Subject: [PATCH RFC] cgroup_clone: use pid of newly created task for new cgroup
Posted by serue on Tue, 10 Jun 2008 21:23:02 GMT

View Forum Message <> Reply to Message

>From faa707a44b971f5f3bf24e6a0c760cch4ad278e6 Mon Sep 17 00:00:00 2001
From: Serge Hallyn <serge@us.ibm.com>

Date: Tue, 10 Jun 2008 15:57:32 -0500

Subject: [PATCH 1/1] cgroup_clone: use pid of newly created task for new cgroup

cgroup_clone creates a new cgroup with the pid of the task. This works
correctly for unshare, but for clone cgroup_clone is called from
copy_namespaces inside copy_process, which happens before the new pid
is created. As a result, the new cgroup was created with current's pid.

This patch:

1. Moves the call inside copy_process to after the new pid
is created

2. Passes the struct pid into ns_cgroup_clone (as it is not
yet attached to the task)

3. Passes a name from ns_cgroup_clone() into cgroup_clone()
so as to keep cgroup_clone() itself simpler

4. Uses pid_vnr() to get the process id value, so that the
pid used to name the new cgroup is always the pid as it
would be known to the task which did the cloning or
unsharing. | think that is the most intuitive thing to
do. This way, task t1 does clone(CLONE_NEWPID) to get
t2, which does clone(CLONE_NEWRPID) to get t3, then the
cgroup for t3 will be named for the pid by which t2 knows
t3.

This hasn't been tested enough to request inclusion, but I'd like to
get feedback especially from Paul Menage on whether the semantics
make sense.

(Thanks to Dan Smith for finding the main bug)

Signed-off-by: Serge Hallyn <serge@us.ibm.com>

include/linux/cgroup.h | 2 +-
include/linux/nsproxy.h | 7 +++++--

kernel/cgroup.c | 16 ++++++t--mmaaee
kernel/fork.c | 4 ++++
kernel/ns_cgroup.c | 8 ++++++--
kernel/nsproxy.c | 8 +-------

6 files changed, 24 insertions(+), 21 deletions(-)

diff --git a/include/linux/cgroup.h b/include/linux/cgroup.h
index 3690c3b..d9b3022 100644

Page 1 of 18 ---- Cenerated from OpenVZ Forum


https://new-forum.openvz.org/index.php?t=usrinfo&id=204
https://new-forum.openvz.org/index.php?t=rview&th=6251&goto=30932#msg_30932
https://new-forum.openvz.org/index.php?t=post&reply_to=30932
https://new-forum.openvz.org/index.php

--- al/include/linux/cgroup.h

+++ b/include/linux/cgroup.h

@@ -349,7 +349,7 @@ static inline struct cgroup* task_cgroup(struct task_struct *task,
return task_subsys_state(task, subsys_id)->cgroup;

}

-int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *ss);
+int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *ss, char *name);

/* A cgroup_iter should be treated as an opaque object */

struct cgroup_iter {

diff --git a/include/linux/nsproxy.h b/include/linux/nsproxy.h

index 0e66b57..c8a768e 100644

--- a/include/linux/nsproxy.h

+++ b/include/linux/nsproxy.h

@@ -82,9 +82,12 @@ static inline void get_nsproxy(struct nsproxy *ns)
}

#ifdef CONFIG_CGROUP_NS

-int ns_cgroup_clone(struct task_struct *tsk);

+int ns_cgroup_clone(struct task_struct *tsk, struct pid *pid);

#else

-static inline int ns_cgroup_clone(struct task_struct *tsk) { return O; }
+static inline int ns_cgroup_clone(struct task_struct *tsk, struct pid *pid)
gl

+ return O;

+}

#endif

#endif
diff --git a/kernel/cgroup.c b/kernel/cgroup.c
index 79fa060..53b54db 100644
--- a/kernel/cgroup.c
+++ b/kernel/cgroup.c
@@ -2874,11 +2874,11 @@ void cgroup_exit(struct task_struct *tsk, int run_callbacks)
* subsystem is attached to, and move this task into the new
* child.
*/
-int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys)
+int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
+ char *name)
{
struct dentry *dentry;
int ret = 0;
- char nodename[MAX_CGROUP_TYPE_NAMELEN];
struct cgroup *parent, *child,
struct inode *inode;
struct css_set *cg;

