics.

Containers mailing list
Containers@lists.linux-foundation.org
 https://lists.linux-foundation.org/mailman/listinfo/containe rs

Subject: Re: [PATCH 1/1, v6] cgroup/freezer: add per freezer duty ratio control
Posted by jacob.jun.pan on Thu, 10 Feb 2011 23:06:33 GMT
View Forum Message <> Reply to Message

On Wed, 9 Feb 2011 19:04:42 -0800

Page 15 of 24 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5148
https://new-forum.openvz.org/index.php?t=rview&th=9397&goto=42069#msg_42069
https://new-forum.openvz.org/index.php?t=post&reply_to=42069
https://new-forum.openvz.org/index.php

Matt Helsley <matthltc@us.ibm.com> wrote:

> On Tue, Feb 08, 2011 at 05:05:41PM -0800,
> jacob.jun.pan@linux.intel.com wrote:
> > From: Jacob Pan <jacob.jun.pan@linux.intel.com>
> >
> > Freezer subsystem is used to manage batch jobs which can start
> > stop at the same time. However, sometime it is desirable to let
> > the kernel manage the freezer state automatically with a given
> > duty ratio.
> > For example, if we want to reduce the time that backgroup apps
> > are allowed to run we can put them into a freezer subsystem and
> > set the kernel to turn them THAWED/FROZEN at given duty ratio.
> >
> > This patch introduces two file nodes under cgroup
> > freezer.duty_ratio_pct and freezer.period_sec
> >
> > Usage example: set period to be 5 seconds and frozen duty ratio 90%
> > [root@localhost aoa]# echo 90 > freezer.duty_ratio_pct
> > [root@localhost aoa]# echo 5000 > freezer.period_ms
>
> I kept wondering how this was useful when we've got the "cpu"
> subsystem because for some reason "duty cycle" made me think this was
> a scheduling policy knob. In fact, I'm pretty sure it is -- it just
> happens to sometimes reduce power consumption.
>
> Have you tried using the cpu cgroup subsystem's share to see if it can
> have a similar effect?
>
> Can you modify the cpu subsystem to enable this instead of putting it
> into the cgroup freezer subsystem?
>
I replied in other email. basically, CPU subsystem is for RT only so
far. I will give it a try see if it can include non-RT tasks and
perform with CFS.

> The way it oscillates between FROZEN and THAWED also bothers me. The
> oscillations can be described in millisecond granularity so its
> possible that reading and manipulating the freezer state from
> userspace could be largely useless. Also it's not obvious what should
> happen when the state file is written after the duty cycle has been
> set (more below).
>
My intention was to have second granularity.

> Perhaps you could fix that up by introducting another state called
> "DUTY_CYCLE" or something.
>

Page 16 of 24 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

I did think about that as well. But adding DUTY_CYCLE state kind of
blurs the state machine definition. Since it is can be in THAWED or
FROZEN while in DUTY_CYCLE. But I do need to fix the handling of user
direct control of freezer.state while in oscillation.

> What's the overhead of using the freezer as a scheduling mechanism at
> that granularity? Is it really practical?
>
I agree at ms granularity the overhead is not practical. Like Arjan
said we are looking at much longer time at 20s+, as long as the apps in
the freezer can be kept alive :).

> What happens to these groups using the duty cycle during suspend and
> resume? Presumably they won't be accidentally thawed so long as there
> aren't races between the kernel thread(s) and suspend. I don't think
> we've ever had a kernel thread that could thaw a frozen task before
> (unless it's part of the resume code itself) so I don't think this
> race is covered by existing cgroup freezer code.
>
good point, I need to do some investigation and get back to you.
> Overall I get the feeling this is a scheduling policy knob that
> doesn't "belong" in the cgroup freezer subsystem -- though I don't
> have much beyond the above questions and my personal aesthetic sense
> to go on :).
>
> I think Rafael is maintaining the cgroup freezer subsystem since it
> makes use of the suspend freezer so I've added him to Cc.
>
Thanks for the pointer. As I mentioned in the other reply, cpu cgroup
subsystem might be a more natural fit but we may need to overcome the
hurdle or non-rt and possible scheduling heuristics. I need to
investigate some more.

