
Subject: [RFC] Transactional CGroup task attachment
Posted by Paul Menage on Thu, 10 Jul 2008 06:46:33 GMT
View Forum Message <> Reply to Message

This is an initial design for a transactional task attachment
framework for cgroups. There are probably some potential simplications
that I've missed, particularly in the area of locking. Comments
appreciated.

The Problem
===========

Currently cgroups task movements are done in three phases

1) all subsystems in the destination cgroup get the chance to veto the
movement (via their can_attach()) callback
2) task->cgroups is updated (while holding task->alloc_lock)
3) all subsystems get an attach() callback to let them perform any
housekeeping updates

The problems with this include:

- There's no way to ensure that the result of can_attach() remains
valid up until the attach() callback, unless any invalidating
operations call cgroup_lock() to synchronize with the change. This is
fine for something like cpusets, where invalidating operations are
rare slow events like the user removing all cpus from a cpuset, or cpu
hotplug triggering removal of a cpuset's last cpu. It's not so good
for the virtual address space controller where the can_attach() check
might be that the res_counter has enough space, and an invalidating
operation might be another task in the cgroup allocating another page
of virtual address space.

- It doesn't handle the case of the proposed "cgroup.procs" file which
can move multiple threads into a cgroup in one operation; the
can_attach() and attach() calls should be able to atomically allow all
or none of the threads to move.

- it can create races around the time of the movement regarding to
which cgroup a resource charge/uncharge should be assigned (e.g.
between steps 2 and 3 new resource usage will be charged to the
destination cgroup, but step 3 might involve migrating a charge equal
to the task's resource usage from the old cgroup to the new, resulting
in over/under-charges.

Conceptual solution
===================

Page 1 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=6457&goto=31800#msg_31800
https://new-forum.openvz.org/index.php?t=post&reply_to=31800
https://new-forum.openvz.org/index.php

In ideal terms, a solution for this problem would meet the following
requirements:

- support movement of an arbitrary set of threads between an arbitrary
set of cgroups
- allow arbitrarily complex locking from the subsystems involved so
that they can synchronize against concurrent charges, etc
- allow rollback at any point in the process

But in practice that would probably be way more complex than we'd want
in the kernel. We don't want to encourage excessively-complex locking
from subsystems, and we don't need to support arbitrary task
movements.

(Hopefully!) Practical solution
=============

So here's a more practical solution, which hopefully catches the
important parts of the requirements without being quite so complex.

The restrictions are:

- only supporting movement to one destination cgroup (in the same
hierarchy, of course); if an entire process is being moved, then
potentially its threads could be coming from different source cgroups
- a subsystem may optionally fail such an attach if it can't handle
the synchronization this would entail.

- supporting moving either one thread, one entire thread group or (for
the future) "all threads". This supports the existing "tasks" file,
the proposed "procs" file and also allows scope for things like adding
a subsystem to an existing hierarchy.

- locking/checking performed in two phases - one to support sleeping
locks, and one to support spinlocks. This is to support both
subsystems that use mutexes to protect their data, and subsystems that
use spinlocks

- no locks allowed to be shared between multiple subsystems during the
transaction, with the single exception of the mmap_sem of the
thread/process being moved. This is because multiple subsystems use
the mmap_sem for synchronization, and are quite likely to be mounted
in the same hierarchy. The alternative would be to introduce a
down_read_unfair() operation that would skip ahead of waiting writers,
to safely allow a single thread to recursively lock mm->mmap_sem.

Page 2 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

First we define the state for the transaction:

struct cgroup_attach_state {

 // The thread or process being moved, NULL if moving (potentially) all threads
 struct task_struct *task;
 enum {
 CGROUP_ATTACH_THREAD,
 CGROUP_ATTACH_PROCESS,
 CGROUP_ATTACH_ALL
 } mode;

 // The destination cgroup
 struct cgroup *dest;

 // The source cgroup for "task" (child threads *may* have different
groups; subsystem must handle this if it needs to)
 struct cgroup *src;

 // Private state for the attach operation per-subsys. Subsystems are
completely responsible for managing this
 void *subsys_state[CGROUP_SUBSYS_STATE];

 // "Recursive lock count" for task->mm->mmap_sem (needed if we don't
introduce down_read_unfair())
 int mmap_sem_lock_count;
};

New cgroup subsystem callbacks (all optional):

int prepare_attach_sleep(struct cgroup_attach_state *state);

Called during the first preparation phase for each subsystem. The
subsystem may perform any sleeping behaviour, including waiting for
mutexes and doing sleeping memory allocations, but may not disable
interrupts or take any spinlocks. Return a -ve error on failure or 0
on success. If it returns failure, then no further callbacks will be
made for this attach; if it returns success then exactly one of
abort_attach_sleep() or commit_attach() is guaranteed to be called in
the future

No two subsystems may take the same lock as part of their
prepare_attach_sleep() callback. A special case is made for mmap_sem:
if this callback needs to down_read(&state->task->mmap_sem) it should
only do so if state->mmap_sem_lock_count++ == 0. (A helper function
will be provided for this). The callback should not

Page 3 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

write_lock(&state->task->mmap_sem).

Called with group_mutex (which prevents any other task movement
between cgroups) held plus any mutexes/semaphores taken by earlier
subsystems's callbacks.

int prepare_attach_nosleep(struct cgroup_attach_state *state);

Called during the second preparation phase (assuming no subsystem
failed in the first phase). The subsystem may not sleep in any way,
but may disable interrupts or take spinlocks. Return a -ve error on
failure or 0 on success. If it returns failure, then
abort_attach_sleep() will be called; if it returns success then either
abort_attach_nosleep() followed by abort_attach_sleep() will be
called, or commit_attach() will be called

Called with cgroup_mutex and alloc_lock for task held (plus any
mutexes/semaphores taken by subsystems in the prepare_attach_nosleep()
phase, and any spinlocks taken by earlier subsystems in this phase .
If state->mode == CGROUP_ATTACH_PROCESS then alloc_lock for all
threads in task's thread_group are held. (Is this a really bad idea?
Maybe we should call this without any task->alloc_lock held?)

void abort_attach_sleep(struct cgroup_attach_state *state);

Called following a successful return from prepare_attach_sleep().
Indicates that the attach operation was aborted and the subsystem
should unwind any state changes made and locks taken by
prepare_attach_sleep().

Called with same locks as prepare_attach_sleep()

void abort_attach_nosleep(struct cgroup_attach_state *state);

Called following a successful return from prepare_attach_nosleep().
Indicates that the attach operation was aborted and the subsystem
should unwind any state changes made and locks taken by
prepare_attach_nosleep().

Called with the same locks as prepare_attach_nosleep();

Page 4 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

void commit_attach(struct cgroup_attach_state *state);

Called following a successful return from prepare_attach_sleep() for a
subsystem that has no prepare_attach_nosleep(), or following a
successful return from prepare_attach_nosleep(). Indicates that the
attach operation is going ahead, and
any partially-committed state should be finalized, and any taken locks
should be released. No further callbacks will be made for this attach.

This is called immediately after updating task->cgroups (and threads
if necessary) to point to the new cgroup set.

Called with the same locks held as prepare_attach_nosleep()

Examples
==========

Here are a few examples of how you might use this. They're not
intended to be syntactically correct or compilable - they're just an
idea of what the routines might look like.

1) cpusets

cpusets (currently) uses cgroup_mutex for most of its changes that can
invalidate a task attach. thus it can assume that any checks performed
by prepare_attach_*() will remain valid without needing any additional
locking. The existing callback_mutex used to synchronize cpuset
changes can't be taken in commit_attach() since spinlocks are held at
that point. However, I think that all the current uses of
callback_mutex could actually be replaced with an rwlock, which would
be permitted to be taken during commit_attach(). The cpuset subsystem
wouldn't need to maintain any special state for the transaction. So:

- prepare_attach_nosleep(): same as existing cpuset_can_attach()

- commit_attach(): update tasks' allowed cpus; schedule memory
migration in a workqueue if necessary (since we can't take locks at
this point.

2) memrlimit

memrlimit needs to be able to ensure that:

- changes to an mm's virtual address space size can't occur

Page 5 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

concurrently with the mm's owner moving between cgroups (including via
a change of mm ownership).

- moving the mm's owner doesn't over-commit the destination cgroup

- once the destination cgroup has been checked, additional charges
can't be made that result in the original move becoming invalid

Currently all normal charges and uncharges are done under the
protection of down_write(&mm->mmap_sem); uncharging following a change
that was charged but failed for other reasons isn't done under
mmap_sem, but isn't a critical path so could probably be changed to do
so (it wouldn't have to be all one big critical section).
Additionally, mm->owner changes are also done under
down_write(&mmap_sem). Thus holding down_read(&mmap_sem) across the
transaction is sufficient. So (roughly):

prepare_attach_sleep() {
 // prevent mm->owner and mm->total_vm changes
 down_read(&mm->mmap_sem);
 // Nothing to do if we're not moving the owner
 if (mm->owner != state->task) return 0;
 if ((ret = res_counter_charge(state->dest, mm->total_vm)) {
 // If we failed to allocate in the destination, clean up
 up_read(&mm->mmap_sem);
 }
 return ret;
}

commit_attach() {
 if (mm->owner == state->task) {
 // Release the charge from the source
 res_counter_uncharge(state->src, mm->total_vm);
 }
 // Clean up locks
 up_read(&mm->mmap_sem);
}

abort_attach_sleep() {
 if (mm->owner == state->task) {
 // Remove the temporary charge from the destination
 res_counter_uncharge(state->dest_cgroup, mm->total_vm);
 }
 // Clean up locks
 up_read(&mm->mmap_sem);
}

As mentioned above, to handle the case where multiple subsystems need

Page 6 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

to down_read(&mm->mmap_sem), these down/up operations may actually end
up being done via helper functions to avoid recursive locks.

