
Subject: [PATCH] cgroup: fix a race condition in manipulating tsk->cg_list
Posted by Li Zefan on Thu, 17 Apr 2008 03:37:15 GMT
View Forum Message <> Reply to Message

When I ran a test program to fork mass processes and at the same time
'cat /cgroup/tasks', I got the following oops:

------------[cut here]------------
kernel BUG at lib/list_debug.c:72!
invalid opcode: 0000 [#1] SMP
Pid: 4178, comm: a.out Not tainted (2.6.25-rc9 #72)
...
Call Trace:
 [<c044a5f9>] ? cgroup_exit+0x55/0x94
 [<c0427acf>] ? do_exit+0x217/0x5ba
 [<c0427ed7>] ? do_group_exit+0.65/0x7c
 [<c0427efd>] ? sys_exit_group+0xf/0x11
 [<c0404842>] ? syscall_call+0x7/0xb
 [<c05e0000>] ? init_cyrix+0x2fa/0x479
...
EIP: [<c04df671>] list_del+0x35/0x53 SS:ESP 0068:ebc7df4
---[end trace caffb7332252612b]---
Fixing recursive fault but reboot is needed!

After digging into the code and debugging, I finlly found out a race
situation:
				do_exit()
				 ->cgroup_exit()
				 ->if (!list_empty(&tsk->cg_list))
				 list_del(&tsk->cg_list);

cgroup_iter_start()
 ->cgroup_enable_task_cg_list()
 ->list_add(&tsk->cg_list, ..);

In this case the list won't be deleted though the process has exited.

We got two bug reports in the past, which seem to be the same bug as
this one:
	http://lkml.org/lkml/2008/3/5/332
	http://lkml.org/lkml/2007/10/17/224

Actually sometimes I got oops on list_del, sometimes oops on list_add.
And I can change my test program a bit to trigger other oops.

The patch has been tested both on x86_32 and x86_64.

Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>

Page 1 of 13 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=2371
https://new-forum.openvz.org/index.php?t=rview&th=5956&goto=29551#msg_29551
https://new-forum.openvz.org/index.php?t=post&reply_to=29551
https://new-forum.openvz.org/index.php

 kernel/cgroup.c | 7 ++++++-
 1 files changed, 6 insertions(+), 1 deletions(-)

diff --git a/kernel/cgroup.c b/kernel/cgroup.c
index 2727f92..6d8de05 100644
--- a/kernel/cgroup.c
+++ b/kernel/cgroup.c
@@ -1722,7 +1722,12 @@ void cgroup_enable_task_cg_lists(void)
 	use_task_css_set_links = 1;
 	do_each_thread(g, p) {
 		task_lock(p);
-		if (list_empty(&p->cg_list))
+		/*
+		 * We should check if the process is exiting, otherwise
+		 * it will race with cgroup_exit() in that the list
+		 * entry won't be deleted though the process has exited.
+		 */
+		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
 			list_add(&p->cg_list, &p->cgroups->tasks);
 		task_unlock(p);
 	} while_each_thread(g, p);
-- 1.5.4.rc3

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] cgroup: fix a race condition in manipulating tsk->cg_list
Posted by akpm on Thu, 17 Apr 2008 04:11:44 GMT
View Forum Message <> Reply to Message

On Thu, 17 Apr 2008 11:37:15 +0800 Li Zefan <lizf@cn.fujitsu.com> wrote:

> When I ran a test program to fork mass processes and at the same time
> 'cat /cgroup/tasks', I got the following oops:
>
> ------------[cut here]------------
> kernel BUG at lib/list_debug.c:72!
> invalid opcode: 0000 [#1] SMP
> Pid: 4178, comm: a.out Not tainted (2.6.25-rc9 #72)
> ...
> Call Trace:
> [<c044a5f9>] ? cgroup_exit+0x55/0x94
> [<c0427acf>] ? do_exit+0x217/0x5ba

Page 2 of 13 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1815
https://new-forum.openvz.org/index.php?t=rview&th=5956&goto=29552#msg_29552
https://new-forum.openvz.org/index.php?t=post&reply_to=29552
https://new-forum.openvz.org/index.php