Page 2 of 18 ---- Cenerated from OpenVZ Forum


https://new-forum.openvz.org/index.php

@@ -2903,8 +2903,6 @@ int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys
*subsys)

cg = tsk->cgroups;

parent = task _cgroup(tsk, subsys->subsys_id);

- snprintf(hodename, MAX_CGROUP_TYPE_NAMELEN, "%d", tsk->pid);
* Pin the hierarchy */
atomic_inc(&parent->root->sb->s_active);

@@ -2918,10 +2916,10 @@ int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys
*subsys)
/* Hold the parent directory mutex across this operation to
* stop anyone else deleting the new cgroup */
muteXx_lock(&inode->i_mutex);
- dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
+ dentry = lookup_one_len(name, parent->dentry, strlen(name));
if IS_ERR(dentry)) {
printk(KERN_INFO
- "cgroup: Couldn't allocate dentry for %s: %Ild\n", nodename,
+ "cgroup: Couldn't allocate dentry for %s: %Ild\n", name,
PTR_ERR(dentry));
ret = PTR_ERR(dentry);
goto out_release;
@@ -2933,14 +2931,14 @@ int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys
*subsys)
dput(dentry);
if (ret) {
printk(KERN_INFO
- "Failed to create cgroup %s: %d\n", nodename,
+ "Failed to create cgroup %s: %d\n", name,
ret);
goto out_release;

}

if (Ichild) {

printk(KERN_INFO
- "Couldn't find new cgroup %s\n", nodename);
+ "Couldn't find new cgroup %s\n", name);

ret = -ENOMEM;

goto out_release;

}
@@ -2961,7 +2959,7 @@ int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys
*subsys)

* point. */
printk(KERN_INFO
"Race in cgroup_clone() - leaking cgroup %s\n",

- nodename);

Page 3 of 18 ---- Cenerated from OpenVZ Forum


https://new-forum.openvz.org/index.php

+ name);
goto again;

}

diff --git a/kernel/fork.c b/kernel/fork.c

index f0e7767..47c0a97 100644

--- a/kernel/fork.c

+++ b/kernel/fork.c

@@ -1125,6 +1125,10 @@ static struct task_struct *copy_process(unsigned long clone_flags,
if (clone_flags & CLONE_THREAD)
p->tgid = current->tgid;

+ if (current->nsproxy != p->nsproxy)

+ if ((retval = ns_cgroup_clone(p, pid)))

+ goto bad_fork free pid;

+
p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
/*
* Clear TID on mm_release()?

diff --git a/kernel/ns_cgroup.c b/kernel/ns_cgroup.c

index 48d7ed6..7334f72 100644

--- a/lkernel/ns_cgroup.c

+++ b/kernel/ns_cgroup.c

@@ -24,9 +24,13 @@ static inline struct ns_cgroup *cgroup_to_ns(

struct ns_cgroup, css);
}

-int ns_cgroup_clone(struct task_struct *task)

+int ns_cgroup_clone(struct task_struct *task, struct pid *inpid)

{

- return cgroup_clone(task, &ns_subsys);

+ struct pid *pid = (inpid ? inpid : task_pid(task));

+ char name[MAX_CGROUP_TYPE_NAMELEN];

+

+ snprintf(hame, MAX_CGROUP_TYPE_NAMELEN, "%d", pid_vnr(pid));
+ return cgroup_clone(task, &ns_subsys, name);

}

/*

diff --git a/kernel/nsproxy.c b/kernel/nsproxy.c

index adc7851..5cal106d 100644

--- a/kernel/nsproxy.c

+++ b/kernel/nsproxy.c

@@ -157,12 +157,6 @@ int copy_namespaces(unsigned long flags, struct task_struct *tsk)
goto out;

}

- err = ns_cgroup_clone(tsk);

Page 4 of 18 ---- Cenerated from OpenVZ Forum


https://new-forum.openvz.org/index.php

- if (err) {

- put_nsproxy(new_ns);
- goto out;

-}

tsk->nsproxy = new_ns;

out:
@@ -209,7 +203,7 @@ int unshare_nsproxy_namespaces(unsigned long unshare_flags,
goto out;

}

- err = ns_cgroup_clone(current);

+ err = ns_cgroup_clone(current, NULL);
if (err)
put_nsproxy(*new_nsp);

1.5.4.3

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH RFC] cgroup_clone: use pid of newly created task for new
cgroup
Posted by Paul Menage on Wed, 11 Jun 2008 07:24:31 GMT

