
Subject: [PATCH] fdset's leakage
Posted by Kirill Korotaev on Mon, 10 Jul 2006 13:40:51 GMT
View Forum Message <> Reply to Message

Andrew,

Another patch from Alexey Kuznetsov fixing memory leak in alloc_fdtable().

[PATCH] fdset's leakage

When found, it is obvious. nfds calculated when allocating fdsets
is rewritten by calculation of size of fdtable, and when we are
unlucky, we try to free fdsets of wrong size.

Found due to OpenVZ resource management (User Beancounters).

Signed-Off-By: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
Signed-Off-By: Kirill Korotaev <dev@openvz.org>

diff -urp linux-2.6-orig/fs/file.c linux-2.6/fs/file.c
--- linux-2.6-orig/fs/file.c	2006-07-10 12:10:51.000000000 +0400
+++ linux-2.6/fs/file.c	2006-07-10 14:47:01.000000000 +0400
@@ -277,11 +277,13 @@ static struct fdtable *alloc_fdtable(int
 	} while (nfds <= nr);
 	new_fds = alloc_fd_array(nfds);
 	if (!new_fds)
-		goto out;
+		goto out2;
 	fdt->fd = new_fds;
 	fdt->max_fds = nfds;
 	fdt->free_files = NULL;
 	return fdt;
+out2:
+	nfds = fdt->max_fdset;
 out:
   	if (new_openset)
   		free_fdset(new_openset, nfds);

Subject: Re: [PATCH] fdset's leakage
Posted by Andrew Morton on Tue, 11 Jul 2006 08:01:04 GMT
View Forum Message <> Reply to Message

On Mon, 10 Jul 2006 17:40:51 +0400
Kirill Korotaev <dev@openvz.org> wrote:

> Andrew,

Page 1 of 11 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=150
https://new-forum.openvz.org/index.php?t=rview&th=828&goto=4419#msg_4419
https://new-forum.openvz.org/index.php?t=post&reply_to=4419
https://new-forum.openvz.org/index.php?t=usrinfo&id=120
https://new-forum.openvz.org/index.php?t=rview&th=828&goto=4457#msg_4457
https://new-forum.openvz.org/index.php?t=post&reply_to=4457
https://new-forum.openvz.org/index.php


> 
> Another patch from Alexey Kuznetsov fixing memory leak in alloc_fdtable().
> 
> [PATCH] fdset's leakage
> 
> When found, it is obvious. nfds calculated when allocating fdsets
> is rewritten by calculation of size of fdtable, and when we are
> unlucky, we try to free fdsets of wrong size.
> 
> Found due to OpenVZ resource management (User Beancounters).
> 
> Signed-Off-By: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
> Signed-Off-By: Kirill Korotaev <dev@openvz.org>
> 
> 
> diff -urp linux-2.6-orig/fs/file.c linux-2.6/fs/file.c
> --- linux-2.6-orig/fs/file.c	2006-07-10 12:10:51.000000000 +0400
> +++ linux-2.6/fs/file.c	2006-07-10 14:47:01.000000000 +0400
> @@ -277,11 +277,13 @@ static struct fdtable *alloc_fdtable(int
>  	} while (nfds <= nr);
>  	new_fds = alloc_fd_array(nfds);
>  	if (!new_fds)
> -		goto out;
> +		goto out2;
>  	fdt->fd = new_fds;
>  	fdt->max_fds = nfds;
>  	fdt->free_files = NULL;
>  	return fdt;
> +out2:
> +	nfds = fdt->max_fdset;
>  out:
>    	if (new_openset)
>    		free_fdset(new_openset, nfds);

OK, that was a simple fix.  And if we need this fix backported to 2.6.17.x
then it'd be best to go with the simple fix.

And I think we do need to backport this to 2.6.17.x because NR_OPEN can be
really big, and vmalloc() is not immortal.

But the code in there is really sick.   In all cases we do:

	free_fdset(foo->open_fds, foo->max_fdset);
	free_fdset(foo->close_on_exec, foo->max_fdset);

How much neater and more reliable would it be to do:

	free_fdsets(foo);

Page 2 of 11 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php


?

