
Subject: [PATCH] cgroups: implement device whitelist lsm (v3)
Posted by serue on Thu, 13 Mar 2008 14:41:42 GMT
View Forum Message <> Reply to Message

Implement a cgroup using the LSM interface to enforce open and mknod
on device files.

This implements a simple device access whitelist. A whitelist entry
has 4 fields. 'type' is a (all), c (char), or b (block). 'all' means it
applies to all types, all major numbers, and all minor numbers. Major and
minor are obvious. Access is a composition of r (read), w (write), and
m (mknod).

The root devcgroup starts with rwm to 'all'. A child devcg gets a copy
of the parent. Admins can then add and remove devices to the whitelist.
Once CAP_HOST_ADMIN is introduced it will be needed to add entries as
well or remove entries from another cgroup, though just CAP_SYS_ADMIN
will suffice to remove entries for your own group.

An entry is added by doing "echo <type> <maj> <min> <access>" > devcg.allow,
for instance:

	echo b 7 0 mrw > /cgroups/1/devcg.allow

An entry is removed by doing likewise into devcg.deny. Since this is a
pure whitelist, not acls, you can only remove entries which exist in the
whitelist. You must explicitly

	echo a 0 0 mrw > /cgroups/1/devcg.deny

to remove the "allow all" entry which is automatically inherited from
the root cgroup.

While composing this with the ns_cgroup may seem logical, it is not
the right thing to do, because updates to /cg/cg1/devcg.deny are
not reflected in /cg/cg1/cg2/devcg.allow.

A task may only be moved to another devcgroup if it is moving to
a direct descendent of its current devcgroup.

CAP_NS_OVERRIDE is defined as the capability needed to cross namespaces.
A task needs both CAP_NS_OVERRIDE and CAP_SYS_ADMIN to create a new
devcgroup, update a devcgroup's access, or move a task to a new
devcgroup.

CONFIG_COMMONCAP is defined whenever security/commoncap.c should
be compiled, so that the decision of whether to show the option
for FILE_CAPABILITIES can be a bit cleaner.

Page 1 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=204
https://new-forum.openvz.org/index.php?t=rview&th=5667&goto=28307#msg_28307
https://new-forum.openvz.org/index.php?t=post&reply_to=28307
https://new-forum.openvz.org/index.php

Changelog:
	Mar 13 2008: move the dev_cgroup support into
		capability hooks instead of having it
		as a separate security module.
		Support root_plug with devcg.
		Note that due to this change, devcg will
		not be enforcing if the dummy module is
		loaded, or if selinux is loaded without
		capabilities.
	Mar 12 2008: allow dev_cgroup lsm to be used when
		SECURITY=n, and allow stacking with SELinux
		and Smack. Don't work too hard in Kconfig
		to prevent a warning when smack+devcg are
		both compiled in, worry about that later.

Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>

 include/linux/capability.h | 11 +-
 include/linux/cgroup_subsys.h | 6 +
 include/linux/devcg.h | 69 +++++++
 include/linux/security.h | 7 +-
 init/Kconfig | 7 +
 kernel/Makefile | 1 +
 kernel/dev_cgroup.c | 411 +++
 security/Kconfig | 6 +-
 security/Makefile | 12 +-
 security/capability.c | 2 +
 security/commoncap.c | 13 ++
 security/dev_cgroup.c | 83 +++++++++
 security/root_plug.c | 2 +
 security/smack/smack_lsm.c | 5 +
 14 files changed, 624 insertions(+), 11 deletions(-)
 create mode 100644 include/linux/devcg.h
 create mode 100644 kernel/dev_cgroup.c
 create mode 100644 security/dev_cgroup.c

diff --git a/include/linux/capability.h b/include/linux/capability.h
index eaab759..f8ecba1 100644
--- a/include/linux/capability.h
+++ b/include/linux/capability.h
@@ -333,7 +333,16 @@ typedef struct kernel_cap_struct {

 #define CAP_MAC_ADMIN 33

-#define CAP_LAST_CAP CAP_MAC_ADMIN
+/* Allow acting on resources in another namespace. In particular:
+ * 1. when combined with CAP_MKNOD and dev_cgroup is enabled,

Page 2 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ * allow creation of devices not in the device whitelist.
+ * 2. whencombined with CAP_SYS_ADMIN and dev_cgroup is enabled,
+ * allow editing device cgroup whitelist
+ */
+
+#define CAP_NS_OVERRIDE 34
+
+#define CAP_LAST_CAP CAP_NS_OVERRIDE