3) memory

Curently the memory cgroup only uses the mm->owner's cgroup at charge
time, and keeps a reference to the cgroup on the page. However,
patches have been proposed that would move all non-shared (page count
== 1) pages to the destination cgroup when the mm->owner moves to a
new cgroup. Since it's not possible to prevent page count changes
without locking all mms on the system, even this transaction approach
can't really give guarantees. However, something like the following
would probably be suitable. It's very similar to the memrlimit
approach, except for the fact that we have to handle the fact that the
number of pages we finally move might not be exactly the same as the
number of pages we thought we'd be moving.

prepare_attach_sleep() {
 down_read(&mm->mmap_sem);
 if (mm->owner != state->task) return 0;
 count = count_unshared_pages(mm);
 // save the count charged to the new cgroup
 state->subsys[memcgroup_subsys_id] = (void *)count;
 if ((ret = res_counter_charge(state->dest, count)) {
 up_read(&mm->mmap_sem);
 }
 return ret;
}

commit_attach() {
 if (mm->owner == state->task) {
 final_count = move_unshared_pages(mm, state->dest);
 res_counter_uncharge(state->src, final_count);
 count = state->subsys[memcgroup_subsys_id];
 res_counter_force_charge(state->dest, final_count - count);
 }
 up_read(&mm->mmap_sem);
}

abort_attach_sleep() {
 if (mm->owner == state->task) {
 count = state->subsys[memcgroup_subsys_id];
 res_counter_uncharge(state->dest, count);
 }
 up_read(&mm->mmap_sem);
}

Page 7 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

4) numtasks:

Numtasks is different from the two memory-related controllers in that
it may need to move charges from multiple source cgroups (for
different threads); the memory cgroups only have to deal with the mm
of a thread-group leader, and all threads in an attach operation are
from the same thread_group. So numtasks has to be able to handle
uncharging multiple source cgroups in the commit_attach() operation.
In order to do this, it requires additional state:

struct numtasks_attach_state {
 int count;
 struct cgroup *cg;
 struct numtasks_attach_state *next;
}

It will build a list of numtasks_attach_state objects, one for each
distinct source cgroup; in the general case either there will only be
a single thread moving or else all the threads in the thread group
will belong to the same cgroup, in which case this list will only be a
single element; the list is very unlikely to get to more than a small
number of elements.

The prepare_attach_sleep() function can rely on the fact that although
tasks can fork/exit concurrently with the attach, since cgroup_mutex
is held, no tasks can change cgroups, and therefore a complete list of
source cgroups can be constructed.

prepare_attach_sleep() {
 for each thread being moved:
 if the list doesn't yet have an entry for thread->cgroup:
 allocate new entry with cg = thread->cgroup, count = 0;
 add new entry to list
 store list in state->subsys[numtasks_subsys_id];
 return 0;
}

Then prepare_attach_nosleep() can move counts under protection of
tasklist_lock, to prevent any forks/exits

prepare_attach_nosleep() {
 read_lock(&tasklist_lock);
 for each thread being moved {
 find entry for thread->cgroup in list
 entry->count++;
 total_count++;
 }
 if ((ret = res_counter_charge(state->dest, total_count) != 0) {

Page 8 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 read_unlock(&tasklist_lock);
 }
 return ret;
}

commit_attach() {
 for each entry in list {
 res_counter_uncharge(entry->cg, entry->count);
 }
 read_unlock(&tasklist_lock);
 free list;
}

abort_attach_nosleep() {
 // just needs to clear up prepare_attach_nosleep()
 res_counter_uncharge(state->dest, total_count);
 read_unlock(&tasklist_lock);
}

abort_attach_sleep() {
 // just needs to clean up the list allocated in prepare_attach_sleep()
 free list;
}

So, thoughts? Is this just way to complex? Have I missed something
that means this approach can't work?

Paul

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC] Transactional CGroup task attachment
Posted by Paul Jackson on Thu, 10 Jul 2008 11:23:06 GMT
View Forum Message <> Reply to Message

Paul M wrote:
> So, thoughts?

The cpuset portions seem reasonable to me, at first glance.
But cpusets are easy, as you note.

--
 I won't rest till it's the best ...
 Programmer, Linux Scalability

Page 9 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=231
https://new-forum.openvz.org/index.php?t=rview&th=6457&goto=31818#msg_31818
https://new-forum.openvz.org/index.php?t=post&reply_to=31818
https://new-forum.openvz.org/index.php

 Paul Jackson <pj@sgi.com> 1.940.382.4214

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC] Transactional CGroup task attachment
Posted by KAMEZAWA Hiroyuki on Fri, 11 Jul 2008 00:17:45 GMT
View Forum Message <> Reply to Message

Thank you for your effort.

On Wed, 9 Jul 2008 23:46:33 -0700
"Paul Menage" <menage@google.com> wrote:
> 3) memory
>
> Curently the memory cgroup only uses the mm->owner's cgroup at charge
> time, and keeps a reference to the cgroup on the page. However,
> patches have been proposed that would move all non-shared (page count
> == 1) pages to the destination cgroup when the mm->owner moves to a
> new cgroup. Since it's not possible to prevent page count changes
> without locking all mms on the system, even this transaction approach
> can't really give guarantees. However, something like the following
> would probably be suitable. It's very similar to the memrlimit
> approach, except for the fact that we have to handle the fact that the
> number of pages we finally move might not be exactly the same as the
> number of pages we thought we'd be moving.
>
> prepare_attach_sleep() {
> down_read(&mm->mmap_sem);
> if (mm->owner != state->task) return 0;
> count = count_unshared_pages(mm);
> // save the count charged to the new cgroup
> state->subsys[memcgroup_subsys_id] = (void *)count;
> if ((ret = res_counter_charge(state->dest, count)) {
> up_read(&mm->mmap_sem);
> }
> return ret;
> }
>
> commit_attach() {
> if (mm->owner == state->task) {
> final_count = move_unshared_pages(mm, state->dest);
> res_counter_uncharge(state->src, final_count);
> count = state->subsys[memcgroup_subsys_id];
> res_counter_force_charge(state->dest, final_count - count);
> }

Page 10 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=777
https://new-forum.openvz.org/index.php?t=rview&th=6457&goto=31845#msg_31845
https://new-forum.openvz.org/index.php?t=post&reply_to=31845
https://new-forum.openvz.org/index.php

> up_read(&mm->mmap_sem);
> }
>
> abort_attach_sleep() {
> if (mm->owner == state->task) {
> count = state->subsys[memcgroup_subsys_id];
> res_counter_uncharge(state->dest, count);
> }
> up_read(&mm->mmap_sem);
> }
>

At frist look, maybe works well. we need some special codes (to move resource)
but that's all.

My small concern is a state change between prepare_attach_sleep() ->
commit_attach(). Hmm...but as you say, we cannot do down_write(mmap_sem).
Maybe inserting some check codes to mem_cgroup_charge() to stop charge while
move is the last thing we can do.

Anyway, if unwinding is supported officially, I think we can find a way
to go.

Thanks,
-Kame

> 4) numtasks:
>
> Numtasks is different from the two memory-related controllers in that
> it may need to move charges from multiple source cgroups (for
> different threads); the memory cgroups only have to deal with the mm
> of a thread-group leader, and all threads in an attach operation are
> from the same thread_group. So numtasks has to be able to handle
> uncharging multiple source cgroups in the commit_attach() operation.
> In order to do this, it requires additional state:
>
> struct numtasks_attach_state {
> int count;
> struct cgroup *cg;
> struct numtasks_attach_state *next;
> }
>
> It will build a list of numtasks_attach_state objects, one for each
> distinct source cgroup; in the general case either there will only be
> a single thread moving or else all the threads in the thread group
> will belong to the same cgroup, in which case this list will only be a
> single element; the list is very unlikely to get to more than a small

Page 11 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> number of elements.
>
> The prepare_attach_sleep() function can rely on the fact that although
> tasks can fork/exit concurrently with the attach, since cgroup_mutex
> is held, no tasks can change cgroups, and therefore a complete list of
> source cgroups can be constructed.
>
> prepare_attach_sleep() {
> for each thread being moved:
> if the list doesn't yet have an entry for thread->cgroup:
> allocate new entry with cg = thread->cgroup, count = 0;
> add new entry to list
> store list in state->subsys[numtasks_subsys_id];
> return 0;
> }
>
> Then prepare_attach_nosleep() can move counts under protection of
> tasklist_lock, to prevent any forks/exits
>
> prepare_attach_nosleep() {
> read_lock(&tasklist_lock);
> for each thread being moved {
> find entry for thread->cgroup in list
> entry->count++;
> total_count++;
> }
> if ((ret = res_counter_charge(state->dest, total_count) != 0) {
> read_unlock(&tasklist_lock);
> }
> return ret;
> }
>
> commit_attach() {
> for each entry in list {
> res_counter_uncharge(entry->cg, entry->count);
> }
> read_unlock(&tasklist_lock);
> free list;
> }
>
> abort_attach_nosleep() {
> // just needs to clear up prepare_attach_nosleep()
> res_counter_uncharge(state->dest, total_count);
> read_unlock(&tasklist_lock);
> }
>
> abort_attach_sleep() {
> // just needs to clean up the list allocated in prepare_attach_sleep()

Page 12 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> free list;
> }
>
>
> So, thoughts? Is this just way to complex? Have I missed something
> that means this approach can't work?
>
> Paul
>

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC] Transactional CGroup task attachment
Posted by Li Zefan on Fri, 11 Jul 2008 02:14:33 GMT
View Forum Message <> Reply to Message

Paul Menage wrote:
> This is an initial design for a transactional task attachment
> framework for cgroups. There are probably some potential simplications
> that I've missed, particularly in the area of locking. Comments
> appreciated.
>

Though not so elegant, it sounds workable in practise.

Support for CGROUP_ATTACH_PROCESS adds complexity and some subsystems
may have to aware of this and write code to support it, but fortunately
it seems only numtasks needs to deal with this. Or we can implement
this new task attachment framework for CGROUP_ATTACH_THREAD mode only,
to see how good it works, and later we add support for
CGROUP_ATTACH_PROCESS.

And I'll do testing if this gets implemented. :)

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC] Transactional CGroup task attachment
Posted by Paul Menage on Fri, 11 Jul 2008 03:31:26 GMT

Page 13 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=2371
https://new-forum.openvz.org/index.php?t=rview&th=6457&goto=31847#msg_31847
https://new-forum.openvz.org/index.php?t=post&reply_to=31847
https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php

View Forum Message <> Reply to Message

On Thu, Jul 10, 2008 at 7:14 PM, Li Zefan <lizf@cn.fujitsu.com> wrote:
>
> Support for CGROUP_ATTACH_PROCESS adds complexity and some subsystems
> may have to aware of this and write code to support it, but fortunately
> it seems only numtasks needs to deal with this. Or we can implement
> this new task attachment framework for CGROUP_ATTACH_THREAD mode only,
> to see how good it works, and later we add support for
> CGROUP_ATTACH_PROCESS.

Yes, that's the right way to go - but getting the
CGROUP_ATTACH_PROCESS mode working is a prerequisite for adding the
"procs" file.