View Forum Message <> Reply to Message

On Tue, Jun 10, 2008 at 2:23 PM, Serge E. Hallyn <serue@us.ibm.com> wrote:

> From faa707a44b971f5f3bf24e6a0c760cch4ad278e6 Mon Sep 17 00:00:00 2001
> From: Serge Hallyn <serge@us.ibm.com>

> Date: Tue, 10 Jun 2008 15:57:32 -0500

> Subject: [PATCH 1/1] cgroup_clone: use pid of newly created task for new cgroup
>

> cgroup_clone creates a new cgroup with the pid of the task. This works

> correctly for unshare, but for clone cgroup_clone is called from

> copy_hamespaces inside copy_process, which happens before the new pid

> is created. As a result, the new cgroup was created with current's pid.

> This patch:

>

> 1. Moves the call inside copy_process to after the new pid

> is created

> 2. Passes the struct pid into ns_cgroup_clone (as it is not

> yet attached to the task)

> 3. Passes a name from ns_cgroup_clone() into cgroup_clone()

Page 5 of 18 ---- Cenerated from OpenVZ Forum


https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=6251&goto=30951#msg_30951
https://new-forum.openvz.org/index.php?t=post&reply_to=30951
https://new-forum.openvz.org/index.php

so as to keep cgroup_clone() itself simpler

4. Uses pid_vnr() to get the process id value, so that the
pid used to name the new cgroup is always the pid as it
would be known to the task which did the cloning or
unsharing. 1 think that is the most intuitive thing to
do. This way, task t1 does clone(CLONE_NEWRPID) to get
t2, which does clone(CLONE_NEWRPID) to get t3, then the
cgroup for t3 will be named for the pid by which t2 knows
t3.

VVVVYVYVYVYVYV

>

> This hasn't been tested enough to request inclusion, but I'd like to

> get feedback especially from Paul Menage on whether the semantics
> make sense.

Seems like a reasonable idea. It represents yet another change to the
userspace API following the 2.6.25.x one, but | guess that again it's
not one that anyone is seriously relying on yet (in particular since

it's not usable more than once from the same parent currently).

> -int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys)
> +int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
>+ char *name)

You could reduce the patch churn by naming this parameter nodename.
> - return cgroup_clone(task, &ns_subsys);

>+ struct pid *pid = (inpid ? inpid : task_pid(task));

>+ char name[MAX_CGROUP_TYPE_NAMELEN];

We should probably stop using MAX_CGROUP_TYPE_NAMELEN for this buffer
length and use something that explicitly sized to fit a pid_t.

>+

>+ snprintf(hame, MAX_CGROUP_TYPE_NAMELEN, "%d", pid_vnr(pid));
>+ return cgroup_clone(task, &ns_subsys, name);

>}

>

> [*

> diff --git a/kernel/nsproxy.c b/kernel/nsproxy.c

> index adc7851..5cal106d 100644

> --- a/kernel/nsproxy.c

> +++ b/kernel/nsproxy.c

> @@ -157,12 +157,6 @@ int copy_namespaces(unsigned long flags, struct task_struct *tsk)
> goto out;

>}

>

> - err = ns_cgroup_clone(tsk);
> - if (err) {

Page 6 of 18 ---- Cenerated from OpenVZ Forum


https://new-forum.openvz.org/index.php

> - put_nsproxy(new_ns);

> - goto out;

>- }

> -

> tsk->nsproxy = new_ns;

>

> out:

> @@ -209,7 +203,7 @@ int unshare_nsproxy_namespaces(unsigned long unshare_flags,
> goto out;

>}

>

> - err = ns_cgroup_clone(current);

>+ err = ns_cgroup_clone(current, NULL);

Maybe pass task_pid(current) here rather than doing the ?: in
ns_cgroup_clone() ?

Paul

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH RFC] cgroup_clone: use pid of newly created task for new
cgroup
Posted by serue on Wed, 11 Jun 2008 15:46:06 GMT

View Forum Message <> Reply to Message

Quoting Paul Menage (menage@google.com):

> On Tue, Jun 10, 2008 at 2:23 PM, Serge E. Hallyn <serue@us.ibm.com> wrote:

> > From faa707a44b971f5f3bf24e6a0c760ccb4ad278e6 Mon Sep 17 00:00:00 2001
> > From: Serge Hallyn <serge@us.ibm.com>

> > Date: Tue, 10 Jun 2008 15:57:32 -0500

> > Subject: [PATCH 1/1] cgroup_clone: use pid of newly created task for new cgroup
> >

> > cgroup_clone creates a new cgroup with the pid of the task. This works

> > correctly for unshare, but for clone cgroup_clone is called from

> > copy_namespaces inside copy_process, which happens before the new pid

> > s created. As a result, the new cgroup was created with current's pid.