 #define cap_valid(x) ((x) >= 0 && (x) <= CAP_LAST_CAP)

diff --git a/include/linux/cgroup_subsys.h b/include/linux/cgroup_subsys.h
index 1ddebfc..01e8034 100644
--- a/include/linux/cgroup_subsys.h
+++ b/include/linux/cgroup_subsys.h
@@ -42,3 +42,9 @@ SUBSYS(mem_cgroup)
 #endif

 /* */
+
+#ifdef CONFIG_CGROUP_DEV
+SUBSYS(devcg)
+#endif
+
+/* */
diff --git a/include/linux/devcg.h b/include/linux/devcg.h
new file mode 100644
index 0000000..32e9f90
--- /dev/null
+++ b/include/linux/devcg.h
@@ -0,0 +1,69 @@
+#include <linux/module.h>
+#include <linux/cgroup.h>
+#include <linux/fs.h>
+#include <linux/list.h>
+#include <linux/security.h>
+
+#include <asm/uaccess.h>
+
+#define ACC_MKNOD 1
+#define ACC_READ 2
+#define ACC_WRITE 4
+
+#define DEV_BLOCK 1
+#define DEV_CHAR 2
+#define DEV_ALL 4 /* this represents all devices */
+
+#ifdef CONFIG_CGROUP_DEV

Page 3 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+/*
+ * whitelist locking rules:
+ * cgroup_lock() cannot be taken under cgroup->lock.
+ * cgroup->lock can be taken with or without cgroup_lock().
+ *
+ * modifications always require cgroup_lock
+ * modifications to a list which is visible require the
+ * cgroup->lock *and* cgroup_lock()
+ * walking the list requires cgroup->lock or cgroup_lock().
+ *
+ * reasoning: dev_whitelist_copy() needs to kmalloc, so needs
+ * a mutex, which the cgroup_lock() is. Since modifying
+ * a visible list requires both locks, either lock can be
+ * taken for walking the list. Since the wh->spinlock is taken
+ * for modifying a public-accessible list, the spinlock is
+ * sufficient for just walking the list.
+ */
+
+struct dev_whitelist_item {
+	u32 major, minor;
+	short type;
+	short access;
+	struct list_head list;
+};
+
+struct dev_cgroup {
+	struct cgroup_subsys_state css;
+	struct list_head whitelist;
+	spinlock_t lock;
+};
+
+static inline struct dev_cgroup *cgroup_to_devcg(
+		struct cgroup *cgroup)
+{
+	return container_of(cgroup_subsys_state(cgroup, devcg_subsys_id),
+			 struct dev_cgroup, css);
+}
+
+extern struct cgroup_subsys devcg_subsys;
+
+extern int devcgroup_inode_permission(struct inode *inode, int mask,
+				 struct nameidata *nd);
+extern int devcgroup_inode_mknod(struct inode *dir, struct dentry *dentry,
+			 int mode, dev_t dev);
+#else
+static inline int devcgroup_inode_permission(struct inode *inode, int mask,
+				 struct nameidata *nd)
+{ return 0; }

Page 4 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+static inline int devcgroup_inode_mknod(struct inode *dir, struct dentry *dentry,
+			 int mode, dev_t dev)
+{ return 0; }
+#endif
diff --git a/include/linux/security.h b/include/linux/security.h
index 2231526..9d562b6 100644
--- a/include/linux/security.h
+++ b/include/linux/security.h
@@ -57,6 +57,8 @@ extern int cap_inode_setxattr(struct dentry *dentry, char *name, void
*value, si
 extern int cap_inode_removexattr(struct dentry *dentry, char *name);
 extern int cap_inode_need_killpriv(struct dentry *dentry);
 extern int cap_inode_killpriv(struct dentry *dentry);
+extern int cap_inode_permission(struct inode *inode, int mask, struct nameidata *nd);
+extern int cap_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev);
 extern int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid, int flags);
 extern void cap_task_reparent_to_init (struct task_struct *p);
 extern int cap_task_kill(struct task_struct *p, struct siginfo *info, int sig, u32 secid);
@@ -1735,6 +1737,7 @@ int security_secctx_to_secid(char *secdata, u32 seclen, u32 *secid);
 void security_release_secctx(char *secdata, u32 seclen);

 #else /* CONFIG_SECURITY */
+
 struct security_mnt_opts {
 };