Paul

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC] Transactional CGroup task attachment
Posted by serue on Fri, 11 Jul 2008 14:27:39 GMT
View Forum Message <> Reply to Message

Quoting Paul Menage (menage@google.com):
> This is an initial design for a transactional task attachment
> framework for cgroups. There are probably some potential simplications
> that I've missed, particularly in the area of locking. Comments
> appreciated.
>
> The Problem
> ===========
>
> Currently cgroups task movements are done in three phases
>
> 1) all subsystems in the destination cgroup get the chance to veto the
> movement (via their can_attach()) callback
> 2) task->cgroups is updated (while holding task->alloc_lock)
> 3) all subsystems get an attach() callback to let them perform any
> housekeeping updates
>
> The problems with this include:
>
> - There's no way to ensure that the result of can_attach() remains
> valid up until the attach() callback, unless any invalidating
> operations call cgroup_lock() to synchronize with the change. This is

Page 14 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=rview&th=6457&goto=31850#msg_31850
https://new-forum.openvz.org/index.php?t=post&reply_to=31850
https://new-forum.openvz.org/index.php?t=usrinfo&id=204
https://new-forum.openvz.org/index.php?t=rview&th=6457&goto=31874#msg_31874
https://new-forum.openvz.org/index.php?t=post&reply_to=31874
https://new-forum.openvz.org/index.php

> fine for something like cpusets, where invalidating operations are
> rare slow events like the user removing all cpus from a cpuset, or cpu
> hotplug triggering removal of a cpuset's last cpu. It's not so good
> for the virtual address space controller where the can_attach() check
> might be that the res_counter has enough space, and an invalidating
> operation might be another task in the cgroup allocating another page
> of virtual address space.
>
> - It doesn't handle the case of the proposed "cgroup.procs" file which
> can move multiple threads into a cgroup in one operation; the
> can_attach() and attach() calls should be able to atomically allow all
> or none of the threads to move.
>
> - it can create races around the time of the movement regarding to
> which cgroup a resource charge/uncharge should be assigned (e.g.
> between steps 2 and 3 new resource usage will be charged to the
> destination cgroup, but step 3 might involve migrating a charge equal
> to the task's resource usage from the old cgroup to the new, resulting
> in over/under-charges.
>
>
> Conceptual solution
> ===================
>
> In ideal terms, a solution for this problem would meet the following
> requirements:
>
> - support movement of an arbitrary set of threads between an arbitrary
> set of cgroups
> - allow arbitrarily complex locking from the subsystems involved so
> that they can synchronize against concurrent charges, etc
> - allow rollback at any point in the process
>
> But in practice that would probably be way more complex than we'd want
> in the kernel. We don't want to encourage excessively-complex locking
> from subsystems, and we don't need to support arbitrary task
> movements.
>
>
> (Hopefully!) Practical solution
> =============
>
> So here's a more practical solution, which hopefully catches the
> important parts of the requirements without being quite so complex.
>
> The restrictions are:
>
> - only supporting movement to one destination cgroup (in the same

Page 15 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> hierarchy, of course); if an entire process is being moved, then
> potentially its threads could be coming from different source cgroups
> - a subsystem may optionally fail such an attach if it can't handle
> the synchronization this would entail.
>
> - supporting moving either one thread, one entire thread group or (for
> the future) "all threads". This supports the existing "tasks" file,
> the proposed "procs" file and also allows scope for things like adding
> a subsystem to an existing hierarchy.
>
> - locking/checking performed in two phases - one to support sleeping
> locks, and one to support spinlocks. This is to support both
> subsystems that use mutexes to protect their data, and subsystems that
> use spinlocks
>
> - no locks allowed to be shared between multiple subsystems during the
> transaction, with the single exception of the mmap_sem of the
> thread/process being moved. This is because multiple subsystems use
> the mmap_sem for synchronization, and are quite likely to be mounted
> in the same hierarchy. The alternative would be to introduce a
> down_read_unfair() operation that would skip ahead of waiting writers,
> to safely allow a single thread to recursively lock mm->mmap_sem.
>
> First we define the state for the transaction:
>
> struct cgroup_attach_state {
>
> // The thread or process being moved, NULL if moving (potentially) all threads
> struct task_struct *task;
> enum {
> CGROUP_ATTACH_THREAD,
> CGROUP_ATTACH_PROCESS,
> CGROUP_ATTACH_ALL
> } mode;
>
> // The destination cgroup
> struct cgroup *dest;
>
> // The source cgroup for "task" (child threads *may* have different
> groups; subsystem must handle this if it needs to)
> struct cgroup *src;
>
> // Private state for the attach operation per-subsys. Subsystems are
> completely responsible for managing this
> void *subsys_state[CGROUP_SUBSYS_STATE];
>
> // "Recursive lock count" for task->mm->mmap_sem (needed if we don't
> introduce down_read_unfair())

Page 16 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> int mmap_sem_lock_count;
> };
>
> New cgroup subsystem callbacks (all optional):
>
> -----
>
> int prepare_attach_sleep(struct cgroup_attach_state *state);
>
> Called during the first preparation phase for each subsystem. The
> subsystem may perform any sleeping behaviour, including waiting for
> mutexes and doing sleeping memory allocations, but may not disable
> interrupts or take any spinlocks. Return a -ve error on failure or 0
> on success. If it returns failure, then no further callbacks will be
> made for this attach; if it returns success then exactly one of
> abort_attach_sleep() or commit_attach() is guaranteed to be called in
> the future
>
> No two subsystems may take the same lock as part of their
> prepare_attach_sleep() callback. A special case is made for mmap_sem:
> if this callback needs to down_read(&state->task->mmap_sem) it should
> only do so if state->mmap_sem_lock_count++ == 0. (A helper function
> will be provided for this). The callback should not
> write_lock(&state->task->mmap_sem).
>
> Called with group_mutex (which prevents any other task movement
> between cgroups) held plus any mutexes/semaphores taken by earlier
> subsystems's callbacks.
>
> -----
>
> int prepare_attach_nosleep(struct cgroup_attach_state *state);
>
> Called during the second preparation phase (assuming no subsystem
> failed in the first phase). The subsystem may not sleep in any way,
> but may disable interrupts or take spinlocks. Return a -ve error on
> failure or 0 on success. If it returns failure, then
> abort_attach_sleep() will be called; if it returns success then either
> abort_attach_nosleep() followed by abort_attach_sleep() will be
> called, or commit_attach() will be called
>
> Called with cgroup_mutex and alloc_lock for task held (plus any
> mutexes/semaphores taken by subsystems in the prepare_attach_nosleep()
> phase, and any spinlocks taken by earlier subsystems in this phase .
> If state->mode == CGROUP_ATTACH_PROCESS then alloc_lock for all
> threads in task's thread_group are held. (Is this a really bad idea?
> Maybe we should call this without any task->alloc_lock held?)
>

Page 17 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> ----
>
> void abort_attach_sleep(struct cgroup_attach_state *state);
>
> Called following a successful return from prepare_attach_sleep().
> Indicates that the attach operation was aborted and the subsystem
> should unwind any state changes made and locks taken by
> prepare_attach_sleep().
>
> Called with same locks as prepare_attach_sleep()
>
> ----
>
> void abort_attach_nosleep(struct cgroup_attach_state *state);
>
> Called following a successful return from prepare_attach_nosleep().
> Indicates that the attach operation was aborted and the subsystem
> should unwind any state changes made and locks taken by
> prepare_attach_nosleep().
>
> Called with the same locks as prepare_attach_nosleep();
>
> ----
>
> void commit_attach(struct cgroup_attach_state *state);
>
> Called following a successful return from prepare_attach_sleep() for a
> subsystem that has no prepare_attach_nosleep(), or following a
> successful return from prepare_attach_nosleep(). Indicates that the
> attach operation is going ahead, and
> any partially-committed state should be finalized, and any taken locks
> should be released. No further callbacks will be made for this attach.
>
> This is called immediately after updating task->cgroups (and threads
> if necessary) to point to the new cgroup set.
>
> Called with the same locks held as prepare_attach_nosleep()
>
>
> Examples
> ==========
>
> Here are a few examples of how you might use this. They're not
> intended to be syntactically correct or compilable - they're just an
> idea of what the routines might look like.
>
>
> 1) cpusets

Page 18 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>
> cpusets (currently) uses cgroup_mutex for most of its changes that can
> invalidate a task attach. thus it can assume that any checks performed
> by prepare_attach_*() will remain valid without needing any additional
> locking. The existing callback_mutex used to synchronize cpuset
> changes can't be taken in commit_attach() since spinlocks are held at
> that point. However, I think that all the current uses of
> callback_mutex could actually be replaced with an rwlock, which would
> be permitted to be taken during commit_attach(). The cpuset subsystem
> wouldn't need to maintain any special state for the transaction. So:
>
> - prepare_attach_nosleep(): same as existing cpuset_can_attach()
>
> - commit_attach(): update tasks' allowed cpus; schedule memory
> migration in a workqueue if necessary (since we can't take locks at
> this point.
>
>
> 2) memrlimit
>
> memrlimit needs to be able to ensure that:
>
> - changes to an mm's virtual address space size can't occur
> concurrently with the mm's owner moving between cgroups (including via
> a change of mm ownership).
>
> - moving the mm's owner doesn't over-commit the destination cgroup
>
> - once the destination cgroup has been checked, additional charges
> can't be made that result in the original move becoming invalid
>
> Currently all normal charges and uncharges are done under the
> protection of down_write(&mm->mmap_sem); uncharging following a change
> that was charged but failed for other reasons isn't done under
> mmap_sem, but isn't a critical path so could probably be changed to do
> so (it wouldn't have to be all one big critical section).
> Additionally, mm->owner changes are also done under
> down_write(&mmap_sem). Thus holding down_read(&mmap_sem) across the
> transaction is sufficient. So (roughly):
>
> prepare_attach_sleep() {
> // prevent mm->owner and mm->total_vm changes
> down_read(&mm->mmap_sem);
> // Nothing to do if we're not moving the owner
> if (mm->owner != state->task) return 0;
> if ((ret = res_counter_charge(state->dest, mm->total_vm)) {
> // If we failed to allocate in the destination, clean up
> up_read(&mm->mmap_sem);