> [<c0427ed7>] ? do_group_exit+0.65/0x7c
> [<c0427efd>] ? sys_exit_group+0xf/0x11
> [<c0404842>] ? syscall_call+0x7/0xb
> [<c05e0000>] ? init_cyrix+0x2fa/0x479
> ...
> EIP: [<c04df671>] list_del+0x35/0x53 SS:ESP 0068:ebc7df4
> ---[end trace caffb7332252612b]---
> Fixing recursive fault but reboot is needed!
>
> After digging into the code and debugging, I finlly found out a race
> situation:
> 				do_exit()
> 				 ->cgroup_exit()
> 				 ->if (!list_empty(&tsk->cg_list))
> 				 list_del(&tsk->cg_list);
>
> cgroup_iter_start()
> ->cgroup_enable_task_cg_list()
> ->list_add(&tsk->cg_list, ..);
>
> In this case the list won't be deleted though the process has exited.

I don't fully understand the race. Both paths hold css_set_lock.

Can you describe it in more detail please?

> We got two bug reports in the past, which seem to be the same bug as
> this one:
> 	http://lkml.org/lkml/2008/3/5/332
> 	http://lkml.org/lkml/2007/10/17/224
>
> Actually sometimes I got oops on list_del, sometimes oops on list_add.
> And I can change my test program a bit to trigger other oops.
>
> The patch has been tested both on x86_32 and x86_64.
>
> Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
> ---
> kernel/cgroup.c | 7 ++++++-
> 1 files changed, 6 insertions(+), 1 deletions(-)
>
> diff --git a/kernel/cgroup.c b/kernel/cgroup.c
> index 2727f92..6d8de05 100644
> --- a/kernel/cgroup.c
> +++ b/kernel/cgroup.c
> @@ -1722,7 +1722,12 @@ void cgroup_enable_task_cg_lists(void)
> 	use_task_css_set_links = 1;
> 	do_each_thread(g, p) {

Page 3 of 13 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> 		task_lock(p);
> -		if (list_empty(&p->cg_list))
> +		/*
> +		 * We should check if the process is exiting, otherwise
> +		 * it will race with cgroup_exit() in that the list
> +		 * entry won't be deleted though the process has exited.
> +		 */
> +		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
> 			list_add(&p->cg_list, &p->cgroups->tasks);
> 		task_unlock(p);
> 	} while_each_thread(g, p);

Don't think I understand the fix either :(

afacit the task at *p could set PF_EXITING immediately after this code has
tested PF_EXITING and then the task at *p could proceed until we hit the
same race (whatever that is).

Perhaps taking p->sighand->siglock would fix that up, but that's just a
guess at this stage.

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] cgroup: fix a race condition in manipulating tsk->cg_list
Posted by Paul Menage on Thu, 17 Apr 2008 04:17:34 GMT
View Forum Message <> Reply to Message

On Wed, Apr 16, 2008 at 9:11 PM, Andrew Morton
<akpm@linux-foundation.org> wrote:
>
> I don't fully understand the race. Both paths hold css_set_lock.
>
> Can you describe it in more detail please?

Task A starts exiting, passes the check for unlinking current->cg_list.

Before it completely exits task B does the very first
cgroup_iter_begin() call (via reading a cgroups tasks file) which
links all tasks in to their css_set objects via tsk->cg_list.

Then task A finishes exiting and is freed, but doesn't unlink from the cg_list.

>
> afacit the task at *p could set PF_EXITING immediately after this code has

Page 4 of 13 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=5956&goto=29553#msg_29553
https://new-forum.openvz.org/index.php?t=post&reply_to=29553
https://new-forum.openvz.org/index.php

> tested PF_EXITING and then the task at *p could proceed until we hit the
> same race (whatever that is).

The important fact there is that the task sets PF_EXITING *before* it
checks whether it needs to unlink from current->cg_list.