Also,

	nfds = NR_OPEN_DEFAULT;
	/*
	 * Expand to the max in easy steps, and keep expanding it until
	 * we have enough for the requested fd array size.
	 */
	do {
#if NR_OPEN_DEFAULT < 256
		if (nfds < 256)
			nfds = 256;
		else
#endif
		if (nfds < (PAGE_SIZE / sizeof(struct file *)))
			nfds = PAGE_SIZE / sizeof(struct file *);
		else {
			nfds = nfds * 2;
			if (nfds > NR_OPEN)
				nfds = NR_OPEN;
  		}
	} while (nfds <= nr);

That's going to take a long time to compute if nr > NR_OPEN.  I just fixed
a similar infinite loop in this function.  Methinks this

	nfds = max(NR_OPEN_DEFAULT, 256);
	nfds = max(nfds, PAGE_SIZE/sizeof(struct file *));
	nfds = max(nfds, round_up_pow_of_two(nr + 1));
	nfds = min(nfds, NR_OPEN);

is clearer and less buggy.  I _think_ it's also equivalent (as long as
NR_OPEN>256).  But please check my logic.

Subject: Re: [PATCH] fdset's leakage
Posted by Rene Scharfe on Tue, 11 Jul 2006 09:02:08 GMT
View Forum Message <> Reply to Message

[strange loop snipped]

> That's going to take a long time to compute if nr > NR_OPEN.  I just fixed
> a similar infinite loop in this function.

That other fix looks buggy btw.  Here it is:

Page 3 of 11 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=576
https://new-forum.openvz.org/index.php?t=rview&th=828&goto=4471#msg_4471
https://new-forum.openvz.org/index.php?t=post&reply_to=4471
https://new-forum.openvz.org/index.php


-	nfds = 8 * L1_CACHE_BYTES;
-  	/* Expand to the max in easy steps */
-  	while (nfds <= nr) {
-		nfds = nfds * 2;
-		if (nfds > NR_OPEN)
-			nfds = NR_OPEN;
-	}
+	nfds = max_t(int, 8 * L1_CACHE_BYTES, roundup_pow_of_two(nfds));
+	if (nfds > NR_OPEN)
+		nfds = NR_OPEN;

Surely you meant to say "roundup_pow_of_two(nr + 1)"?

Subject: Re: [PATCH] fdset's leakage
Posted by Kirill Korotaev on Tue, 11 Jul 2006 09:05:03 GMT
View Forum Message <> Reply to Message

Andrew,

>>Another patch from Alexey Kuznetsov fixing memory leak in alloc_fdtable().
>>
>>[PATCH] fdset's leakage
>>
>>When found, it is obvious. nfds calculated when allocating fdsets
>>is rewritten by calculation of size of fdtable, and when we are
>>unlucky, we try to free fdsets of wrong size.
>>
>>Found due to OpenVZ resource management (User Beancounters).
>>
>>Signed-Off-By: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
>>Signed-Off-By: Kirill Korotaev <dev@openvz.org>
>>
>>
>>diff -urp linux-2.6-orig/fs/file.c linux-2.6/fs/file.c
>>--- linux-2.6-orig/fs/file.c	2006-07-10 12:10:51.000000000 +0400
>>+++ linux-2.6/fs/file.c	2006-07-10 14:47:01.000000000 +0400
>>@@ -277,11 +277,13 @@ static struct fdtable *alloc_fdtable(int
>> 	} while (nfds <= nr);
>> 	new_fds = alloc_fd_array(nfds);
>> 	if (!new_fds)
>>-		goto out;
>>+		goto out2;
>> 	fdt->fd = new_fds;
>> 	fdt->max_fds = nfds;

Page 4 of 11 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=150
https://new-forum.openvz.org/index.php?t=rview&th=828&goto=4464#msg_4464
https://new-forum.openvz.org/index.php?t=post&reply_to=4464
https://new-forum.openvz.org/index.php