> > This patch:

> >

> > 1. Moves the call inside copy_process to after the new pid

> > is created

> > 2. Passes the struct pid into ns_cgroup_clone (as it is not

> > yet attached to the task)

> > 3. Passes a name from ns_cgroup_clone() into cgroup_clone()
> > so as to keep cgroup_clone() itself simpler

Page 7 of 18 ---- Cenerated from OpenVZ Forum


https://new-forum.openvz.org/index.php?t=usrinfo&id=204
https://new-forum.openvz.org/index.php?t=rview&th=6251&goto=30980#msg_30980
https://new-forum.openvz.org/index.php?t=post&reply_to=30980
https://new-forum.openvz.org/index.php

> > 4. Uses pid_vnr() to get the process id value, so that the

> > pid used to name the new cgroup is always the pid as it

> > would be known to the task which did the cloning or

> > unsharing. 1 think that is the most intuitive thing to

> > do. This way, task t1 does clone(CLONE_NEWPID) to get
> > t2, which does clone(CLONE_NEWPID) to get t3, then the
>> cgroup for t3 will be named for the pid by which t2 knows
> > t3.

> >

> > This hasn't been tested enough to request inclusion, but I'd like to

> > get feedback especially from Paul Menage on whether the semantics

> > make sense.

>

> Seems like a reasonable idea. It represents yet another change to the

> userspace API following the 2.6.25.x one, but | guess that again it's

> not one that anyone is seriously relying on yet (in particular since

> it's not usable more than once from the same parent currently).

>

> > -int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys)
> > +int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,

>>+ char *name)

>

> You could reduce the patch churn by naming this parameter nodename.
>> - return cgroup_clone(task, &ns_subsys);

>>+ struct pid *pid = (inpid ? inpid : task_pid(task));

>>+ char name[MAX_CGROUP_TYPE_NAMELENT;

>

> We should probably stop using MAX_CGROUP_TYPE_NAMELEN for this buffer
> length and use something that explicitly sized to fit a pid_t.

>

>

> >+

> >+ snprintf(hame, MAX_CGROUP_TYPE_NAMELEN, "%d", pid_vnr(pid));
> >+ return cgroup_clone(task, &ns_subsys, name);

>> }

> >

>> [*

> > diff --git a/kernel/nsproxy.c b/kernel/nsproxy.c

> > index adc7851..5cal106d 100644

> > --- a/kernel/nsproxy.c

> > +++ b/kernel/nsproxy.c

>> @@ -157,12 +157,6 @@ int copy_namespaces(unsigned long flags, struct task_struct *tsk)
> > goto out;

> > }

> >

>>- err = ns_cgroup_clone(tsk);
>> - if (err) {

>> - put_nsproxy(new_ns);

Page 8 of 18 ---- Cenerated from OpenVZ Forum


https://new-forum.openvz.org/index.php

>> - goto out;

>> - }

> > -

> > tsk->nsproxy = new_ns;

> >

> > out:

>> @@ -209,7 +203,7 @@ int unshare_nsproxy_namespaces(unsigned long unshare_flags,
> > goto out;

> > }

> >

>> - err = ns_cgroup_clone(current);

> >+ err = ns_cgroup_clone(current, NULL);

>

> Maybe pass task_pid(current) here rather than doing the ?: in
> ns_cgroup_clone() ?

>

> Paul

Thanks, Paul. Good ideas. Here is a patch addressing the comments.
-serge

>From f0635c20e9e9643fa9a90dd7e29b7855ff32ad40 Mon Sep 17 00:00:00 2001
From: Serge Hallyn <serge@us.ibm.com>

Date: Wed, 11 Jun 2008 10:41:37 -0500

Subject: [PATCH 1/1] cgroup_clone: use pid of newly created task for new cgroup

cgroup_clone creates a new cgroup with the pid of the task. This works
correctly for unshare, but for clone cgroup_clone is called from
copy_namespaces inside copy_process, which happens before the new pid
is created. As a result, the new cgroup was created with current's pid.