Paul

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] cgroup: fix a race condition in manipulating tsk->cg_list
Posted by Paul Menage on Thu, 17 Apr 2008 04:18:41 GMT
View Forum Message <> Reply to Message

On Wed, Apr 16, 2008 at 8:37 PM, Li Zefan <lizf@cn.fujitsu.com> wrote:
> When I ran a test program to fork mass processes and at the same time
> 'cat /cgroup/tasks', I got the following oops:
>
> ------------[cut here]------------
> kernel BUG at lib/list_debug.c:72!
> invalid opcode: 0000 [#1] SMP
> Pid: 4178, comm: a.out Not tainted (2.6.25-rc9 #72)
> ...
> Call Trace:
> [<c044a5f9>] ? cgroup_exit+0x55/0x94
> [<c0427acf>] ? do_exit+0x217/0x5ba
> [<c0427ed7>] ? do_group_exit+0.65/0x7c
> [<c0427efd>] ? sys_exit_group+0xf/0x11
> [<c0404842>] ? syscall_call+0x7/0xb
> [<c05e0000>] ? init_cyrix+0x2fa/0x479
> ...
> EIP: [<c04df671>] list_del+0x35/0x53 SS:ESP 0068:ebc7df4
> ---[end trace caffb7332252612b]---
> Fixing recursive fault but reboot is needed!
>
> After digging into the code and debugging, I finlly found out a race
> situation:
> do_exit()
> ->cgroup_exit()
> ->if (!list_empty(&tsk->cg_list))
> list_del(&tsk->cg_list);
>
> cgroup_iter_start()
> ->cgroup_enable_task_cg_list()
> ->list_add(&tsk->cg_list, ..);

Page 5 of 13 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=5956&goto=29554#msg_29554
https://new-forum.openvz.org/index.php?t=post&reply_to=29554
https://new-forum.openvz.org/index.php

>
> In this case the list won't be deleted though the process has exited.
>
> We got two bug reports in the past, which seem to be the same bug as
> this one:
> http://lkml.org/lkml/2008/3/5/332
> http://lkml.org/lkml/2007/10/17/224

Yes, that looks like it could be the same one - great. But this
corruption can only be triggered the first time you cat a tasks file
after a reboot, right? That would partly explain why it was hard to
reproduce (at least, I had trouble).

My only thought about the downside of this is that an exiting task
that gets stuck somewhere between setting PF_EXITING and calling
cgroup_exit() won't show up in its cgroup's tasks file, since we'll
enable cgroup links but skip it. I guess that's not a big deal.

Maybe it would be better to not do a cgroup_exit() until we're
unhashed, so that cgroup_enable_task_cg_list() can't find the exiting
task?

Paul

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] cgroup: fix a race condition in manipulating tsk->cg_list
Posted by Paul Menage on Thu, 17 Apr 2008 04:28:33 GMT
View Forum Message <> Reply to Message

On Wed, Apr 16, 2008 at 9:18 PM, Paul Menage <menage@google.com> wrote:
>
> My only thought about the downside of this is that an exiting task
> that gets stuck somewhere between setting PF_EXITING and calling
> cgroup_exit() won't show up in its cgroup's tasks file, since we'll
> enable cgroup links but skip it. I guess that's not a big deal.
>

How about this as an alternative approach? We can take advantage of
the indirection in tsk->cgroups to create an additional distinguished
css_set that indicates the task has passed the point of checking
tsk->cg_list:

- create a new css_set, called exit_css_set; it has the same cgroup
pointer set as init_css_set.

Page 6 of 13 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=5956&goto=29555#msg_29555
https://new-forum.openvz.org/index.php?t=post&reply_to=29555
https://new-forum.openvz.org/index.php

- in cgroup_exit(), set current->cgroups to &exit_css_set rather than
&init_css_set

- in cgroup_enable_task_cg_list(), ignore any task where p->cgroups ==
&exit_css_set

That way we're synchronizing directly with the task_lock()-protected
section in cgroup_exit(), rather than with the setting of PF_EXITING
at the beginning of do_exit().