> >
> > Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
> > ---
> > Documentation/cgroups/freezer-subsystem.txt | 23 +++++
> > kernel/cgroup_freezer.c | 132
> > ++++++++++++++++++++++++++- 2 files changed, 154 insertions(+), 1
> > deletions(-)
> >
> > diff --git a/Documentation/cgroups/freezer-subsystem.txt
> > b/Documentation/cgroups/freezer-subsystem.txt index
> > 41f37fe..7f06f05 100644 ---
> > a/Documentation/cgroups/freezer-subsystem.txt +++
> > b/Documentation/cgroups/freezer-subsystem.txt @@ -100,3 +100,26 @@
> > things happens: and returns EINVAL)
> > 	3) The tasks that blocked the cgroup from entering the

Page 17 of 24 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> > "FROZEN" state disappear from the cgroup's set of tasks.
> > +
> > +In embedded systems, it is desirable to manage group of
> > applications +for power saving. E.g. tasks that are not in the
> > foreground may be +frozen unfrozen periodically to save power
> > without affecting user
>
> nit: probably should be "frozen and unfrozen periodically"
>
> > +experience. In this case, user/management software can attach tasks
> > +into freezer cgroup then specify duty ratio and period that the
> > +managed tasks are allowed to run.
>
> And presumably the applications either don't care about their power
> consumption, have a bug, or are "malicious" apps -- either way
> assuming cooperation from the applications and knowledgable users
> isn't acceptable.
>
> > +
> > +Usage example:
> > +Assuming freezer cgroup is already mounted, application being
> > managed +are included the "tasks" file node of the given freezer
> > cgroup. +To make the tasks frozen at 90% of the time every 5
> > seconds, do: +
> > +[root@localhost]# echo 90 > freezer.duty_ratio_pct
> > +[root@localhost]# echo 5000 > freezer.period_ms
> > +
> > +After that, the application in this freezer cgroup will only be
> > +allowed to run at the following pattern.
> > + __ __ __
> > + | |<-- 90% frozen -->| | | |
> > +____| |__________________| |__________________| |_____
> > +
> > + |<---- 5 seconds ---->|
> > diff --git a/kernel/cgroup_freezer.c b/kernel/cgroup_freezer.c
> > index e7bebb7..5808f28 100644
> > --- a/kernel/cgroup_freezer.c
> > +++ b/kernel/cgroup_freezer.c
> > @@ -21,6 +21,7 @@
> > #include <linux/uaccess.h>
> > #include <linux/freezer.h>
> > #include <linux/seq_file.h>
> > +#include <linux/kthread.h>
> >
> > enum freezer_state {
> > 	CGROUP_THAWED = 0,
> > @@ -28,12 +29,28 @@ enum freezer_state {
> > 	CGROUP_FROZEN,

Page 18 of 24 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> > };
> >
> > +enum duty_ratio_params {
> > +	FREEZER_DUTY_RATIO = 0,
> > +	FREEZER_PERIOD,
> > +};
> > +
> > +struct freezer_duty {
> > +	u32 ratio; /* percentage of time frozen */
> > +	u32 period_pct_ms; /* one percent of the period in
> > miliseconds */ +};
> > +
> > struct freezer {
> > 	struct cgroup_subsys_state css;
> > 	enum freezer_state state;
> > +	struct freezer_duty duty;
> > +	struct task_struct *fkh;
> > 	spinlock_t lock; /* protects _writes_ to state */
> > };
> >
> > +static struct task_struct *freezer_task;
> > +static int try_to_freeze_cgroup(struct cgroup *cgroup, struct
> > freezer *freezer); +static void unfreeze_cgroup(struct cgroup
> > *cgroup, struct freezer *freezer); +
> > static inline struct freezer *cgroup_freezer(
> > 		struct cgroup *cgroup)
> > {
> > @@ -63,6 +80,31 @@ int cgroup_freezing_or_frozen(struct task_struct
> > *task) return result;
> > }
> >
> > +static DECLARE_WAIT_QUEUE_HEAD(freezer_wait);
> > +
> > +static int freezer_kh(void *data)
>
> nit: What's "kh"? "Kernel Handler"?
>
I meant kernel thread :)
> > +{
> > +	struct cgroup *cgroup = (struct cgroup *)data;
> > +	struct freezer *freezer = cgroup_freezer(cgroup);
> > +
> > +	do {
> > +		if (freezer->duty.ratio < 100 &&
> > freezer->duty.ratio > 0 &&
> > +			freezer->duty.period_pct_ms) {
> > +			if (try_to_freeze_cgroup(cgroup, freezer))
> > +				pr_info("cannot freeze\n");

Page 19 of 24 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> > +			msleep(freezer->duty.period_pct_ms *
> > +				freezer->duty.ratio);
> > +			unfreeze_cgroup(cgroup, freezer);
> > +			msleep(freezer->duty.period_pct_ms *
> > +				(100 - freezer->duty.ratio));
> > +		} else {
> > +			sleep_on(&freezer_wait);
> > +			pr_debug("freezer thread wake up\n");
> > +		}
> > +	} while (!kthread_should_stop());
> > +	return 0;
> > +}
>
> Seems to me you could avoid the thread-per-cgroup overhead and the
> sleep-loop code by using one timer-per-cgroup. When the timer expires
> you freeze/thaw the cgroup associated with the timer, setup the next
> wakeup timer, and use only one kernel thread to do it all. If you
> use workqueues you might even avoid the single kernel thread.
>
> Seems to me like that'd be a good fit for embedded devices.
>
will try schedule_delayed_work() as Kirill suggested.