@@ -2011,7 +2014,7 @@ static inline int security_inode_mknod (struct inode *dir,
 					struct dentry *dentry,
 					int mode, dev_t dev)
 {
-	return 0;
+	return cap_inode_mknod(dir, dentry, mode, dev);
 }

 static inline int security_inode_rename (struct inode *old_dir,
@@ -2036,7 +2039,7 @@ static inline int security_inode_follow_link (struct dentry *dentry,
 static inline int security_inode_permission (struct inode *inode, int mask,
 					 struct nameidata *nd)
 {
-	return 0;
+	return cap_inode_permission(inode, mask, nd);
 }

 static inline int security_inode_setattr (struct dentry *dentry,
diff --git a/init/Kconfig b/init/Kconfig
index 009f2d8..05343a2 100644
--- a/init/Kconfig
+++ b/init/Kconfig

Page 5 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

@@ -298,6 +298,13 @@ config CGROUP_NS
 for instance virtual servers and checkpoint/restart
 jobs.

+config CGROUP_DEV
+	bool "Device controller for cgroups"
+	depends on CGROUPS && EXPERIMENTAL
+	help
+	 Provides a cgroup implementing whitelists for devices which
+	 a process in the cgroup can mknod or open.
+
 config CPUSETS
 	bool "Cpuset support"
 	depends on SMP && CGROUPS
diff --git a/kernel/Makefile b/kernel/Makefile
index 9cc073e..74cd321 100644
--- a/kernel/Makefile
+++ b/kernel/Makefile
@@ -42,6 +42,7 @@ obj-$(CONFIG_CGROUPS) += cgroup.o
 obj-$(CONFIG_CGROUP_DEBUG) += cgroup_debug.o
 obj-$(CONFIG_CPUSETS) += cpuset.o
 obj-$(CONFIG_CGROUP_NS) += ns_cgroup.o
+obj-$(CONFIG_CGROUP_DEV) += dev_cgroup.o
 obj-$(CONFIG_UTS_NS) += utsname.o
 obj-$(CONFIG_USER_NS) += user_namespace.o
 obj-$(CONFIG_PID_NS) += pid_namespace.o
diff --git a/kernel/dev_cgroup.c b/kernel/dev_cgroup.c
new file mode 100644
index 0000000..f088824
--- /dev/null
+++ b/kernel/dev_cgroup.c
@@ -0,0 +1,411 @@
+/*
+ * dev_cgroup.c - device cgroup subsystem
+ *
+ * Copyright 2007 IBM Corp
+ */
+
+#include <linux/devcg.h>
+
+static int devcg_can_attach(struct cgroup_subsys *ss,
+		struct cgroup *new_cgroup, struct task_struct *task)
+{
+	struct cgroup *orig;
+
+	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_NS_OVERRIDE))
+		return -EPERM;
+

Page 6 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+	if (current != task) {
+		if (!cgroup_is_descendant(new_cgroup))
+			return -EPERM;
+	}
+
+	if (atomic_read(&new_cgroup->count) != 0)
+		return -EPERM;
+
+	orig = task_cgroup(task, devcg_subsys_id);
+	if (orig && orig != new_cgroup->parent)
+		return -EPERM;
+
+	return 0;
+}
+
+/*
+ * called under cgroup_lock()
+ */
+int dev_whitelist_copy(struct list_head *dest, struct list_head *orig)
+{
+	struct dev_whitelist_item *wh, *tmp, *new;
+
+	list_for_each_entry(wh, orig, list) {
+		new = kmalloc(sizeof(*wh), GFP_KERNEL);
+		if (!new)
+			goto free_and_exit;
+		new->major = wh->major;
+		new->minor = wh->minor;
+		new->type = wh->type;
+		new->access = wh->access;
+		list_add_tail(&new->list, dest);
+	}
+
+	return 0;
+
+free_and_exit:
+	list_for_each_entry_safe(wh, tmp, dest, list) {
+		list_del(&wh->list);
+		kfree(wh);
+	}
+	return -ENOMEM;
+}
+
+/* Stupid prototype - don't bother combining existing entries */
+/*
+ * called under cgroup_lock()
+ * since the list is visible to other tasks, we need the spinlock also
+ */