This patch:

1. Moves the call inside copy_process to after the new pid
is created

2. Passes the struct pid into ns_cgroup_clone (as it is not
yet attached to the task)

3. Passes a name from ns_cgroup_clone() into cgroup_clone()
so as to keep cgroup_clone() itself simpler

4. Uses pid_vnr() to get the process id value, so that the
pid used to name the new cgroup is always the pid as it
would be known to the task which did the cloning or
unsharing. | think that is the most intuitive thing to
do. This way, task t1 does clone(CLONE_NEWPID) to get
t2, which does clone(CLONE_NEWPID) to get t3, then the
cgroup for t3 will be named for the pid by which t2 knows
t3.

Page 9 of 18 ---- Cenerated from OpenVZ Forum


https://new-forum.openvz.org/index.php

(Thanks to Dan Smith for finding the main bug)

Changelog:
June 11: Incorporate Paul Menage's feedback: don't pass
NULL to ns_cgroup_clone from unshare, and reduce
patch size by using 'nodename’ in cgroup_clone.
June 10: Original version

Signed-off-by: Serge Hallyn <serge@us.ibm.com>

include/linux/cgroup.h | 3 ++-
include/linux/nsproxy.h | 7 +++++--

kernel/cgroup.c | 7 +++----
kernel/fork.c | 4 ++++
kernel/ns_cgroup.c | 7 +++++--
kernel/nsproxy.c | 84—

6 files changed, 20 insertions(+), 16 deletions(-)

diff --git a/include/linux/cgroup.h b/include/linux/cgroup.h

index 3690c3b..72cb6ca 100644

--- al/include/linux/cgroup.h

+++ b/include/linux/cgroup.h

@@ -349,7 +349,8 @@ static inline struct cgroup* task_cgroup(struct task_struct *task,
return task_subsys_state(task, subsys_id)->cgroup;

}

-int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *ss);
+int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *ss,
+  char *nodename);

[* A cgroup_iter should be treated as an opaque object */

struct cgroup_iter {

diff --git a/include/linux/nsproxy.h b/include/linux/nsproxy.h

index 0e66b57..c8a768e 100644

--- al/include/linux/nsproxy.h

+++ b/include/linux/nsproxy.h

@@ -82,9 +82,12 @@ static inline void get_nsproxy(struct nsproxy *ns)
}

#ifdef CONFIG_CGROUP_NS

-int ns_cgroup_clone(struct task_struct *tsk);

+int ns_cgroup_clone(struct task_struct *tsk, struct pid *pid);

#else

-static inline int ns_cgroup_clone(struct task_struct *tsk) { return 0; }
+static inline int ns_cgroup_clone(struct task_struct *tsk, struct pid *pid)
+H

+ return O;

+}

Page 10 of 18 ---- Cenerated from OpenVZ Forum


https://new-forum.openvz.org/index.php

#endif

#endif
diff --git a/kernel/cgroup.c b/kernel/cgroup.c
index 79fa060..b4c4b75 100644
--- a/kernel/cgroup.c
+++ b/kernel/cgroup.c
@@ -2869,16 +2869,17 @@ void cgroup_exit(struct task_struct *tsk, int run_callbacks)
* cgroup_clone - clone the cgroup the given subsystem is attached to
* @tsk: the task to be moved
* @subsys: the given subsystem
+ * @nodename: the name for the new cgroup
*
* Duplicate the current cgroup in the hierarchy that the given
* subsystem is attached to, and move this task into the new
* child.
*/
-int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys)
+int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
+  char *nodename)
{
struct dentry *dentry;
int ret = 0;
- char nodename[MAX_CGROUP_TYPE_NAMELEN];
struct cgroup *parent, *child;
struct inode *inode;
struct css_set *cg;
@@ -2903,8 +2904,6 @@ int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys
*subsys)
cg = tsk->cgroups;
parent = task_cgroup(tsk, subsys->subsys _id);

- snprintf(hodename, MAX_CGROUP_TYPE_NAMELEN, "%d", tsk->pid);
[* Pin the hierarchy */
atomic_inc(&parent->root->sb->s_active);

diff --git a/kernel/fork.c b/kernel/fork.c

index f0e7767..47c0a97 100644

--- a/kernel/fork.c

+++ b/kernel/fork.c

@@ -1125,6 +1125,10 @@ static struct task_struct *copy_process(unsigned long clone_flags,
if (clone_flags & CLONE_THREAD)
p->tgid = current->tgid;

+ if (current->nsproxy != p->nsproxy)
+ if ((retval = ns_cgroup_clone(p, pid)))
+ goto bad_fork _free pid;