>> 	fdt->free_files = NULL;
>> 	return fdt;
>>+out2:
>>+	nfds = fdt->max_fdset;
>> out:
>>   	if (new_openset)
>>   		free_fdset(new_openset, nfds);
> 
> 
> OK, that was a simple fix.  And if we need this fix backported to 2.6.17.x
> then it'd be best to go with the simple fix.
> 
> And I think we do need to backport this to 2.6.17.x because NR_OPEN can be
> really big, and vmalloc() is not immortal.
> 
> But the code in there is really sick.   In all cases we do:
> 
> 	free_fdset(foo->open_fds, foo->max_fdset);
> 	free_fdset(foo->close_on_exec, foo->max_fdset);
> 
> How much neater and more reliable would it be to do:
> 
> 	free_fdsets(foo);
> 
> ?
agree. should I prepare a patch?

> Also,
> 
> 	nfds = NR_OPEN_DEFAULT;
> 	/*
> 	 * Expand to the max in easy steps, and keep expanding it until
> 	 * we have enough for the requested fd array size.
> 	 */
> 	do {
> #if NR_OPEN_DEFAULT < 256
> 		if (nfds < 256)
> 			nfds = 256;
> 		else
> #endif
> 		if (nfds < (PAGE_SIZE / sizeof(struct file *)))
> 			nfds = PAGE_SIZE / sizeof(struct file *);
> 		else {
> 			nfds = nfds * 2;
> 			if (nfds > NR_OPEN)
> 				nfds = NR_OPEN;
>   		}
> 	} while (nfds <= nr);

Page 5 of 11 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php


> 
> 
> That's going to take a long time to compute if nr > NR_OPEN.  I just fixed
> a similar infinite loop in this function.  Methinks this
> 
> 	nfds = max(NR_OPEN_DEFAULT, 256);
> 	nfds = max(nfds, PAGE_SIZE/sizeof(struct file *));
> 	nfds = max(nfds, round_up_pow_of_two(nr + 1));
> 	nfds = min(nfds, NR_OPEN);
> 
> is clearer and less buggy.  I _think_ it's also equivalent (as long as
> NR_OPEN>256).  But please check my logic.
Yeah, I also noticed these nasty loops but was too lazy to bother :)
Too much crap for my nerves :)

Your logic looks fine for me. Do we have already round_up_pow_of_two() function or
should we create it as something like:
unsinged long round_up_pow_of_two(unsigned long x)
{
  unsigned long res = 1 << BITS_PER_LONG;
  while (res > x)
    res >>= 1;
  }
  return res << 1;
}

or maybe using:
n = find_first_bit(x);
return res = 1 << n;
(though it depends on endianness IMHO)
?

Thanks,
Kirill

Subject: Re: [PATCH] fdset's leakage
Posted by Andrew Morton on Tue, 11 Jul 2006 09:28:08 GMT
View Forum Message <> Reply to Message

On Tue, 11 Jul 2006 13:05:03 +0400
Kirill Korotaev <dev@openvz.org> wrote:

> Andrew,
> 
> > But the code in there is really sick.   In all cases we do:
> > 
> > 	free_fdset(foo->open_fds, foo->max_fdset);

Page 6 of 11 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=120
https://new-forum.openvz.org/index.php?t=rview&th=828&goto=4469#msg_4469
https://new-forum.openvz.org/index.php?t=post&reply_to=4469
https://new-forum.openvz.org/index.php


> > 	free_fdset(foo->close_on_exec, foo->max_fdset);
> > 
> > How much neater and more reliable would it be to do:
> > 
> > 	free_fdsets(foo);
> > 
> > ?
> agree. should I prepare a patch?

Is OK, I'll take care of it later.  We want to let your current patch bake
as-is in mainline for a while so that we can backport it into 2.6.17.x with
more confidence.  That's a bit excessive in this case, but the principle is
good.