Page 19 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> }
> return ret;
> }
>
> commit_attach() {
> if (mm->owner == state->task) {
> // Release the charge from the source
> res_counter_uncharge(state->src, mm->total_vm);
> }
> // Clean up locks
> up_read(&mm->mmap_sem);
> }
>
> abort_attach_sleep() {
> if (mm->owner == state->task) {
> // Remove the temporary charge from the destination
> res_counter_uncharge(state->dest_cgroup, mm->total_vm);
> }
> // Clean up locks
> up_read(&mm->mmap_sem);
> }
>
> As mentioned above, to handle the case where multiple subsystems need
> to down_read(&mm->mmap_sem), these down/up operations may actually end
> up being done via helper functions to avoid recursive locks.
>
>
> 3) memory
>
> Curently the memory cgroup only uses the mm->owner's cgroup at charge
> time, and keeps a reference to the cgroup on the page. However,
> patches have been proposed that would move all non-shared (page count
> == 1) pages to the destination cgroup when the mm->owner moves to a
> new cgroup. Since it's not possible to prevent page count changes
> without locking all mms on the system, even this transaction approach
> can't really give guarantees. However, something like the following
> would probably be suitable. It's very similar to the memrlimit
> approach, except for the fact that we have to handle the fact that the
> number of pages we finally move might not be exactly the same as the
> number of pages we thought we'd be moving.
>
> prepare_attach_sleep() {
> down_read(&mm->mmap_sem);
> if (mm->owner != state->task) return 0;
> count = count_unshared_pages(mm);
> // save the count charged to the new cgroup
> state->subsys[memcgroup_subsys_id] = (void *)count;
> if ((ret = res_counter_charge(state->dest, count)) {

Page 20 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> up_read(&mm->mmap_sem);
> }
> return ret;
> }
>
> commit_attach() {
> if (mm->owner == state->task) {
> final_count = move_unshared_pages(mm, state->dest);
> res_counter_uncharge(state->src, final_count);
> count = state->subsys[memcgroup_subsys_id];
> res_counter_force_charge(state->dest, final_count - count);
> }
> up_read(&mm->mmap_sem);
> }
>
> abort_attach_sleep() {
> if (mm->owner == state->task) {
> count = state->subsys[memcgroup_subsys_id];
> res_counter_uncharge(state->dest, count);
> }
> up_read(&mm->mmap_sem);
> }
>
> 4) numtasks:
>
> Numtasks is different from the two memory-related controllers in that
> it may need to move charges from multiple source cgroups (for
> different threads); the memory cgroups only have to deal with the mm
> of a thread-group leader, and all threads in an attach operation are
> from the same thread_group. So numtasks has to be able to handle
> uncharging multiple source cgroups in the commit_attach() operation.
> In order to do this, it requires additional state:
>
> struct numtasks_attach_state {
> int count;
> struct cgroup *cg;
> struct numtasks_attach_state *next;
> }
>
> It will build a list of numtasks_attach_state objects, one for each
> distinct source cgroup; in the general case either there will only be
> a single thread moving or else all the threads in the thread group
> will belong to the same cgroup, in which case this list will only be a
> single element; the list is very unlikely to get to more than a small
> number of elements.
>
> The prepare_attach_sleep() function can rely on the fact that although
> tasks can fork/exit concurrently with the attach, since cgroup_mutex

Page 21 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> is held, no tasks can change cgroups, and therefore a complete list of
> source cgroups can be constructed.
>
> prepare_attach_sleep() {
> for each thread being moved:
> if the list doesn't yet have an entry for thread->cgroup:
> allocate new entry with cg = thread->cgroup, count = 0;
> add new entry to list
> store list in state->subsys[numtasks_subsys_id];
> return 0;
> }
>
> Then prepare_attach_nosleep() can move counts under protection of
> tasklist_lock, to prevent any forks/exits
>
> prepare_attach_nosleep() {
> read_lock(&tasklist_lock);
> for each thread being moved {
> find entry for thread->cgroup in list
> entry->count++;
> total_count++;
> }
> if ((ret = res_counter_charge(state->dest, total_count) != 0) {
> read_unlock(&tasklist_lock);
> }
> return ret;
> }
>
> commit_attach() {
> for each entry in list {
> res_counter_uncharge(entry->cg, entry->count);
> }
> read_unlock(&tasklist_lock);
> free list;
> }
>
> abort_attach_nosleep() {
> // just needs to clear up prepare_attach_nosleep()
> res_counter_uncharge(state->dest, total_count);
> read_unlock(&tasklist_lock);
> }
>
> abort_attach_sleep() {
> // just needs to clean up the list allocated in prepare_attach_sleep()
> free list;
> }
>
>

Page 22 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> So, thoughts? Is this just way to complex? Have I missed something
> that means this approach can't work?

It seems well thought out on first reading.

It does feel like it may be too much designed for one particular user
(i.e. is there a reason not to expect a future cgroup to need a check
under a spinlock before a check under a mutex - say an i_sem - in the
can_attach sequence?), but it solves the current real problems first,
what else can you do? :)

-serge

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC] Transactional CGroup task attachment
Posted by Paul Menage on Fri, 11 Jul 2008 15:23:22 GMT
View Forum Message <> Reply to Message

On Fri, Jul 11, 2008 at 7:27 AM, Serge E. Hallyn <serue@us.ibm.com> wrote:
>
> It does feel like it may be too much designed for one particular user
> (i.e. is there a reason not to expect a future cgroup to need a check
> under a spinlock before a check under a mutex - say an i_sem - in the
> can_attach sequence?),

It would be fine as long as the code didn't want to *keep* holding the
spinlock after the first check, while taking the mutex - and since
that style of code is invalid under the existing locking rules, I
don't see that as a problem. There's nothing to stop a
prepare_attach_sleep() method from taking a spinlock as long as it
releases it before it returns.

Paul

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC] Transactional CGroup task attachment
Posted by serue on Fri, 11 Jul 2008 15:34:21 GMT
View Forum Message <> Reply to Message

Page 23 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=6457&goto=31876#msg_31876
https://new-forum.openvz.org/index.php?t=post&reply_to=31876
https://new-forum.openvz.org/index.php?t=usrinfo&id=204
https://new-forum.openvz.org/index.php?t=rview&th=6457&goto=31877#msg_31877
https://new-forum.openvz.org/index.php?t=post&reply_to=31877
https://new-forum.openvz.org/index.php

Quoting Paul Menage (menage@google.com):
> On Fri, Jul 11, 2008 at 7:27 AM, Serge E. Hallyn <serue@us.ibm.com> wrote:
> >
> > It does feel like it may be too much designed for one particular user
> > (i.e. is there a reason not to expect a future cgroup to need a check
> > under a spinlock before a check under a mutex - say an i_sem - in the
> > can_attach sequence?),
>
> It would be fine as long as the code didn't want to *keep* holding the
> spinlock after the first check, while taking the mutex - and since
> that style of code is invalid under the existing locking rules, I
> don't see that as a problem. There's nothing to stop a
> prepare_attach_sleep() method from taking a spinlock as long as it
> releases it before it returns.
>
> Paul

Good point. For some stupid reason i was thinking don't take a spinlock
at all.

Have you started an implementation?

thanks,
-serge

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC] Transactional CGroup task attachment
Posted by Paul Menage on Fri, 11 Jul 2008 15:36:32 GMT
View Forum Message <> Reply to Message

On Fri, Jul 11, 2008 at 8:34 AM, Serge E. Hallyn <serue@us.ibm.com> wrote:
>
> Have you started an implementation?
>

No, not yet. I wanted to get general agreement that the API made sense first.

Paul

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 24 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=6457&goto=31878#msg_31878
https://new-forum.openvz.org/index.php?t=post&reply_to=31878
https://new-forum.openvz.org/index.php

Subject: Re: [RFC] Transactional CGroup task attachment
Posted by Balbir Singh on Fri, 11 Jul 2008 16:12:39 GMT
View Forum Message <> Reply to Message

Paul Menage wrote:
> This is an initial design for a transactional task attachment
> framework for cgroups. There are probably some potential simplications
> that I've missed, particularly in the area of locking. Comments
> appreciated.
>
> The Problem
> ===========
>
> Currently cgroups task movements are done in three phases
>
> 1) all subsystems in the destination cgroup get the chance to veto the
> movement (via their can_attach()) callback
> 2) task->cgroups is updated (while holding task->alloc_lock)
> 3) all subsystems get an attach() callback to let them perform any
> housekeeping updates
>
> The problems with this include:
>
> - There's no way to ensure that the result of can_attach() remains
> valid up until the attach() callback, unless any invalidating
> operations call cgroup_lock() to synchronize with the change. This is
> fine for something like cpusets, where invalidating operations are
> rare slow events like the user removing all cpus from a cpuset, or cpu
> hotplug triggering removal of a cpuset's last cpu. It's not so good
> for the virtual address space controller where the can_attach() check
> might be that the res_counter has enough space, and an invalidating
> operation might be another task in the cgroup allocating another page
> of virtual address space.
>

Precisely!

> - It doesn't handle the case of the proposed "cgroup.procs" file which
> can move multiple threads into a cgroup in one operation; the
> can_attach() and attach() calls should be able to atomically allow all
> or none of the threads to move.
>
> - it can create races around the time of the movement regarding to
> which cgroup a resource charge/uncharge should be assigned (e.g.
> between steps 2 and 3 new resource usage will be charged to the
> destination cgroup, but step 3 might involve migrating a charge equal
> to the task's resource usage from the old cgroup to the new, resulting
> in over/under-charges.
>

Page 25 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=675
https://new-forum.openvz.org/index.php?t=rview&th=6457&goto=31881#msg_31881
https://new-forum.openvz.org/index.php?t=post&reply_to=31881
https://new-forum.openvz.org/index.php

>
> Conceptual solution
> ===================
>
> In ideal terms, a solution for this problem would meet the following
> requirements:
>
> - support movement of an arbitrary set of threads between an arbitrary
> set of cgroups
> - allow arbitrarily complex locking from the subsystems involved so
> that they can synchronize against concurrent charges, etc
> - allow rollback at any point in the process
>
> But in practice that would probably be way more complex than we'd want
> in the kernel. We don't want to encourage excessively-complex locking
> from subsystems, and we don't need to support arbitrary task
> movements.
>
>
> (Hopefully!) Practical solution
> =============
>
> So here's a more practical solution, which hopefully catches the
> important parts of the requirements without being quite so complex.
>
> The restrictions are:
>
> - only supporting movement to one destination cgroup (in the same
> hierarchy, of course); if an entire process is being moved, then
> potentially its threads could be coming from different source cgroups
> - a subsystem may optionally fail such an attach if it can't handle
> the synchronization this would entail.
>
> - supporting moving either one thread, one entire thread group or (for
> the future) "all threads". This supports the existing "tasks" file,
> the proposed "procs" file and also allows scope for things like adding
> a subsystem to an existing hierarchy.
>
> - locking/checking performed in two phases - one to support sleeping
> locks, and one to support spinlocks. This is to support both
> subsystems that use mutexes to protect their data, and subsystems that
> use spinlocks
>
> - no locks allowed to be shared between multiple subsystems during the
> transaction, with the single exception of the mmap_sem of the
> thread/process being moved. This is because multiple subsystems use
> the mmap_sem for synchronization, and are quite likely to be mounted
> in the same hierarchy. The alternative would be to introduce a

Page 26 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> down_read_unfair() operation that would skip ahead of waiting writers,
> to safely allow a single thread to recursively lock mm->mmap_sem.
>

This would ideally be recursive mutexes, Linus does not like recursive mutexes.
Adding an unfair variant would mean that we need to support a more generic
locking class.