Page 11 of 18 ---- Cenerated from OpenVZ Forum


https://new-forum.openvz.org/index.php

+
p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
/*
* Clear TID on mm_release()?

diff --git a/kernel/ns_cgroup.c b/kernel/ns_cgroup.c

index 48d7ed6..6431fb7 100644

--- alkernel/ns_cgroup.c

+++ b/kernel/ns_cgroup.c

@@ -24,9 +24,12 @@ static inline struct ns_cgroup *cgroup_to_ns(

struct ns_cgroup, css);
}

-int ns_cgroup_clone(struct task_struct *task)

+int ns_cgroup_clone(struct task_struct *task, struct pid *pid)
{

- return cgroup_clone(task, &ns_subsys);

+ char name[PROC_NUMBUF];

+

+ snprintf(hname, PROC_NUMBUF, "%d", pid_vnr(pid));

+ return cgroup_clone(task, &ns_subsys, name);

}

/*

diff --git a/kernel/nsproxy.c b/kernel/nsproxy.c

index adc7851..21575fc 100644

--- a/lkernel/nsproxy.c

+++ b/kernel/nsproxy.c

@@ -157,12 +157,6 @@ int copy_namespaces(unsigned long flags, struct task_struct *tsk)
goto out;

}

- err = ns_cgroup_clone(tsk);
- if (err) {

- put_nsproxy(new_ns);

- goto out;

-}

tsk->nsproxy = new_ns;

out:
@@ -209,7 +203,7 @@ int unshare_nsproxy_namespaces(unsigned long unshare_flags,
goto out;

}

- err = ns_cgroup_clone(current);

+ err = ns_cgroup_clone(current, task_pid(current));
if (err)
put_nsproxy(*new_nsp);

Page 12 of 18 ---- Cenerated from OpenVZ Forum


https://new-forum.openvz.org/index.php

1.5.4.3

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH RFC] cgroup_clone: use pid of newly created task for new
cgroup
Posted by serue on Wed, 11 Jun 2008 15:46:37 GMT

View Forum Message <> Reply to Message

Quoting Dan Smith (danms@us.ibm.com):

> SH> As a result, the new cgroup was created with current's pid.

>

> This works for me and results in the creation of a cgroup named after
> the new task's pid instead of the parent's pid.

>

> Thanks!

Cool, thanks Dan, I'll add a Tested-by: from you if you don't mind?

thanks,
-serge

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH RFC] cgroup_clone: use pid of newly created task for new
cgroup
Posted by Paul Menage on Wed, 11 Jun 2008 15:59:12 GMT

View Forum Message <> Reply to Message

On Wed, Jun 11, 2008 at 8:46 AM, Serge E. Hallyn <serue@us.ibm.com> wrote:

>

> From f0635c20e9e9643fa9a90dd7e29b7855ff32ad40 Mon Sep 17 00:00:00 2001
> From: Serge Hallyn <serge@us.ibm.com>

> Date: Wed, 11 Jun 2008 10:41:37 -0500

> Subject: [PATCH 1/1] cgroup_clone: use pid of newly created task for new cgroup
>

> cgroup_clone creates a new cgroup with the pid of the task. This works

> correctly for unshare, but for clone cgroup_clone is called from

Page 13 of 18 ---- Cenerated from OpenVZ Forum


https://new-forum.openvz.org/index.php?t=usrinfo&id=204
https://new-forum.openvz.org/index.php?t=rview&th=6251&goto=30981#msg_30981
https://new-forum.openvz.org/index.php?t=post&reply_to=30981
https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=6251&goto=30982#msg_30982
https://new-forum.openvz.org/index.php?t=post&reply_to=30982
https://new-forum.openvz.org/index.php

> copy_hamespaces inside copy_process, which happens before the new pid
> is created. As a result, the new cgroup was created with current's pid.

> This patch:

>

> 1. Moves the call inside copy_process to after the new pid
> is created

> 2. Passes the struct pid into ns_cgroup_clone (as it is not
> yet attached to the task)

> 3. Passes a name from ns_cgroup_clone() into cgroup_clone()
> So as to keep cgroup_clone() itself simpler

> 4. Uses pid_vnr() to get the process id value, so that the

> pid used to name the new cgroup is always the pid as it
> would be known to the task which did the cloning or

> unsharing. 1 think that is the most intuitive thing to

> do. This way, task t1 does clone(CLONE_NEWPID) to get
> t2, which does clone(CLONE_NEWPID) to get t3, then the
> cgroup for t3 will be named for the pid by which t2 knows
> t3.