> > +
> > /*
> > * cgroups_write_string() limits the size of freezer state strings
> > to
> > * CGROUP_LOCAL_BUFFER_SIZE
> > @@ -150,7 +192,12 @@ static struct cgroup_subsys_state
> > *freezer_create(struct cgroup_subsys *ss, static void
> > freezer_destroy(struct cgroup_subsys *ss, struct cgroup *cgroup)
> > {
> > -	kfree(cgroup_freezer(cgroup));
> > +	struct freezer *freezer;
> > +
> > +	freezer = cgroup_freezer(cgroup);
> > +	if (freezer->fkh)
> > +		kthread_stop(freezer->fkh);
> > +	kfree(freezer);
> > }
> >
> > /*
> > @@ -282,6 +329,16 @@ static int freezer_read(struct cgroup *cgroup,
> > struct cftype *cft, return 0;
> > }
> >
> > +static u64 freezer_read_duty_ratio(struct cgroup *cgroup, struct
> > cftype *cft) +{

Page 20 of 24 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> > +	return cgroup_freezer(cgroup)->duty.ratio;
> > +}
> > +
> > +static u64 freezer_read_period(struct cgroup *cgroup, struct
> > cftype *cft) +{
> > +	return cgroup_freezer(cgroup)->duty.period_pct_ms * 100;
> > +}
> > +
> > static int try_to_freeze_cgroup(struct cgroup *cgroup, struct
> > freezer *freezer) {
> > 	struct cgroup_iter it;
> > @@ -368,12 +425,85 @@ static int freezer_write(struct cgroup
> > *cgroup, return retval;
> > }
> >
> > +#define FREEZER_KH_PREFIX "freezer_"
> > +static int freezer_write_param(struct cgroup *cgroup, struct
> > cftype *cft,
> > +		u64 val)
> > +{
> > +	struct freezer *freezer;
> > +	char thread_name[32];
> > +	int ret = 0;
> > +
> > +	freezer = cgroup_freezer(cgroup);
> > +
> > +	if (!cgroup_lock_live_group(cgroup))
> > +		return -ENODEV;
> > +
> > +	switch (cft->private) {
> > +	case FREEZER_DUTY_RATIO:
> > +		if (val >= 100 || val < 0) {
> > +			ret = -EINVAL;
> > +			goto exit;
> > +		}
> > +		freezer->duty.ratio = val;
>
> Why can't val == 100? At that point it's always THAWED and no kernel
> thread is necessary (just like at 0 it's always FROZEN and no kernel
> thread is necessary).
the val is percentage of time FROZEN. in that case user can just change
freezer.state to FROZEN.

>
> > +		break;
> > +	case FREEZER_PERIOD:
> > +		if (val)
> > +			do_div(val, 100);

Page 21 of 24 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> > +			freezer->duty.period_pct_ms = val;
>
> Wrong indent level at least. Possible bug?
> Shouldn't you disallow duty.period_pct_ms being set to 0? Then
> userspace can pin a kernel thread at 100% cpu just doing freeze/thaws
> couldn't it?
I will fix that. no need to check val != 0.
>
> > +		break;
> > +	default:
> > +		BUG();
> > +	}
> > +
> > +	/* start/stop management kthread as needed, the rule is
> > that
> > +	 * if both duty ratio and period values are zero, then no
> > management
> > +	 * kthread is created. when both are non-zero, we create a
> > kthread
> > +	 * for the cgroup. When user set zero to duty ratio and
> > period again
> > +	 * the kthread is stopped.
> > +	 */
> > +	if (freezer->duty.ratio && freezer->duty.period_pct_ms) {
> > +		if (!freezer->fkh) {
> > +			snprintf(thread_name, 32, "%s%s",
> > FREEZER_KH_PREFIX,
> > +				cgroup->dentry->d_name.name);
> > +			freezer->fkh = kthread_run(freezer_kh,
> > (void *)cgroup,
> > +						thread_name);
> > +			if (IS_ERR(freezer_task)) {
> > +				pr_err("create %s failed\n",
> > thread_name);
> > +				ret = PTR_ERR(freezer_task);
> > +				goto exit;
> > +			}
> > +		} else
> > +			wake_up(&freezer_wait);
> > +	} else if ((!freezer->duty.ratio
> > || !freezer->duty.period_pct_ms) &&
> > +		freezer->fkh) {
> > +			kthread_stop(freezer->fkh);
> > +			freezer->fkh = NULL;
> > +	}
> > +
> > +exit:
> > +	cgroup_unlock();