> First we define the state for the transaction:
>
> struct cgroup_attach_state {
>
> // The thread or process being moved, NULL if moving (potentially) all threads
> struct task_struct *task;
> enum {
> CGROUP_ATTACH_THREAD,
> CGROUP_ATTACH_PROCESS,
> CGROUP_ATTACH_ALL
> } mode;
>
> // The destination cgroup
> struct cgroup *dest;
>
> // The source cgroup for "task" (child threads *may* have different
> groups; subsystem must handle this if it needs to)
> struct cgroup *src;
>
> // Private state for the attach operation per-subsys. Subsystems are
> completely responsible for managing this
> void *subsys_state[CGROUP_SUBSYS_STATE];
>
> // "Recursive lock count" for task->mm->mmap_sem (needed if we don't
> introduce down_read_unfair())
> int mmap_sem_lock_count;
> };
>
> New cgroup subsystem callbacks (all optional):
>
> -----
>
> int prepare_attach_sleep(struct cgroup_attach_state *state);
>

Is _sleep really required to be specfied? The function name sounds as if the
callback processor will sleep.

> Called during the first preparation phase for each subsystem. The
> subsystem may perform any sleeping behaviour, including waiting for

Page 27 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> mutexes and doing sleeping memory allocations, but may not disable
> interrupts or take any spinlocks. Return a -ve error on failure or 0
> on success. If it returns failure, then no further callbacks will be
> made for this attach; if it returns success then exactly one of
> abort_attach_sleep() or commit_attach() is guaranteed to be called in
> the future
>
> No two subsystems may take the same lock as part of their
> prepare_attach_sleep() callback. A special case is made for mmap_sem:
> if this callback needs to down_read(&state->task->mmap_sem) it should
> only do so if state->mmap_sem_lock_count++ == 0. (A helper function
> will be provided for this). The callback should not
> write_lock(&state->task->mmap_sem).
>
> Called with group_mutex (which prevents any other task movement
> between cgroups) held plus any mutexes/semaphores taken by earlier
> subsystems's callbacks.
>

This sounds almost like the BKL for cgroups :) I see where you are going with
this, but I am afraid the implementation and rules sound complex. It will be
hard to verify that two subsystems are not going to take the same lock. I would
rather prefer to do the following

1. Prepare_attach() the subsystem does it's or fails
2. If someone failed, send out failed notifications to successfull callbacks
3. On receiving a failed notification (due to a different cgroup failure),
clients undo their operation (done in prepare_attach())
4. If all was successful, move the task and call attached() after the task is
attached.

[snip]

>
> So, thoughts? Is this just way to complex? Have I missed something
> that means this approach can't work?
>

I read through the rest of it. The sleep/nosleep might make sense (to help the
task acquire the type of lock it wants to acquire), but isn't sleep a generic
case for nosleep as well?

Can we manage with steps I've listed above?

--
	Warm Regards,
	Balbir Singh
	Linux Technology Center

Page 28 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

	IBM, ISTL

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC] Transactional CGroup task attachment
Posted by Paul Menage on Fri, 11 Jul 2008 20:41:34 GMT
View Forum Message <> Reply to Message

On Fri, Jul 11, 2008 at 9:12 AM, Balbir Singh <balbir@linux.vnet.ibm.com> wrote:
>
> This would ideally be recursive mutexes, Linus does not like recursive mutexes.

But we already have them in function, if not in name, with things like
cpu_hotplug.lock, which is an open-coded reader-writer mutex with
recursion.

>>
>> int prepare_attach_sleep(struct cgroup_attach_state *state);
>>
>
> Is _sleep really required to be specfied? The function name sounds as if the
> callback processor will sleep.

I wasn't quite sure about the name of that method either. We could
call it prepare_attach_maysleep(); just prepare_attach() seems a
little under-descriptive.

>> Called with group_mutex (which prevents any other task movement
>> between cgroups) held plus any mutexes/semaphores taken by earlier
>> subsystems's callbacks.
>>
>
> This sounds almost like the BKL for cgroups :)

Yes, cgroup_mutex is indeed currently the BKL for cgroups. I'm working
separately to reduce that with things like the per-subsystem
hierarchy_mutex, which will also protect against task movements.

>
> 1. Prepare_attach() the subsystem does it's or fails

Did you miss a word here?

> 2. If someone failed, send out failed notifications to successfull callbacks
> 3. On receiving a failed notification (due to a different cgroup failure),

Page 29 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=6457&goto=31885#msg_31885
https://new-forum.openvz.org/index.php?t=post&reply_to=31885
https://new-forum.openvz.org/index.php

> clients undo their operation (done in prepare_attach())
> 4. If all was successful, move the task and call attached() after the task is
> attached.

That's pretty much what we have - except that I've got two
prepare_attach() methods to handle the case that some subsystems might
need mutexes and others might need spinlocks in order to handle
synchronization between the move and their resource charge/uncharge
mechanisms - because any mutexes (and memory allocations) need to be
handled before spinlocks.

>
> I read through the rest of it. The sleep/nosleep might make sense (to help the
> task acquire the type of lock it wants to acquire), but isn't sleep a generic
> case for nosleep as well?

Can you clarify what you mean by that?

Paul

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC] Transactional CGroup task attachment
Posted by Matt Helsley on Sat, 12 Jul 2008 00:03:54 GMT
View Forum Message <> Reply to Message

On Wed, 2008-07-09 at 23:46 -0700, Paul Menage wrote:
> This is an initial design for a transactional task attachment
> framework for cgroups. There are probably some potential simplications
> that I've missed, particularly in the area of locking. Comments
> appreciated.
>
> The Problem
> ===========
>
> Currently cgroups task movements are done in three phases
>
> 1) all subsystems in the destination cgroup get the chance to veto the
> movement (via their can_attach()) callback
> 2) task->cgroups is updated (while holding task->alloc_lock)
> 3) all subsystems get an attach() callback to let them perform any
> housekeeping updates
>
> The problems with this include:
>

Page 30 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=670
https://new-forum.openvz.org/index.php?t=rview&th=6457&goto=31890#msg_31890
https://new-forum.openvz.org/index.php?t=post&reply_to=31890
https://new-forum.openvz.org/index.php

> - There's no way to ensure that the result of can_attach() remains
> valid up until the attach() callback, unless any invalidating
> operations call cgroup_lock() to synchronize with the change. This is
> fine for something like cpusets, where invalidating operations are
> rare slow events like the user removing all cpus from a cpuset, or cpu
> hotplug triggering removal of a cpuset's last cpu. It's not so good
> for the virtual address space controller where the can_attach() check
> might be that the res_counter has enough space, and an invalidating
> operation might be another task in the cgroup allocating another page
> of virtual address space.
>
> - It doesn't handle the case of the proposed "cgroup.procs" file which
> can move multiple threads into a cgroup in one operation; the
> can_attach() and attach() calls should be able to atomically allow all
> or none of the threads to move.
>
> - it can create races around the time of the movement regarding to
> which cgroup a resource charge/uncharge should be assigned (e.g.
> between steps 2 and 3 new resource usage will be charged to the
> destination cgroup, but step 3 might involve migrating a charge equal
> to the task's resource usage from the old cgroup to the new, resulting
> in over/under-charges.

I agree with Balbir: this is a good description of the problems.

>
> Conceptual solution
> ===================
>
> In ideal terms, a solution for this problem would meet the following
> requirements:
>
> - support movement of an arbitrary set of threads between an arbitrary
> set of cgroups
>
> - allow arbitrarily complex locking from the subsystems involved so
> that they can synchronize against concurrent charges, etc
> - allow rollback at any point in the process
>
> But in practice that would probably be way more complex than we'd want
> in the kernel. We don't want to encourage excessively-complex locking
> from subsystems, and we don't need to support arbitrary task
> movements.
>
>
> (Hopefully!) Practical solution
> =============
>

Page 31 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> So here's a more practical solution, which hopefully catches the
> important parts of the requirements without being quite so complex.
>
> The restrictions are:
>
> - only supporting movement to one destination cgroup (in the same
> hierarchy, of course); if an entire process is being moved, then
> potentially its threads could be coming from different source cgroups
> - a subsystem may optionally fail such an attach if it can't handle
> the synchronization this would entail.
>
> - supporting moving either one thread, one entire thread group or (for
> the future) "all threads". This supports the existing "tasks" file,
> the proposed "procs" file and also allows scope for things like adding
> a subsystem to an existing hierarchy.
>
> - locking/checking performed in two phases - one to support sleeping
> locks, and one to support spinlocks. This is to support both
> subsystems that use mutexes to protect their data, and subsystems that
> use spinlocks
>
> - no locks allowed to be shared between multiple subsystems during the
> transaction, with the single exception of the mmap_sem of the
> thread/process being moved. This is because multiple subsystems use
> the mmap_sem for synchronization, and are quite likely to be mounted
> in the same hierarchy. The alternative would be to introduce a
> down_read_unfair() operation that would skip ahead of waiting writers,
> to safely allow a single thread to recursively lock mm->mmap_sem.
>
> First we define the state for the transaction:
>
> struct cgroup_attach_state {

nit: How about naming it cgroup_attach_request or
cgroup_attach_request_state? I suggest this because it's not really
"state" that's kept beyond the prepare-then-(commit|abort) sequence.

> // The thread or process being moved, NULL if moving (potentially) all threads
> struct task_struct *task;
> enum {
> CGROUP_ATTACH_THREAD,
> CGROUP_ATTACH_PROCESS,
> CGROUP_ATTACH_ALL
> } mode;
>
>
> // The destination cgroup
> struct cgroup *dest;

Page 32 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>
> // The source cgroup for "task" (child threads *may* have different
> groups; subsystem must handle this if it needs to)
> struct cgroup *src;
>
> // Private state for the attach operation per-subsys. Subsystems are
> completely responsible for managing this
> void *subsys_state[CGROUP_SUBSYS_STATE];
>
> // "Recursive lock count" for task->mm->mmap_sem (needed if we don't
> introduce down_read_unfair())
> int mmap_sem_lock_count;
> };
>
> New cgroup subsystem callbacks (all optional):
>
> -----
>
> int prepare_attach_sleep(struct cgroup_attach_state *state);
>
> Called during the first preparation phase for each subsystem. The
> subsystem may perform any sleeping behaviour, including waiting for
> mutexes and doing sleeping memory allocations, but may not disable
> interrupts or take any spinlocks. Return a -ve error on failure or 0
> on success. If it returns failure, then no further callbacks will be
> made for this attach; if it returns success then exactly one of
> abort_attach_sleep() or commit_attach() is guaranteed to be called in
> the future
>
> No two subsystems may take the same lock as part of their
> prepare_attach_sleep() callback. A special case is made for mmap_sem:
> if this callback needs to down_read(&state->task->mmap_sem) it should
> only do so if state->mmap_sem_lock_count++ == 0. (A helper function
> will be provided for this). The callback should not
> write_lock(&state->task->mmap_sem).