>

>

>

>

>

>

>

>

>

>

(Thanks to Dan Smith for finding the main bug)
Changelog:

June 11: Incorporate Paul Menage's feedback: don't pass
NULL to ns_cgroup_clone from unshare, and reduce
patch size by using 'nodename' in cgroup_clone.

June 10: Original version

Signed-off-by: Serge Hallyn <serge@us.ibm.com>

Acked-by: Paul Menage <menage@google.com>

> -
> include/linux/cgroup.h | 3 ++-

> include/linux/nsproxy.h | 7 +++++--
> kernel/cgroup.c | 7 +++----

> kernel/fork.c | 4 ++++

> kernel/ns_cgroup.c | 7 +++++--
> kernel/nsproxy.c | 84—

>

6 files changed, 20 insertions(+), 16 deletions(-)

>

> diff --git a/include/linux/cgroup.h b/include/linux/cgroup.h

> index 3690c3b..72cb6ca 100644

> --- a/include/linux/cgroup.h

> +++ b/include/linux/cgroup.h

> @@ -349,7 +349,8 @@ static inline struct cgroup* task_cgroup(struct task_struct *task,
> return task_subsys_state(task, subsys_id)->cgroup;

>}

>

Page 14 of 18 ---- Cenerated from OpenVZ Forum


https://new-forum.openvz.org/index.php

> -int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *ss);

> +int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *ss,

>+ char *nodename);

>

> [* A cgroup_iter should be treated as an opaque object */

> struct cgroup_iter {

> diff --git a/include/linux/nsproxy.h b/include/linux/nsproxy.h

> index 0e66b57..c8a768e 100644

> --- a/include/linux/nsproxy.h

> +++ b/include/linux/nsproxy.h

> @@ -82,9 +82,12 @@ static inline void get_nsproxy(struct nsproxy *ns)
>}

>

> #ifdef CONFIG_CGROUP_NS

> -int ns_cgroup_clone(struct task_struct *tsk);

> +int ns_cgroup_clone(struct task_struct *tsk, struct pid *pid);

> #Helse

> -static inline int ns_cgroup_clone(struct task_struct *tsk) { return 0; }

> +static inline int ns_cgroup_clone(struct task_struct *tsk, struct pid *pid)

> +{

>+ return O;
> +}

> #endif

>

> #endif

> diff --git a/kernel/cgroup.c b/kernel/cgroup.c

> index 79fa060..b4c4b75 100644

> --- a/kernel/cgroup.c

> +++ b/kernel/cgroup.c

> @@ -2869,16 +2869,17 @@ void cgroup_exit(struct task_struct *tsk, int run_callbacks)
> * cgroup_clone - clone the cgroup the given subsystem is attached to

* @tsk: the task to be moved

* @subsys: the given subsystem

+ * @nodename: the name for the new cgroup

*

* Duplicate the current cgroup in the hierarchy that the given

* subsystem is attached to, and move this task into the new

* child.

> *f

> -int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys)
> +int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,

VVVVYVYVYV

>+ char *nodename)

>{

> struct dentry *dentry;

> int ret = 0;

> - char nodename[MAX_CGROUP_TYPE_NAMELEN];
> struct cgroup *parent, *child,;

> struct inode *inode;

Page 15 of 18 ---- Cenerated from OpenVZ Forum


https://new-forum.openvz.org/index.php

> struct css_set *cg;
> @@ -2903,8 +2904,6 @@ int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys

*subsys)

> cg = tsk->cgroups;

> parent = task_cgroup(tsk, subsys->subsys _id);

>

> - snprintf(nodename, MAX_CGROUP_TYPE_NAMELEN, "%d", tsk->pid);
> -

> /* Pin the hierarchy */

> atomic_inc(&parent->root->sb->s_active);

>

> diff --git a/kernel/fork.c b/kernel/fork.c

> index f0e7767..47c0a97 100644

> --- a/kernel/fork.c

> +++ b/kernel/fork.c

> @@ -1125,6 +1125,10 @@ static struct task_struct *copy_process(unsigned long clone_flags,
> if (clone_flags & CLONE_THREAD)

> p->tgid = current->tgid;

>

>+ if (current->nsproxy != p->nsproxy)

>+ if ((retval = ns_cgroup_clone(p, pid)))
> + goto bad_fork_free_pid,;

> +

> p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL,;
> [*

> * Clear TID on mm_release()?