Page 22 of 24 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> > +	return ret;
> > +}
> > +
> > static struct cftype files[] = {
> > 	{
> > 		.name = "state",
> > 		.read_seq_string = freezer_read,
> > 		.write_string = freezer_write,
>
> It's not clear what should happen when userspace writes the state
> file after writing a duty_ratio_pct.
>
> If the new state file write takes priority then:
> 	Writing THAWED to the state should set duty_ratio_pct to 100.
> 	Writing FROZEN to the state should set it to 0.
>
> 	This means existing code will get the behavior it expects.
>
> Else, if you want duty_ratio_pct to take priority then you ought to
> make the state file read-only when duty_ratio_pct is set. Otherwise
> existing userspace code will happily chug along without noticing that
> their groups aren't doing what they expected. This is also another
> good reason to introduce a new state as suggested above (with the
> tenative name "DUTY_CYCLE").
I like the former logic, where freezer.state takes precedence. As i
mentioned before, my concern is that DUTY_CYCLE state overlaps THAWED
and FROZEN states.

Thanks.

Containers mailing list
Containers@lists.linux-foundation.org
 https://lists.linux-foundation.org/mailman/listinfo/containe rs

Subject: Re: [PATCH 1/1, v6] cgroup/freezer: add per freezer duty ratio control
Posted by Vaidyanathan Srinivas on Mon, 14 Feb 2011 18:03:54 GMT
View Forum Message <> Reply to Message

* Arjan van de Ven <arjan@linux.intel.com> [2011-02-09 19:06:15]:

> On 2/9/2011 7:04 PM, Matt Helsley wrote:
> >On Tue, Feb 08, 2011 at 05:05:41PM -0800, jacob.jun.pan@linux.intel.com wrote:
> >>From: Jacob Pan<jacob.jun.pan@linux.intel.com>
> >>
> >>Freezer subsystem is used to manage batch jobs which can start
> >>stop at the same time. However, sometime it is desirable to let

Page 23 of 24 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1203
https://new-forum.openvz.org/index.php?t=rview&th=9397&goto=41693#msg_41693
https://new-forum.openvz.org/index.php?t=post&reply_to=41693
https://new-forum.openvz.org/index.php

> >>the kernel manage the freezer state automatically with a given
> >>duty ratio.
> >>For example, if we want to reduce the time that backgroup apps
> >>are allowed to run we can put them into a freezer subsystem and
> >>set the kernel to turn them THAWED/FROZEN at given duty ratio.
> >>
> >>This patch introduces two file nodes under cgroup
> >>freezer.duty_ratio_pct and freezer.period_sec
> >>
> >>Usage example: set period to be 5 seconds and frozen duty ratio 90%
> >>[root@localhost aoa]# echo 90> freezer.duty_ratio_pct
> >>[root@localhost aoa]# echo 5000> freezer.period_ms
> >I kept wondering how this was useful when we've got the "cpu" subsystem
> >because for some reason "duty cycle" made me think this was a scheduling
> >policy knob. In fact, I'm pretty sure it is -- it just happens to
> >sometimes reduce power consumption.
> >
> >Have you tried using the cpu cgroup subsystem's share to see if it can
> >have a similar effect?
>
> does the cpu cgroup system work on a 20 to 30 second time window?
> the objective is to have the CPU idle, without wakeups, for that long...
> (to save power)

This is an interesting idea to force idle. The cpu cgroup will
maintain resource ratio but will not restrict runtime of a cgroup if
there is nothing else to run in the system.

CFS hardlimits (http://lwn.net/Articles/368685/) can do something like
this but will need to be tuned for long intervals. On multi cpu
system, synchronising the idle times across cpus has been the key
challenge that reduces the power saving benefits.

Does this technique provide good power savings for a specific
usecase/workload or platform?

--Vaidy

Containers mailing list
Containers@lists.linux-foundation.org
 https://lists.linux-foundation.org/mailman/listinfo/containe rs

Page 24 of 24 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