Paul

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] cgroup: fix a race condition in manipulating tsk->cg_list
Posted by akpm on Thu, 17 Apr 2008 04:59:07 GMT
View Forum Message <> Reply to Message

On Wed, 16 Apr 2008 21:17:34 -0700 "Paul Menage" <menage@google.com> wrote:

> On Wed, Apr 16, 2008 at 9:11 PM, Andrew Morton
> <akpm@linux-foundation.org> wrote:
> >
> > I don't fully understand the race. Both paths hold css_set_lock.
> >
> > Can you describe it in more detail please?
>
> Task A starts exiting, passes the check for unlinking current->cg_list.

So cgroup_exit() sees !list_empty(tsk->cg_list)

And the list_del() sets tsk->cg_list to LIST_POISON[12], which still means
!list_empty(). Or we remove that debugging code and avoid writing to
tsk->cg_list, and it _still_ is !list_empty().

> Before it completely exits task B does the very first
> cgroup_iter_begin() call (via reading a cgroups tasks file) which
> links all tasks in to their css_set objects via tsk->cg_list.

But it won't link this task, because it's !list_empty().

> Then task A finishes exiting and is freed, but doesn't unlink from the cg_list.
>
> >

Page 7 of 13 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1815
https://new-forum.openvz.org/index.php?t=rview&th=5956&goto=29556#msg_29556
https://new-forum.openvz.org/index.php?t=post&reply_to=29556
https://new-forum.openvz.org/index.php

> > afacit the task at *p could set PF_EXITING immediately after this code has
> > tested PF_EXITING and then the task at *p could proceed until we hit the
> > same race (whatever that is).
>
> The important fact there is that the task sets PF_EXITING *before* it
> checks whether it needs to unlink from current->cg_list.
>
> Paul

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] cgroup: fix a race condition in manipulating tsk->cg_list
Posted by Li Zefan on Thu, 17 Apr 2008 05:04:47 GMT
View Forum Message <> Reply to Message

Paul Menage wrote:
> On Wed, Apr 16, 2008 at 8:37 PM, Li Zefan <lizf@cn.fujitsu.com> wrote:
>> When I ran a test program to fork mass processes and at the same time
>> 'cat /cgroup/tasks', I got the following oops:
>>
>> ------------[cut here]------------
>> kernel BUG at lib/list_debug.c:72!
>> invalid opcode: 0000 [#1] SMP
>> Pid: 4178, comm: a.out Not tainted (2.6.25-rc9 #72)
>> ...
>> Call Trace:
>> [<c044a5f9>] ? cgroup_exit+0x55/0x94
>> [<c0427acf>] ? do_exit+0x217/0x5ba
>> [<c0427ed7>] ? do_group_exit+0.65/0x7c
>> [<c0427efd>] ? sys_exit_group+0xf/0x11
>> [<c0404842>] ? syscall_call+0x7/0xb
>> [<c05e0000>] ? init_cyrix+0x2fa/0x479
>> ...
>> EIP: [<c04df671>] list_del+0x35/0x53 SS:ESP 0068:ebc7df4
>> ---[end trace caffb7332252612b]---
>> Fixing recursive fault but reboot is needed!
>>
>> After digging into the code and debugging, I finlly found out a race
>> situation:
>> do_exit()
>> ->cgroup_exit()
>> ->if (!list_empty(&tsk->cg_list))
>> list_del(&tsk->cg_list);
>>
>> cgroup_iter_start()

Page 8 of 13 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=2371
https://new-forum.openvz.org/index.php?t=rview&th=5956&goto=29557#msg_29557
https://new-forum.openvz.org/index.php?t=post&reply_to=29557
https://new-forum.openvz.org/index.php

>> ->cgroup_enable_task_cg_list()
>> ->list_add(&tsk->cg_list, ..);
>>
>> In this case the list won't be deleted though the process has exited.
>>
>> We got two bug reports in the past, which seem to be the same bug as
>> this one:
>> http://lkml.org/lkml/2008/3/5/332
>> http://lkml.org/lkml/2007/10/17/224
>
> Yes, that looks like it could be the same one - great. But this
> corruption can only be triggered the first time you cat a tasks file
> after a reboot, right? That would partly explain why it was hard to
> reproduce (at least, I had trouble).
>

Right. I was lucky to trigger this and thus knew how to reproduce.

