Subject: [RFC PATCH 5/5] refresh VM committed space after a task migration
Posted by Andrea Righi on Mon, 09 Jun 2008 23:33:03 GMT

View Forum Message <> Reply to Message

Update VM committed space statistics when a task is migrated from a cgroup to
another. To implement this feature we must keep track of the space committed by
each task (that is directly accounted in the task_struct).

Signed-off-by: Andrea Righi <righi.andrea@gmail.com>
include/linux/sched.h | 3 +++

kernel/fork.c | 3 +++

mm/memcontrol.c | 6 ++++++

3 files changed, 12 insertions(+), O deletions(-)

diff --git a/include/linux/sched.h b/include/linux/sched.h

index aeObe3c..8b458df 100644

--- a/include/linux/sched.h

+++ b/include/linux/sched.h

@@ -1277,6 +1277,9 @@ struct task_struct {
/[* cg_list protected by css_set_lock and tsk->alloc_lock */
struct list_head cg_list;

#endif

+#ifdef CONFIG_CGROUP_MEM_RES _CTLR

+ atomic_long_t vm_committed_space;

+#endif

#ifdef CONFIG_FUTEX
struct robust_list_ head __user *robust_list;

#ifdef CONFIG_COMPAT

diff --git a/kernel/fork.c b/kernel/fork.c

index eaffa56..9fafbdb 100644

--- a/kernel/fork.c

+++ b/kernel/fork.c

@@ -219,6 +219,9 @@ static struct task_struct *dup_task_struct(struct task_struct *orig)
/* One for us, one for whoever does the "release_task()" (usually parent) */
atomic_set(&tsk->usage,?2);
atomic_set(&tsk->fs_excl, 0);

+#ifdef CONFIG_CGROUP_MEM_RES_CTLR

+ atomic_long_set(&tsk->vm_committed_space, 0);

+#endif

#ifdef CONFIG_BLK _DEV_IO_TRACE
tsk->btrace_seq = 0;

#endif

diff --git a/mm/memcontrol.c b/mm/memcontrol.c

index e3e34e9..bc4923e 100644

--- a/mm/memcontrol.c

+++ b/mm/memcontrol.c

@@ -1334,6 +1334,7 @@ static void mem_cgroup_move_task(struct cgroup_subsys *ss,

Page 1 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=2666
https://new-forum.openvz.org/index.php?t=rview&th=6239&goto=30901#msg_30901
https://new-forum.openvz.org/index.php?t=post&reply_to=30901
https://new-forum.openvz.org/index.php

{

struct mm_struct *mm;
struct mem_cgroup *mem, *old_mem;
+ long committed;

if (mem_cgroup_subsys.disabled)
return;
@@ -1355,6 +1356,11 @@ static void mem_cgroup_move_task(struct cgroup_subsys *ss,
if ('thread_group_leader(p))
goto out;

+ preempt_disable();
+ committed = atomic_long_read(&p->vm_committed_space);
+ atomic_long_sub(committed, &old_mem->vmacct.vm_committed_space);
+ atomic_long_add(committed, &mem->vmacct.vm_committed_space);
+ preempt_enable();
out:
mmput(mm);

}

1.5.4.3

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC PATCH 5/5] refresh VM committed space after a task migration
Posted by Dave Hansen on Tue, 10 Jun 2008 17:41:28 GMT

View Forum Message <> Reply to Message

On Tue, 2008-06-10 at 01:33 +0200, Andrea Righi wrote:

>+ preempt_disable();

>+ committed = atomic_long_read(&p->vm_committed_space);

>+ atomic_long_sub(committed, &old_mem->vmacct.vm_committed_space);
>+ atomic_long_add(committed, &mem->vmacct.vm_committed_space);

>+ preempt_enable();

> out:

> mmput(mm);

>}

Why bother with the preempt stuff here? What does the actually protect
against? | assume that you're trying to keep other tasks that might run
on this CPU from seeing weird, inconsistent numbers in here. Is there
some other looks that keeps *other* cpus from seeing this?

In any case, | think it needs a big, fat comment.

Page 2 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=90
https://new-forum.openvz.org/index.php?t=rview&th=6239&goto=30924#msg_30924
https://new-forum.openvz.org/index.php?t=post&reply_to=30924
https://new-forum.openvz.org/index.php

-- Dave

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC PATCH 5/5] refresh VM committed space after a task migration
Posted by Andrea Righi on Wed, 11 Jun 2008 10:37:57 GMT

View Forum Message <> Reply to Message

Dave Hansen wrote:

> On Tue, 2008-06-10 at 01:33 +0200, Andrea Righi wrote:

>> + preempt_disable();

>> + committed = atomic_long_read(&p->vm_committed_space);

>> + atomic_long_sub(committed, &old_mem->vmacct.vm_committed_space);
>> + atomic_long_add(committed, &mem->vmacct.vm_committed_space);
>> + preempt_enable();

>> out:

>> mmput(mm);

>> }

>

> Why bother with the preempt stuff here? What does the actually protect

> against? | assume that you're trying to keep other tasks that might run

> on this CPU from seeing weird, inconsistent numbers in here. Is there

> some other looks that keeps *other* cpus from seeing this?

>

> |In any case, | think it needs a big, fat comment.

Yes, true, mem_cgroup_move_task() is called after the task->cgroups
pointer has been changed. So, even if task changes its committed space
between the atomic_long_sub() and atomic_long_add() it will be correctly
accounted in the new cgroup.

-Andrea

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 3 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=2666
https://new-forum.openvz.org/index.php?t=rview&th=6239&goto=30963#msg_30963
https://new-forum.openvz.org/index.php?t=post&reply_to=30963
https://new-forum.openvz.org/index.php