What about the task->alloc_lock? Might that need to be taken by multiple
subsystems? See my next comment.

> Called with group_mutex (which prevents any other task movement
> between cgroups) held plus any mutexes/semaphores taken by earlier
> subsystems's callbacks.
>
> -----
>
> int prepare_attach_nosleep(struct cgroup_attach_state *state);
>
> Called during the second preparation phase (assuming no subsystem

Page 33 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> failed in the first phase). The subsystem may not sleep in any way,
> but may disable interrupts or take spinlocks. Return a -ve error on
> failure or 0 on success. If it returns failure, then
> abort_attach_sleep() will be called; if it returns success then either
> abort_attach_nosleep() followed by abort_attach_sleep() will be
> called, or commit_attach() will be called
>
> Called with cgroup_mutex and alloc_lock for task held (plus any
> mutexes/semaphores taken by subsystems in the prepare_attach_nosleep()
> phase, and any spinlocks taken by earlier subsystems in this phase .
> If state->mode == CGROUP_ATTACH_PROCESS then alloc_lock for all
> threads in task's thread_group are held. (Is this a really bad idea?
> Maybe we should call this without any task->alloc_lock held?)

With task->alloc_lock held would avoid the case where multiple
subsystems need it (assuming the case exists of course).

> ----
>
> void abort_attach_sleep(struct cgroup_attach_state *state);
>
> Called following a successful return from prepare_attach_sleep().
> Indicates that the attach operation was aborted and the subsystem
> should unwind any state changes made and locks taken by
> prepare_attach_sleep().
>
> Called with same locks as prepare_attach_sleep()
>
> ----
>
> void abort_attach_nosleep(struct cgroup_attach_state *state);
>
> Called following a successful return from prepare_attach_nosleep().
> Indicates that the attach operation was aborted and the subsystem
> should unwind any state changes made and locks taken by
> prepare_attach_nosleep().
>
> Called with the same locks as prepare_attach_nosleep();
>
> ----
>
> void commit_attach(struct cgroup_attach_state *state);
>
> Called following a successful return from prepare_attach_sleep() for a
> subsystem that has no prepare_attach_nosleep(), or following a
> successful return from prepare_attach_nosleep(). Indicates that the
> attach operation is going ahead, and
> any partially-committed state should be finalized, and any taken locks

Page 34 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> should be released. No further callbacks will be made for this attach.
>
> This is called immediately after updating task->cgroups (and threads
> if necessary) to point to the new cgroup set.
>
> Called with the same locks held as prepare_attach_nosleep()

Rather than describing what might be called later for each API entry
separately it might be simpler to prefix the whole API/protocol
description with something like:
======
A successful return from prepare_X will cause abort_X to be called if
any of the prepatory calls fail. (where X is either sleep or nosleep)

A successful return from prepare_X will cause commit to be called if all
of the prepatory calls succeed. (where X is either sleep or nosleep)

Otherwise no calls to abort_X or commit will be made. (where X is either
sleep or nosleep)
======

I think that's correct based on your descriptions. Of course changing
this only makes sense if this proposal will go into Documentation/ in
some form..

>
> Examples
> ==========
>
> Here are a few examples of how you might use this. They're not
> intended to be syntactically correct or compilable - they're just an
> idea of what the routines might look like.
>
>
> 1) cpusets
>
> cpusets (currently) uses cgroup_mutex for most of its changes that can
> invalidate a task attach. thus it can assume that any checks performed
> by prepare_attach_*() will remain valid without needing any additional
> locking. The existing callback_mutex used to synchronize cpuset
> changes can't be taken in commit_attach() since spinlocks are held at
> that point. However, I think that all the current uses of
> callback_mutex could actually be replaced with an rwlock, which would
> be permitted to be taken during commit_attach(). The cpuset subsystem
> wouldn't need to maintain any special state for the transaction. So:
>
> - prepare_attach_nosleep(): same as existing cpuset_can_attach()
>

Page 35 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> - commit_attach(): update tasks' allowed cpus; schedule memory
> migration in a workqueue if necessary (since we can't take locks at
> this point.
>
>
> 2) memrlimit
>
> memrlimit needs to be able to ensure that:
>
> - changes to an mm's virtual address space size can't occur
> concurrently with the mm's owner moving between cgroups (including via
> a change of mm ownership).
>
> - moving the mm's owner doesn't over-commit the destination cgroup
>
> - once the destination cgroup has been checked, additional charges
> can't be made that result in the original move becoming invalid
>
> Currently all normal charges and uncharges are done under the
> protection of down_write(&mm->mmap_sem); uncharging following a change
> that was charged but failed for other reasons isn't done under
> mmap_sem, but isn't a critical path so could probably be changed to do
> so (it wouldn't have to be all one big critical section).
> Additionally, mm->owner changes are also done under
> down_write(&mmap_sem). Thus holding down_read(&mmap_sem) across the
> transaction is sufficient. So (roughly):
>
> prepare_attach_sleep() {
> // prevent mm->owner and mm->total_vm changes
> down_read(&mm->mmap_sem);
> // Nothing to do if we're not moving the owner
> if (mm->owner != state->task) return 0;
> if ((ret = res_counter_charge(state->dest, mm->total_vm)) {
> // If we failed to allocate in the destination, clean up
> up_read(&mm->mmap_sem);
> }
> return ret;
> }
>
> commit_attach() {
> if (mm->owner == state->task) {
> // Release the charge from the source
> res_counter_uncharge(state->src, mm->total_vm);
> }
> // Clean up locks
> up_read(&mm->mmap_sem);
> }
>

Page 36 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> abort_attach_sleep() {
> if (mm->owner == state->task) {
> // Remove the temporary charge from the destination
> res_counter_uncharge(state->dest_cgroup, mm->total_vm);
> }
> // Clean up locks
> up_read(&mm->mmap_sem);
> }
>
> As mentioned above, to handle the case where multiple subsystems need
> to down_read(&mm->mmap_sem), these down/up operations may actually end
> up being done via helper functions to avoid recursive locks.
>
>
> 3) memory
>
> Curently the memory cgroup only uses the mm->owner's cgroup at charge
> time, and keeps a reference to the cgroup on the page. However,
> patches have been proposed that would move all non-shared (page count
> == 1) pages to the destination cgroup when the mm->owner moves to a
> new cgroup. Since it's not possible to prevent page count changes
> without locking all mms on the system, even this transaction approach
> can't really give guarantees. However, something like the following
> would probably be suitable. It's very similar to the memrlimit
> approach, except for the fact that we have to handle the fact that the
> number of pages we finally move might not be exactly the same as the
> number of pages we thought we'd be moving.
>
> prepare_attach_sleep() {
> down_read(&mm->mmap_sem);
> if (mm->owner != state->task) return 0;
> count = count_unshared_pages(mm);
> // save the count charged to the new cgroup
> state->subsys[memcgroup_subsys_id] = (void *)count;
> if ((ret = res_counter_charge(state->dest, count)) {
> up_read(&mm->mmap_sem);
> }
> return ret;
> }
>
> commit_attach() {
> if (mm->owner == state->task) {
> final_count = move_unshared_pages(mm, state->dest);
> res_counter_uncharge(state->src, final_count);
> count = state->subsys[memcgroup_subsys_id];
> res_counter_force_charge(state->dest, final_count - count);
> }
> up_read(&mm->mmap_sem);

Page 37 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> }
>
> abort_attach_sleep() {
> if (mm->owner == state->task) {
> count = state->subsys[memcgroup_subsys_id];
> res_counter_uncharge(state->dest, count);
> }
> up_read(&mm->mmap_sem);
> }
>
> 4) numtasks:
>
> Numtasks is different from the two memory-related controllers in that
> it may need to move charges from multiple source cgroups (for
> different threads); the memory cgroups only have to deal with the mm
> of a thread-group leader, and all threads in an attach operation are
> from the same thread_group. So numtasks has to be able to handle
> uncharging multiple source cgroups in the commit_attach() operation.
> In order to do this, it requires additional state:
>
> struct numtasks_attach_state {
> int count;
> struct cgroup *cg;
> struct numtasks_attach_state *next;
> }
>
> It will build a list of numtasks_attach_state objects, one for each
> distinct source cgroup; in the general case either there will only be
> a single thread moving or else all the threads in the thread group
> will belong to the same cgroup, in which case this list will only be a
> single element; the list is very unlikely to get to more than a small
> number of elements.
>
> The prepare_attach_sleep() function can rely on the fact that although
> tasks can fork/exit concurrently with the attach, since cgroup_mutex
> is held, no tasks can change cgroups, and therefore a complete list of
> source cgroups can be constructed.
>
> prepare_attach_sleep() {
> for each thread being moved:
> if the list doesn't yet have an entry for thread->cgroup:
> allocate new entry with cg = thread->cgroup, count = 0;
> add new entry to list
> store list in state->subsys[numtasks_subsys_id];
> return 0;
> }
>
> Then prepare_attach_nosleep() can move counts under protection of

Page 38 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> tasklist_lock, to prevent any forks/exits
>
> prepare_attach_nosleep() {
> read_lock(&tasklist_lock);
> for each thread being moved {
> find entry for thread->cgroup in list
> entry->count++;
> total_count++;
> }
> if ((ret = res_counter_charge(state->dest, total_count) != 0) {
> read_unlock(&tasklist_lock);
> }
> return ret;
> }
>
> commit_attach() {
> for each entry in list {
> res_counter_uncharge(entry->cg, entry->count);
> }
> read_unlock(&tasklist_lock);
> free list;
> }
> abort_attach_nosleep() {
> // just needs to clear up prepare_attach_nosleep()
> res_counter_uncharge(state->dest, total_count);
> read_unlock(&tasklist_lock);
> }
>
> abort_attach_sleep() {
> // just needs to clean up the list allocated in prepare_attach_sleep()
> free list;
> }
>
>
> So, thoughts? Is this just way to complex? Have I missed something
> that means this approach can't work?

	This proposal for attaching tasks works for the proposed freezer
subsystem too.