Page 7 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+int dev_whitelist_add(struct dev_cgroup *dev_cgroup,
+			struct dev_whitelist_item *wh)
+{
+	struct dev_whitelist_item *whcopy;
+
+	whcopy = kmalloc(sizeof(*whcopy), GFP_KERNEL);
+	if (!whcopy)
+		return -ENOMEM;
+
+	memcpy(whcopy, wh, sizeof(*whcopy));
+	spin_lock(&dev_cgroup->lock);
+	list_add_tail(&whcopy->list, &dev_cgroup->whitelist);
+	spin_unlock(&dev_cgroup->lock);
+	return 0;
+}
+
+/*
+ * called under cgroup_lock()
+ * since the list is visible to other tasks, we need the spinlock also
+ */
+void dev_whitelist_rm(struct dev_cgroup *dev_cgroup,
+			struct dev_whitelist_item *wh)
+{
+	struct dev_whitelist_item *walk, *tmp;
+
+	spin_lock(&dev_cgroup->lock);
+	list_for_each_entry_safe(walk, tmp, &dev_cgroup->whitelist, list) {
+		if (walk->type == DEV_ALL)
+			goto remove;
+		if (walk->type != wh->type)
+			continue;
+		if (walk->major != ~0 && walk->major != wh->major)
+			continue;
+		if (walk->minor != ~0 && walk->minor != wh->minor)
+			continue;
+
+remove:
+		walk->access &= ~wh->access;
+		if (!walk->access) {
+			list_del(&walk->list);
+			kfree(walk);
+		}
+	}
+	spin_unlock(&dev_cgroup->lock);
+}
+
+/*
+ * Rules: you can only create a cgroup if

Page 8 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ * 1. you are capable(CAP_SYS_ADMIN|CAP_NS_OVERRIDE)
+ * 2. the target cgroup is a descendant of your own cgroup
+ *
+ * Note: called from kernel/cgroup.c with cgroup_lock() held.
+ */
+static struct cgroup_subsys_state *devcg_create(struct cgroup_subsys *ss,
+						struct cgroup *cgroup)
+{
+	struct dev_cgroup *dev_cgroup, *parent_dev_cgroup;
+	struct cgroup *parent_cgroup;
+	int ret;
+
+	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_NS_OVERRIDE))
+		return ERR_PTR(-EPERM);
+	if (!cgroup_is_descendant(cgroup))
+		return ERR_PTR(-EPERM);
+
+	dev_cgroup = kzalloc(sizeof(*dev_cgroup), GFP_KERNEL);
+	if (!dev_cgroup)
+		return ERR_PTR(-ENOMEM);
+	INIT_LIST_HEAD(&dev_cgroup->whitelist);
+	parent_cgroup = cgroup->parent;
+
+	if (parent_cgroup == NULL) {
+		struct dev_whitelist_item *wh;
+		wh = kmalloc(sizeof(*wh), GFP_KERNEL);
+		wh->minor = wh->major = ~0;
+		wh->type = DEV_ALL;
+		wh->access = ACC_MKNOD | ACC_READ | ACC_WRITE;
+		list_add(&wh->list, &dev_cgroup->whitelist);
+	} else {
+		parent_dev_cgroup = cgroup_to_devcg(parent_cgroup);
+		ret = dev_whitelist_copy(&dev_cgroup->whitelist,
+				&parent_dev_cgroup->whitelist);
+		if (ret) {
+			kfree(dev_cgroup);
+			return ERR_PTR(ret);
+		}
+	}
+
+	spin_lock_init(&dev_cgroup->lock);
+	return &dev_cgroup->css;
+}
+
+static void devcg_destroy(struct cgroup_subsys *ss,
+			struct cgroup *cgroup)
+{
+	struct dev_cgroup *dev_cgroup;

Page 9 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+	struct dev_whitelist_item *wh, *tmp;
+
+	dev_cgroup = cgroup_to_devcg(cgroup);
+	list_for_each_entry_safe(wh, tmp, &dev_cgroup->whitelist, list) {
+		list_del(&wh->list);
+		kfree(wh);
+	}
+	kfree(dev_cgroup);
+}
+
+#define DEVCG_ALLOW 1
+#define DEVCG_DENY 2
+
+void set_access(char *acc, short access)
+{
+	int idx = 0;
+	memset(acc, 0, 4);
+	if (access & ACC_READ)
+		acc[idx++] = 'r';
+	if (access & ACC_WRITE)
+		acc[idx++] = 'w';
+	if (access & ACC_MKNOD)
+		acc[idx++] = 'm';
+}
+
+char type_to_char(short type)
+{
+	if (type == DEV_ALL)
+		return 'a';
+	if (type == DEV_CHAR)
+		return 'c';
+	if (type == DEV_BLOCK)
+		return 'b';
+	return 'X';
+}
+
+static void set_majmin(char *str, int len, unsigned m)
+{
+	memset(str, 0, len);
+	if (m == ~0)
+		sprintf(str, "*");
+	else
+		snprintf(str, len, "%d", m);
+}
+
+char *print_whitelist(struct dev_cgroup *devcgroup, int *len)
+{
+	char *buf, *s, acc[4];