> diff --git a/kernel/ns_cgroup.c b/kernel/ns_cgroup.c

> index 48d7ed6..6431fb7 100644

> --- a/kernel/ns_cgroup.c

> +++ b/kernel/ns_cgroup.c

> @@ -24,9 +24,12 @@ static inline struct ns_cgroup *cgroup_to_ns(
> struct ns_cgroup, css);

>}

>

> -int ns_cgroup_clone(struct task_struct *task)

> +int ns_cgroup_clone(struct task_struct *task, struct pid *pid)

>

> - return cgroup_clone(task, &ns_subsys);
>+ char name[PROC_NUMBUF];

> +

>+ snprintf(name, PROC_NUMBUF, "%d", pid_vnr(pid));
>+ return cgroup_clone(task, &ns_subsys, name);

>}

>

> [*

> diff --git a/kernel/nsproxy.c b/kernel/nsproxy.c

> index adc7851..21575fc 100644

> --- a/kernel/nsproxy.c

Page 16 of 18 ---- Cenerated from OpenVZ Forum


https://new-forum.openvz.org/index.php

> +++ b/kernel/nsproxy.c

> @@ -157,12 +157,6 @@ int copy_namespaces(unsigned long flags, struct task_struct *tsk)
> goto out;

> )

>

> - err = ns_cgroup_clone(tsk);

> - if (err) {

> - put_nsproxy(new_ns);

> - goto out;

>- 1}

> -

> tsk->nsproxy = new_ns;

>

> out:

> @@ -209,7 +203,7 @@ int unshare_nsproxy_namespaces(unsigned long unshare_flags,
> goto out;

>}

>

> - err = ns_cgroup_clone(current);

>+ err = ns_cgroup_clone(current, task_pid(current));
> if (err)

> put_nsproxy(*new_nsp);

>

> -

>1.54.3

>

>

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH RFC] cgroup_clone: use pid of newly created task for new
cgroup
Posted by serue on Thu, 12 Jun 2008 00:37:42 GMT

View Forum Message <> Reply to Message

Quoting Paul Menage (menage@google.com):

> On Wed, Jun 11, 2008 at 8:46 AM, Serge E. Hallyn <serue@us.ibm.com> wrote:

> >

> > From f0635c20e9e9643fa9a90dd7e29b7855ff32ad40 Mon Sep 17 00:00:00 2001
> > From: Serge Hallyn <serge@us.ibm.com>

> > Date: Wed, 11 Jun 2008 10:41:37 -0500

> > Subject: [PATCH 1/1] cgroup_clone: use pid of newly created task for new cgroup
> >

> > cgroup_clone creates a new cgroup with the pid of the task. This works

> > correctly for unshare, but for clone cgroup_clone is called from

Page 17 of 18 ---- Cenerated from OpenVZ Forum


https://new-forum.openvz.org/index.php?t=usrinfo&id=204
https://new-forum.openvz.org/index.php?t=rview&th=6251&goto=30989#msg_30989
https://new-forum.openvz.org/index.php?t=post&reply_to=30989
https://new-forum.openvz.org/index.php

> > copy_namespaces inside copy_process, which happens before the new pid
> > s created. As a result, the new cgroup was created with current's pid.
> > This patch:

> >

> > 1. Moves the call inside copy_process to after the new pid

> > is created

> > 2. Passes the struct pid into ns_cgroup_clone (as it is not
>> yet attached to the task)

> > 3. Passes a name from ns_cgroup_clone() into cgroup_clone()
> > So as to keep cgroup_clone() itself simpler

> > 4. Uses pid_vnr() to get the process id value, so that the

> > pid used to name the new cgroup is always the pid as it

> > would be known to the task which did the cloning or

> > unsharing. 1 think that is the most intuitive thing to

> > do. This way, task t1 does clone(CLONE_NEWPID) to get
> > t2, which does clone(CLONE_NEWPID) to get t3, then the
> > cgroup for t3 will be named for the pid by which t2 knows
> > t3.

> >

> > (Thanks to Dan Smith for finding the main bug)

Seems this bug was also reported on May 21 by Daniel Lezcano. I'm going
to have to blame an over-active left middle finger for hitting the d key
without reading it...

-serge

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 18 of 18 ---- Cenerated from OpenVZ Forum


https://new-forum.openvz.org/index.php