	Allowing prepare_X to hold locks when it has exitted seems ripe for
introducing two separate subsystems that inadvertently take locks out of
order. I guess lockdep will warn us about this assuming lockdep and all
the cgroup subsystems have been configured and tested in the same
hierarchy.

Cheers,
	-Matt Helsley

Page 39 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC] Transactional CGroup task attachment
Posted by Paul Menage on Sat, 12 Jul 2008 00:18:18 GMT
View Forum Message <> Reply to Message

On Fri, Jul 11, 2008 at 5:03 PM, Matt Helsley <matthltc@us.ibm.com> wrote:
>> struct cgroup_attach_state {
>
> nit: How about naming it cgroup_attach_request or
> cgroup_attach_request_state? I suggest this because it's not really
> "state" that's kept beyond the prepare-then-(commit|abort) sequence.

State doesn't have to be long-lived to be state. But I'm not too
worried about the exact name for it, if people have other preferences.

>
> What about the task->alloc_lock? Might that need to be taken by multiple
> subsystems? See my next comment.

My thought was that cgroups would take that anyway prior to calling
prepare_attach_nosleep(), since it's a requirement for changing
task->cgroups anyway.

>
> Rather than describing what might be called later for each API entry
> separately it might be simpler to prefix the whole API/protocol
> description with something like:
> ======
> A successful return from prepare_X will cause abort_X to be called if
> any of the prepatory calls fail. (where X is either sleep or nosleep)
>
> A successful return from prepare_X will cause commit to be called if all
> of the prepatory calls succeed. (where X is either sleep or nosleep)
>
> Otherwise no calls to abort_X or commit will be made. (where X is either
> sleep or nosleep)

I'll play with working that into the description.

> I think that's correct based on your descriptions. Of course changing
> this only makes sense if this proposal will go into Documentation/ in
> some form..

Page 40 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=6457&goto=31891#msg_31891
https://new-forum.openvz.org/index.php?t=post&reply_to=31891
https://new-forum.openvz.org/index.php

Yes, we'd definitely need to document this in some detail.

>
> Allowing prepare_X to hold locks when it has exitted seems ripe for
> introducing two separate subsystems that inadvertently take locks out of
> order.

Yes, but I'm not sure that there's much that we can do about that. If
we want to guarantee to be able to rollback one subsystem when a later
subsystem fails then we have to let the earlier subsystems continue to
hold locks. Or is this too ambitious a goal to support?

Paul

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC] Transactional CGroup task attachment
Posted by Matt Helsley on Sat, 12 Jul 2008 00:48:14 GMT
View Forum Message <> Reply to Message

On Fri, 2008-07-11 at 17:18 -0700, Paul Menage wrote:
> On Fri, Jul 11, 2008 at 5:03 PM, Matt Helsley <matthltc@us.ibm.com> wrote:
> >> struct cgroup_attach_state {
> >
> > nit: How about naming it cgroup_attach_request or
> > cgroup_attach_request_state? I suggest this because it's not really
> > "state" that's kept beyond the prepare-then-(commit|abort) sequence.
>
> State doesn't have to be long-lived to be state. But I'm not too
> worried about the exact name for it, if people have other preferences.
>
> >
> > What about the task->alloc_lock? Might that need to be taken by multiple
> > subsystems? See my next comment.
>
> My thought was that cgroups would take that anyway prior to calling
> prepare_attach_nosleep(), since it's a requirement for changing
> task->cgroups anyway.

Yeah, that makes sense.

> >
> > Rather than describing what might be called later for each API entry
> > separately it might be simpler to prefix the whole API/protocol

Page 41 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=670
https://new-forum.openvz.org/index.php?t=rview&th=6457&goto=31892#msg_31892
https://new-forum.openvz.org/index.php?t=post&reply_to=31892
https://new-forum.openvz.org/index.php

> > description with something like:
> > ======
> > A successful return from prepare_X will cause abort_X to be called if
> > any of the prepatory calls fail. (where X is either sleep or nosleep)
> >
> > A successful return from prepare_X will cause commit to be called if all
> > of the prepatory calls succeed. (where X is either sleep or nosleep)
> >
> > Otherwise no calls to abort_X or commit will be made. (where X is either
> > sleep or nosleep)
>
> I'll play with working that into the description.
>
> > I think that's correct based on your descriptions. Of course changing
> > this only makes sense if this proposal will go into Documentation/ in
> > some form..
>
> Yes, we'd definitely need to document this in some detail.
>
> >
> > Allowing prepare_X to hold locks when it has exitted seems ripe for
> > introducing two separate subsystems that inadvertently take locks out of
> > order.
>
> Yes, but I'm not sure that there's much that we can do about that. If
> we want to guarantee to be able to rollback one subsystem when a later
> subsystem fails then we have to let the earlier subsystems continue to
> hold locks. Or is this too ambitious a goal to support?

	I can't see a better way to support that goal and it doesn't seem
overly ambitious to me. Just needs a somewhat specific test
configuration for new subsystem patches to detect the deadlock issue.

Cheers,
	-Matt Helsley

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC] Transactional CGroup task attachment
Posted by Paul Menage on Sat, 12 Jul 2008 01:49:17 GMT
View Forum Message <> Reply to Message

On Fri, Jul 11, 2008 at 5:48 PM, Matt Helsley <matthltc@us.ibm.com> wrote:
>

Page 42 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=6457&goto=31893#msg_31893
https://new-forum.openvz.org/index.php?t=post&reply_to=31893
https://new-forum.openvz.org/index.php

> I can't see a better way to support that goal and it doesn't seem
> overly ambitious to me. Just needs a somewhat specific test
> configuration for new subsystem patches to detect the deadlock issue.

Right - but all non-trivial development should be done with lockdep
enabled anyway.

Paul

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC] Transactional CGroup task attachment
Posted by Matt Helsley on Sat, 12 Jul 2008 02:03:36 GMT
View Forum Message <> Reply to Message

On Fri, 2008-07-11 at 18:49 -0700, Paul Menage wrote:
> On Fri, Jul 11, 2008 at 5:48 PM, Matt Helsley <matthltc@us.ibm.com> wrote:
> >
> > I can't see a better way to support that goal and it doesn't seem
> > overly ambitious to me. Just needs a somewhat specific test
> > configuration for new subsystem patches to detect the deadlock issue.
>
> Right - but all non-trivial development should be done with lockdep
> enabled anyway.
>
> Paul

	True, though I don't think it's as simple as just enabling lockdep. My
understanding is you won't be able to determine if locks could ever be
taken out of order unless all of the cgroup systems are enabled and they
are all in the same cgroup hierarchy.

Cheers,
	-Matt Helsley

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC] Transactional CGroup task attachment
Posted by Paul Menage on Sat, 12 Jul 2008 02:09:42 GMT
View Forum Message <> Reply to Message

Page 43 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=670
https://new-forum.openvz.org/index.php?t=rview&th=6457&goto=31894#msg_31894
https://new-forum.openvz.org/index.php?t=post&reply_to=31894
https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=6457&goto=31895#msg_31895
https://new-forum.openvz.org/index.php?t=post&reply_to=31895
https://new-forum.openvz.org/index.php

On Fri, Jul 11, 2008 at 7:03 PM, Matt Helsley <matthltc@us.ibm.com> wrote:
>
> True, though I don't think it's as simple as just enabling lockdep. My
> understanding is you won't be able to determine if locks could ever be
> taken out of order unless all of the cgroup systems are enabled and they
> are all in the same cgroup hierarchy.

I wonder how hard it would be to extend lockdep to give a "signature"
of locking operations from point A to point B? Then you could just
compare a new subsystem with all existing subsystems without actually
running with it.

Paul

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC] Transactional CGroup task attachment
Posted by Daisuke Nishimura on Mon, 14 Jul 2008 06:28:22 GMT
View Forum Message <> Reply to Message

On Fri, 11 Jul 2008 09:20:58 +0900, KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
wrote:
> Thank you for your effort.
>
> On Wed, 9 Jul 2008 23:46:33 -0700
> "Paul Menage" <menage@google.com> wrote:
> > 3) memory
> >
> > Curently the memory cgroup only uses the mm->owner's cgroup at charge
> > time, and keeps a reference to the cgroup on the page. However,
> > patches have been proposed that would move all non-shared (page count
> > == 1) pages to the destination cgroup when the mm->owner moves to a
> > new cgroup. Since it's not possible to prevent page count changes
> > without locking all mms on the system, even this transaction approach
> > can't really give guarantees. However, something like the following
> > would probably be suitable. It's very similar to the memrlimit
> > approach, except for the fact that we have to handle the fact that the
> > number of pages we finally move might not be exactly the same as the
> > number of pages we thought we'd be moving.
> >
> > prepare_attach_sleep() {
> > down_read(&mm->mmap_sem);
> > if (mm->owner != state->task) return 0;
> > count = count_unshared_pages(mm);
> > // save the count charged to the new cgroup

Page 44 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=2435
https://new-forum.openvz.org/index.php?t=rview&th=6457&goto=31908#msg_31908
https://new-forum.openvz.org/index.php?t=post&reply_to=31908
https://new-forum.openvz.org/index.php

> > state->subsys[memcgroup_subsys_id] = (void *)count;
> > if ((ret = res_counter_charge(state->dest, count)) {
> > up_read(&mm->mmap_sem);
> > }
> > return ret;
> > }
> >
> > commit_attach() {
> > if (mm->owner == state->task) {
> > final_count = move_unshared_pages(mm, state->dest);
> > res_counter_uncharge(state->src, final_count);
> > count = state->subsys[memcgroup_subsys_id];
> > res_counter_force_charge(state->dest, final_count - count);
> > }
> > up_read(&mm->mmap_sem);
> > }
> >
> > abort_attach_sleep() {
> > if (mm->owner == state->task) {
> > count = state->subsys[memcgroup_subsys_id];
> > res_counter_uncharge(state->dest, count);
> > }
> > up_read(&mm->mmap_sem);
> > }
> >
>
> At frist look, maybe works well. we need some special codes (to move resource)
> but that's all.
>
> My small concern is a state change between prepare_attach_sleep() ->
> commit_attach(). Hmm...but as you say, we cannot do down_write(mmap_sem).
> Maybe inserting some check codes to mem_cgroup_charge() to stop charge while
> move is the last thing we can do.
>
I have two comments.

- I think page reclaiming code decreases the memory charge
 without holding mmap_sem(e.g. try_to_unmap(), __remove_mapping()).
 Shouldn't we handle these cases?
- When swap controller is merged, I should implement
 prepare_attach_nosleep() which holds swap_lock.