> My only thought about the downside of this is that an exiting task
> that gets stuck somewhere between setting PF_EXITING and calling
> cgroup_exit() won't show up in its cgroup's tasks file, since we'll
> enable cgroup links but skip it. I guess that's not a big deal.
>

Agree. I think it won't be a problem.

> Maybe it would be better to not do a cgroup_exit() until we're
> unhashed, so that cgroup_enable_task_cg_list() can't find the exiting
> task?
>
> Paul
>

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] cgroup: fix a race condition in manipulating tsk->cg_list
Posted by Li Zefan on Thu, 17 Apr 2008 05:10:33 GMT
View Forum Message <> Reply to Message

Andrew Morton wrote:
> On Wed, 16 Apr 2008 21:17:34 -0700 "Paul Menage" <menage@google.com> wrote:
>
>> On Wed, Apr 16, 2008 at 9:11 PM, Andrew Morton
>> <akpm@linux-foundation.org> wrote:

Page 9 of 13 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=2371
https://new-forum.openvz.org/index.php?t=rview&th=5956&goto=29564#msg_29564
https://new-forum.openvz.org/index.php?t=post&reply_to=29564
https://new-forum.openvz.org/index.php

>>> I don't fully understand the race. Both paths hold css_set_lock.
>>>
>>> Can you describe it in more detail please?
>> Task A starts exiting, passes the check for unlinking current->cg_list.
>
> So cgroup_exit() sees !list_empty(tsk->cg_list)
>

cgroup_exit() sees list_empty(tsk->cg_list), then cgroup_enable_task_cg_list()
links the task to the list, and then the task exited, so the list entry won't
get deleted.

> And the list_del() sets tsk->cg_list to LIST_POISON[12], which still means
> !list_empty(). Or we remove that debugging code and avoid writing to
> tsk->cg_list, and it _still_ is !list_empty().
>
>> Before it completely exits task B does the very first
>> cgroup_iter_begin() call (via reading a cgroups tasks file) which
>> links all tasks in to their css_set objects via tsk->cg_list.
>
> But it won't link this task, because it's !list_empty().
>
>> Then task A finishes exiting and is freed, but doesn't unlink from the cg_list.
>>
>>> afacit the task at *p could set PF_EXITING immediately after this code has
>>> tested PF_EXITING and then the task at *p could proceed until we hit the
>>> same race (whatever that is).
>> The important fact there is that the task sets PF_EXITING *before* it
>> checks whether it needs to unlink from current->cg_list.
>>
>> Paul
>
>

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] cgroup: fix a race condition in manipulating tsk->cg_list
Posted by akpm on Thu, 17 Apr 2008 05:16:02 GMT
View Forum Message <> Reply to Message

On Thu, 17 Apr 2008 13:10:33 +0800 Li Zefan <lizf@cn.fujitsu.com> wrote:

> Andrew Morton wrote:
> > On Wed, 16 Apr 2008 21:17:34 -0700 "Paul Menage" <menage@google.com> wrote:

Page 10 of 13 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1815
https://new-forum.openvz.org/index.php?t=rview&th=5956&goto=29558#msg_29558
https://new-forum.openvz.org/index.php?t=post&reply_to=29558
https://new-forum.openvz.org/index.php

> >
> >> On Wed, Apr 16, 2008 at 9:11 PM, Andrew Morton
> >> <akpm@linux-foundation.org> wrote:
> >>> I don't fully understand the race. Both paths hold css_set_lock.
> >>>
> >>> Can you describe it in more detail please?
> >> Task A starts exiting, passes the check for unlinking current->cg_list.
> >
> > So cgroup_exit() sees !list_empty(tsk->cg_list)
> >
>
> cgroup_exit() sees list_empty(tsk->cg_list), then cgroup_enable_task_cg_list()
> links the task to the list, and then the task exited, so the list entry won't
> get deleted.

OK.