> > Also,
> > 
> > 	nfds = NR_OPEN_DEFAULT;
> > 	/*
> > 	 * Expand to the max in easy steps, and keep expanding it until
> > 	 * we have enough for the requested fd array size.
> > 	 */
> > 	do {
> > #if NR_OPEN_DEFAULT < 256
> > 		if (nfds < 256)
> > 			nfds = 256;
> > 		else
> > #endif
> > 		if (nfds < (PAGE_SIZE / sizeof(struct file *)))
> > 			nfds = PAGE_SIZE / sizeof(struct file *);
> > 		else {
> > 			nfds = nfds * 2;
> > 			if (nfds > NR_OPEN)
> > 				nfds = NR_OPEN;
> >   		}
> > 	} while (nfds <= nr);
> > 
> > 
> > That's going to take a long time to compute if nr > NR_OPEN.  I just fixed
> > a similar infinite loop in this function.  Methinks this
> > 
> > 	nfds = max(NR_OPEN_DEFAULT, 256);
> > 	nfds = max(nfds, PAGE_SIZE/sizeof(struct file *));
> > 	nfds = max(nfds, round_up_pow_of_two(nr + 1));
> > 	nfds = min(nfds, NR_OPEN);
> > 
> > is clearer and less buggy.  I _think_ it's also equivalent (as long as
> > NR_OPEN>256).  But please check my logic.
> Yeah, I also noticed these nasty loops but was too lazy to bother :)

Page 7 of 11 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php


> Too much crap for my nerves :)
> 
> Your logic looks fine for me.

I usually get that stuff wrong.

> Do we have already round_up_pow_of_two() function

yep, in kernel.h.

Subject: Re: [PATCH] fdset's leakage
Posted by Vadim Lobanov on Tue, 11 Jul 2006 16:13:38 GMT
View Forum Message <> Reply to Message

On Tue, 11 Jul 2006, Kirill Korotaev wrote:

> Andrew,
>
> >>Another patch from Alexey Kuznetsov fixing memory leak in alloc_fdtable().
> >>
> >>[PATCH] fdset's leakage
> >>
> >>When found, it is obvious. nfds calculated when allocating fdsets
> >>is rewritten by calculation of size of fdtable, and when we are
> >>unlucky, we try to free fdsets of wrong size.
> >>
> >>Found due to OpenVZ resource management (User Beancounters).
> >>
> >>Signed-Off-By: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
> >>Signed-Off-By: Kirill Korotaev <dev@openvz.org>
> >>
> >>
> >>diff -urp linux-2.6-orig/fs/file.c linux-2.6/fs/file.c
> >>--- linux-2.6-orig/fs/file.c	2006-07-10 12:10:51.000000000 +0400
> >>+++ linux-2.6/fs/file.c	2006-07-10 14:47:01.000000000 +0400
> >>@@ -277,11 +277,13 @@ static struct fdtable *alloc_fdtable(int
> >> 	} while (nfds <= nr);
> >> 	new_fds = alloc_fd_array(nfds);
> >> 	if (!new_fds)
> >>-		goto out;
> >>+		goto out2;
> >> 	fdt->fd = new_fds;
> >> 	fdt->max_fds = nfds;
> >> 	fdt->free_files = NULL;
> >> 	return fdt;
> >>+out2:
> >>+	nfds = fdt->max_fdset;

Page 8 of 11 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=579
https://new-forum.openvz.org/index.php?t=rview&th=828&goto=4494#msg_4494
https://new-forum.openvz.org/index.php?t=post&reply_to=4494
https://new-forum.openvz.org/index.php