> Anyway, if unwinding is supported officially, I think we can find a way
> to go.
>
I think so too.

Page 45 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Thanks,
Daisuke Nishimura.

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC] Transactional CGroup task attachment
Posted by KAMEZAWA Hiroyuki on Mon, 14 Jul 2008 07:50:51 GMT
View Forum Message <> Reply to Message

On Mon, 14 Jul 2008 15:28:22 +0900
Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> wrote:

> On Fri, 11 Jul 2008 09:20:58 +0900, KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
wrote:
> > Thank you for your effort.
> >
> > On Wed, 9 Jul 2008 23:46:33 -0700
> > "Paul Menage" <menage@google.com> wrote:
> > > 3) memory
> > >
> > > Curently the memory cgroup only uses the mm->owner's cgroup at charge
> > > time, and keeps a reference to the cgroup on the page. However,
> > > patches have been proposed that would move all non-shared (page count
> > > == 1) pages to the destination cgroup when the mm->owner moves to a
> > > new cgroup. Since it's not possible to prevent page count changes
> > > without locking all mms on the system, even this transaction approach
> > > can't really give guarantees. However, something like the following
> > > would probably be suitable. It's very similar to the memrlimit
> > > approach, except for the fact that we have to handle the fact that the
> > > number of pages we finally move might not be exactly the same as the
> > > number of pages we thought we'd be moving.
> > >
> > > prepare_attach_sleep() {
> > > down_read(&mm->mmap_sem);
> > > if (mm->owner != state->task) return 0;
> > > count = count_unshared_pages(mm);
> > > // save the count charged to the new cgroup
> > > state->subsys[memcgroup_subsys_id] = (void *)count;
> > > if ((ret = res_counter_charge(state->dest, count)) {
> > > up_read(&mm->mmap_sem);
> > > }
> > > return ret;
> > > }
> > >
> > > commit_attach() {

Page 46 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=777
https://new-forum.openvz.org/index.php?t=rview&th=6457&goto=31911#msg_31911
https://new-forum.openvz.org/index.php?t=post&reply_to=31911
https://new-forum.openvz.org/index.php

> > > if (mm->owner == state->task) {
> > > final_count = move_unshared_pages(mm, state->dest);
> > > res_counter_uncharge(state->src, final_count);
> > > count = state->subsys[memcgroup_subsys_id];
> > > res_counter_force_charge(state->dest, final_count - count);
> > > }
> > > up_read(&mm->mmap_sem);
> > > }
> > >
> > > abort_attach_sleep() {
> > > if (mm->owner == state->task) {
> > > count = state->subsys[memcgroup_subsys_id];
> > > res_counter_uncharge(state->dest, count);
> > > }
> > > up_read(&mm->mmap_sem);
> > > }
> > >
> >
> > At frist look, maybe works well. we need some special codes (to move resource)
> > but that's all.
> >
> > My small concern is a state change between prepare_attach_sleep() ->
> > commit_attach(). Hmm...but as you say, we cannot do down_write(mmap_sem).
> > Maybe inserting some check codes to mem_cgroup_charge() to stop charge while
> > move is the last thing we can do.
> >
> I have two comments.
>
> - I think page reclaiming code decreases the memory charge
> without holding mmap_sem(e.g. try_to_unmap(), __remove_mapping()).
> Shouldn't we handle these cases?

I think decreasing is not problem, here.
I don't like handle mmap->sem by some unclear way. I'd like to add some flag to
mm_struct or page_struct to stop(skip/avoid) charge/uncharge while task move.

> - When swap controller is merged, I should implement
> prepare_attach_nosleep() which holds swap_lock.
>
just making add_to_swap() fail during move is not enough ?

Thanks,
-Kame

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 47 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Subject: Re: [RFC] Transactional CGroup task attachment
Posted by Peter Zijlstra on Mon, 14 Jul 2008 10:50:01 GMT
View Forum Message <> Reply to Message

On Fri, 2008-07-11 at 17:03 -0700, Matt Helsley wrote:
> On Wed, 2008-07-09 at 23:46 -0700, Paul Menage wrote:

> > struct cgroup_attach_state {
>
> nit: How about naming it cgroup_attach_request or
> cgroup_attach_request_state? I suggest this because it's not really
> "state" that's kept beyond the prepare-then-(commit|abort) sequence.

Other alternatives: cgroup_attach_context, cgroup_attach_txn

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC] Transactional CGroup task attachment
Posted by Peter Zijlstra on Mon, 14 Jul 2008 10:56:49 GMT
View Forum Message <> Reply to Message

On Fri, 2008-07-11 at 19:09 -0700, Paul Menage wrote:
> On Fri, Jul 11, 2008 at 7:03 PM, Matt Helsley <matthltc@us.ibm.com> wrote:
> >
> > True, though I don't think it's as simple as just enabling lockdep. My
> > understanding is you won't be able to determine if locks could ever be
> > taken out of order unless all of the cgroup systems are enabled and they
> > are all in the same cgroup hierarchy.
>
> I wonder how hard it would be to extend lockdep to give a "signature"
> of locking operations from point A to point B? Then you could just
> compare a new subsystem with all existing subsystems without actually
> running with it.

something like: http://lkml.org/lkml/2008/6/22/308 ?

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 48 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=788
https://new-forum.openvz.org/index.php?t=rview&th=6457&goto=31913#msg_31913
https://new-forum.openvz.org/index.php?t=post&reply_to=31913
https://new-forum.openvz.org/index.php?t=usrinfo&id=788
https://new-forum.openvz.org/index.php?t=rview&th=6457&goto=31914#msg_31914
https://new-forum.openvz.org/index.php?t=post&reply_to=31914
https://new-forum.openvz.org/index.php

Subject: Re: [RFC] Transactional CGroup task attachment
Posted by Daisuke Nishimura on Mon, 14 Jul 2008 12:36:09 GMT
View Forum Message <> Reply to Message

On Mon, 14 Jul 2008 16:54:44 +0900, KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
wrote:
> On Mon, 14 Jul 2008 15:28:22 +0900
> Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> wrote:
>
> > On Fri, 11 Jul 2008 09:20:58 +0900, KAMEZAWA Hiroyuki
<kamezawa.hiroyu@jp.fujitsu.com> wrote:
> > > Thank you for your effort.
> > >
> > > On Wed, 9 Jul 2008 23:46:33 -0700
> > > "Paul Menage" <menage@google.com> wrote:
> > > > 3) memory
> > > >
> > > > Curently the memory cgroup only uses the mm->owner's cgroup at charge
> > > > time, and keeps a reference to the cgroup on the page. However,
> > > > patches have been proposed that would move all non-shared (page count
> > > > == 1) pages to the destination cgroup when the mm->owner moves to a
> > > > new cgroup. Since it's not possible to prevent page count changes
> > > > without locking all mms on the system, even this transaction approach
> > > > can't really give guarantees. However, something like the following
> > > > would probably be suitable. It's very similar to the memrlimit
> > > > approach, except for the fact that we have to handle the fact that the
> > > > number of pages we finally move might not be exactly the same as the
> > > > number of pages we thought we'd be moving.
> > > >
> > > > prepare_attach_sleep() {
> > > > down_read(&mm->mmap_sem);
> > > > if (mm->owner != state->task) return 0;
> > > > count = count_unshared_pages(mm);
> > > > // save the count charged to the new cgroup
> > > > state->subsys[memcgroup_subsys_id] = (void *)count;
> > > > if ((ret = res_counter_charge(state->dest, count)) {
> > > > up_read(&mm->mmap_sem);
> > > > }
> > > > return ret;
> > > > }
> > > >
> > > > commit_attach() {
> > > > if (mm->owner == state->task) {
> > > > final_count = move_unshared_pages(mm, state->dest);
> > > > res_counter_uncharge(state->src, final_count);
> > > > count = state->subsys[memcgroup_subsys_id];
> > > > res_counter_force_charge(state->dest, final_count - count);
> > > > }
> > > > up_read(&mm->mmap_sem);

Page 49 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=2435
https://new-forum.openvz.org/index.php?t=rview&th=6457&goto=31917#msg_31917
https://new-forum.openvz.org/index.php?t=post&reply_to=31917
https://new-forum.openvz.org/index.php

> > > > }
> > > >
> > > > abort_attach_sleep() {
> > > > if (mm->owner == state->task) {
> > > > count = state->subsys[memcgroup_subsys_id];
> > > > res_counter_uncharge(state->dest, count);
> > > > }
> > > > up_read(&mm->mmap_sem);
> > > > }
> > > >
> > >
> > > At frist look, maybe works well. we need some special codes (to move resource)
> > > but that's all.
> > >
> > > My small concern is a state change between prepare_attach_sleep() ->
> > > commit_attach(). Hmm...but as you say, we cannot do down_write(mmap_sem).
> > > Maybe inserting some check codes to mem_cgroup_charge() to stop charge while
> > > move is the last thing we can do.
> > >
> > I have two comments.
> >
> > - I think page reclaiming code decreases the memory charge
> > without holding mmap_sem(e.g. try_to_unmap(), __remove_mapping()).
> > Shouldn't we handle these cases?
>
> I think decreasing is not problem, here.
> I don't like handle mmap->sem by some unclear way. I'd like to add some flag to
> mm_struct or page_struct to stop(skip/avoid) charge/uncharge while task move.
>
It would be a good idea.

> > - When swap controller is merged, I should implement
> > prepare_attach_nosleep() which holds swap_lock.
> >
> just making add_to_swap() fail during move is not enough ?
>
This can only avoid increasing, I think.

I thought it would be better to avoid decreasing too,
just because some special handling on uncharged usage
would be needed in rollback or commit.

Anyway, I think it depends on how to implement move and rollback,
and I will consider more.
Thank you for your suggestion.

Thanks,

Page 50 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Daisuke Nishimura.

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC] Transactional CGroup task attachment
Posted by Paul Menage on Mon, 14 Jul 2008 19:16:08 GMT
View Forum Message <> Reply to Message

On Sun, Jul 13, 2008 at 11:28 PM, Daisuke Nishimura
<nishimura@mxp.nes.nec.co.jp> wrote:
>
> - I think page reclaiming code decreases the memory charge
> without holding mmap_sem(e.g. try_to_unmap(), __remove_mapping()).
> Shouldn't we handle these cases?

The prepare_attach_nosleep() call could take the res_counter's
spinlock, which would lock out all other charges and uncharges until
the transaction was completed; that might be enough for what you want.
We'd need to export lock/unlock functions from res_counter.

Paul

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 51 of 51 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=6457&goto=31926#msg_31926
https://new-forum.openvz.org/index.php?t=post&reply_to=31926
https://new-forum.openvz.org/index.php