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] cgroup: fix a race condition in manipulating tsk->cg_list
Posted by akpm on Thu, 17 Apr 2008 05:16:55 GMT
View Forum Message <> Reply to Message

On Thu, 17 Apr 2008 13:04:47 +0800 Li Zefan <lizf@cn.fujitsu.com> wrote:

> >
> > Yes, that looks like it could be the same one - great. But this
> > corruption can only be triggered the first time you cat a tasks file
> > after a reboot, right? That would partly explain why it was hard to
> > reproduce (at least, I had trouble).
> >
>
> Right. I was lucky to trigger this and thus knew how to reproduce.
>
> > My only thought about the downside of this is that an exiting task
> > that gets stuck somewhere between setting PF_EXITING and calling
> > cgroup_exit() won't show up in its cgroup's tasks file, since we'll
> > enable cgroup links but skip it. I guess that's not a big deal.
> >
>
> Agree. I think it won't be a problem.
>
> > Maybe it would be better to not do a cgroup_exit() until we're
> > unhashed, so that cgroup_enable_task_cg_list() can't find the exiting
> > task?

Page 11 of 13 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1815
https://new-forum.openvz.org/index.php?t=rview&th=5956&goto=29559#msg_29559
https://new-forum.openvz.org/index.php?t=post&reply_to=29559
https://new-forum.openvz.org/index.php

So we won't be doing what Paul suggested?

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] cgroup: fix a race condition in manipulating tsk->cg_list
Posted by Paul Menage on Thu, 17 Apr 2008 05:20:44 GMT
View Forum Message <> Reply to Message

On Wed, Apr 16, 2008 at 9:59 PM, Andrew Morton
<akpm@linux-foundation.org> wrote:
> >
> > Task A starts exiting, passes the check for unlinking current->cg_list.
>
> So cgroup_exit() sees !list_empty(tsk->cg_list)

We don't actually set up the links running through tsk->cg_list to the
css_set objects until the first time someone calls cgroup_iter_begin()
- so anyone who never actually uses cgroups doesn't pay the list
management overhead. So in this case, the list is empty.

Paul

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] cgroup: fix a race condition in manipulating tsk->cg_list
Posted by Paul Menage on Thu, 17 Apr 2008 05:24:09 GMT
View Forum Message <> Reply to Message

On Wed, Apr 16, 2008 at 10:16 PM, Andrew Morton
<akpm@linux-foundation.org> wrote:
> > > Maybe it would be better to not do a cgroup_exit() until we're
> > > unhashed, so that cgroup_enable_task_cg_list() can't find the exiting
> > > task?
>
> So we won't be doing what Paul suggested?
>

It's not as high a priority as Li's bug fix (which may be a good
candidate for 2.6.25.1) but for the future I think I'll implement this
distinguished css_set pointer for tasks that have finished

Page 12 of 13 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=5956&goto=29560#msg_29560
https://new-forum.openvz.org/index.php?t=post&reply_to=29560
https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=5956&goto=29562#msg_29562
https://new-forum.openvz.org/index.php?t=post&reply_to=29562
https://new-forum.openvz.org/index.php

cgroup_exit(), since I think it will make the similar synchronization
in attach_task() cleaner, as well as cgroup_enable_task_cg_list().

Paul

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] cgroup: fix a race condition in manipulating tsk->cg_list
Posted by Li Zefan on Thu, 17 Apr 2008 05:27:07 GMT
View Forum Message <> Reply to Message

Paul Menage wrote:
> On Wed, Apr 16, 2008 at 10:16 PM, Andrew Morton
> <akpm@linux-foundation.org> wrote:
>> > > Maybe it would be better to not do a cgroup_exit() until we're
>> > > unhashed, so that cgroup_enable_task_cg_list() can't find the exiting
>> > > task?
>>
>> So we won't be doing what Paul suggested?
>>
>
> It's not as high a priority as Li's bug fix (which may be a good
> candidate for 2.6.25.1) but for the future I think I'll implement this
> distinguished css_set pointer for tasks that have finished
> cgroup_exit(), since I think it will make the similar synchronization
> in attach_task() cleaner, as well as cgroup_enable_task_cg_list().
>

Yes, this approach sounds good to me. :)

> Paul
>

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 13 of 13 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=2371
https://new-forum.openvz.org/index.php?t=rview&th=5956&goto=29563#msg_29563
https://new-forum.openvz.org/index.php?t=post&reply_to=29563
https://new-forum.openvz.org/index.php