> >> out:
> >>   	if (new_openset)
> >>   		free_fdset(new_openset, nfds);
> >
> >
> > OK, that was a simple fix.  And if we need this fix backported to 2.6.17.x
> > then it'd be best to go with the simple fix.
> >
> > And I think we do need to backport this to 2.6.17.x because NR_OPEN can be
> > really big, and vmalloc() is not immortal.
> >
> > But the code in there is really sick.   In all cases we do:
> >
> > 	free_fdset(foo->open_fds, foo->max_fdset);
> > 	free_fdset(foo->close_on_exec, foo->max_fdset);
> >
> > How much neater and more reliable would it be to do:
> >
> > 	free_fdsets(foo);
> >
> > ?
> agree. should I prepare a patch?
>
> > Also,
> >
> > 	nfds = NR_OPEN_DEFAULT;
> > 	/*
> > 	 * Expand to the max in easy steps, and keep expanding it until
> > 	 * we have enough for the requested fd array size.
> > 	 */
> > 	do {
> > #if NR_OPEN_DEFAULT < 256
> > 		if (nfds < 256)
> > 			nfds = 256;
> > 		else
> > #endif
> > 		if (nfds < (PAGE_SIZE / sizeof(struct file *)))
> > 			nfds = PAGE_SIZE / sizeof(struct file *);
> > 		else {
> > 			nfds = nfds * 2;
> > 			if (nfds > NR_OPEN)
> > 				nfds = NR_OPEN;
> >   		}
> > 	} while (nfds <= nr);
> >
> >
> > That's going to take a long time to compute if nr > NR_OPEN.  I just fixed
> > a similar infinite loop in this function.  Methinks this

Page 9 of 11 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php


> >
> > 	nfds = max(NR_OPEN_DEFAULT, 256);
> > 	nfds = max(nfds, PAGE_SIZE/sizeof(struct file *));
> > 	nfds = max(nfds, round_up_pow_of_two(nr + 1));
> > 	nfds = min(nfds, NR_OPEN);
> >
> > is clearer and less buggy.  I _think_ it's also equivalent (as long as
> > NR_OPEN>256).  But please check my logic.
> Yeah, I also noticed these nasty loops but was too lazy to bother :)
> Too much crap for my nerves :)
>
> Your logic looks fine for me. Do we have already round_up_pow_of_two() function or
> should we create it as something like:
> unsinged long round_up_pow_of_two(unsigned long x)
> {
>   unsigned long res = 1 << BITS_PER_LONG;

You'll get a zero here. Should be 1 << (BITS_PER_LONG - 1).

>   while (res > x)
>     res >>= 1;
>   }
>   return res << 1;
> }
>
> or maybe using:
> n = find_first_bit(x);
> return res = 1 << n;
> (though it depends on endianness IMHO)
> ?
>
> Thanks,
> Kirill

-- Vadim Lobanov

Subject: Re: [PATCH] fdset's leakage
Posted by Eric Dumazet on Tue, 11 Jul 2006 17:26:36 GMT
View Forum Message <> Reply to Message

On Tuesday 11 July 2006 18:13, Vadim Lobanov wrote:
> > unsinged long round_up_pow_of_two(unsigned long x)
> > {
> >   unsigned long res = 1 << BITS_PER_LONG;
>
> You'll get a zero here. Should be 1 << (BITS_PER_LONG - 1).
>

Page 10 of 11 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=580
https://new-forum.openvz.org/index.php?t=rview&th=828&goto=4495#msg_4495
https://new-forum.openvz.org/index.php?t=post&reply_to=4495
https://new-forum.openvz.org/index.php


Nope. It wont work on 64 bits platform :)

You want  1UL << (BITS_PER_LONG - 1).

But the roundup_pow_of_two() function is already defined in 
include/linux/kernel.h and uses fls_long()

Eric

Subject: Re: [PATCH] fdset's leakage
Posted by dev on Wed, 12 Jul 2006 10:49:57 GMT
View Forum Message <> Reply to Message

>>Your logic looks fine for me. Do we have already round_up_pow_of_two() function or
>>should we create it as something like:
>>unsinged long round_up_pow_of_two(unsigned long x)
>>{
>>  unsigned long res = 1 << BITS_PER_LONG;
> 
> 
> You'll get a zero here. Should be 1 << (BITS_PER_LONG - 1).
Good that so many people are watching when you even didn't write it yet :)))
Thanks!

Kirill

Page 11 of 11 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=19
https://new-forum.openvz.org/index.php?t=rview&th=828&goto=4506#msg_4506
https://new-forum.openvz.org/index.php?t=post&reply_to=4506
https://new-forum.openvz.org/index.php