Page 10 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+	struct dev_whitelist_item *wh;
+	int ret;
+	int count = 0;
+	char maj[10], min[10];
+
+	buf = kmalloc(4096, GFP_KERNEL);
+	if (!buf)
+		return ERR_PTR(-ENOMEM);
+	s = buf;
+	*s = '\0';
+	*len = 0;
+
+	spin_lock(&devcgroup->lock);
+	list_for_each_entry(wh, &devcgroup->whitelist, list) {
+		set_access(acc, wh->access);
+		set_majmin(maj, 10, wh->major);
+		set_majmin(min, 10, wh->minor);
+		ret = snprintf(s, 4095-(s-buf), "%c %s %s %s\n",
+			type_to_char(wh->type), maj, min, acc);
+		if (s+ret >= buf+4095) {
+			kfree(buf);
+			buf = ERR_PTR(-ENOMEM);
+			break;
+		}
+		s += ret;
+		*len += ret;
+		count++;
+	}
+	spin_unlock(&devcgroup->lock);
+
+	return buf;
+}
+
+static ssize_t devcg_access_read(struct cgroup *cgroup,
+			struct cftype *cft, struct file *file,
+			char __user *userbuf, size_t nbytes, loff_t *ppos)
+{
+	struct dev_cgroup *devcgrp = cgroup_to_devcg(cgroup);
+	int filetype = cft->private;
+	char *buffer;
+	int len, retval;
+
+	if (filetype != DEVCG_ALLOW)
+		return -EINVAL;
+	buffer = print_whitelist(devcgrp, &len);
+	if (IS_ERR(buffer))
+		return PTR_ERR(buffer);
+

Page 11 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+	retval = simple_read_from_buffer(userbuf, nbytes, ppos, buffer, len);
+	kfree(buffer);
+	return retval;
+}
+
+static inline short convert_access(char *acc)
+{
+	short access = 0;
+
+	while (*acc) {
+		switch (*acc) {
+		case 'r':
+		case 'R': access |= ACC_READ; break;
+		case 'w':
+		case 'W': access |= ACC_WRITE; break;
+		case 'm':
+		case 'M': access |= ACC_MKNOD; break;
+		case '\n': break;
+		default:
+			return -EINVAL;
+		}
+		acc++;
+	}
+
+	return access;
+}
+
+static inline short convert_type(char intype)
+{
+	short type = 0;
+	switch (intype) {
+	case 'a': type = DEV_ALL; break;
+	case 'c': type = DEV_CHAR; break;
+	case 'b': type = DEV_BLOCK; break;
+	default: type = -EACCES; break;
+	}
+	return type;
+}
+
+static int convert_majmin(char *m, unsigned *u)
+{
+	if (m[0] == '*') {
+		*u = ~0;
+		return 0;
+	}
+	if (sscanf(m, "%u", u) != 1)
+		return -EINVAL;
+	return 0;

Page 12 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+}
+
+static ssize_t devcg_access_write(struct cgroup *cgroup, struct cftype *cft,
+				struct file *file, const char __user *userbuf,
+				size_t nbytes, loff_t *ppos)
+{
+	struct cgroup *cur_cgroup;
+	struct dev_cgroup *devcgrp, *cur_devcgroup;
+	int filetype = cft->private;
+	char *buffer, acc[4], maj[10], min[10];
+	int retval = 0;
+	int nitems;
+	char type;
+	struct dev_whitelist_item wh;
+
+	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_NS_OVERRIDE))
+		return -EPERM;
+
+	devcgrp = cgroup_to_devcg(cgroup);
+	cur_cgroup = task_cgroup(current, devcg_subsys.subsys_id);
+	cur_devcgroup = cgroup_to_devcg(cur_cgroup);
+
+	buffer = kmalloc(nbytes+1, GFP_KERNEL);
+	if (!buffer)
+		return -ENOMEM;
+
+	if (copy_from_user(buffer, userbuf, nbytes)) {
+		retval = -EFAULT;
+		goto out1;
+	}
+	buffer[nbytes] = 0;	/* nul-terminate */
+
+	cgroup_lock();
+	if (cgroup_is_removed(cgroup)) {
+		retval = -ENODEV;
+		goto out2;
+	}
+
+	memset(&wh, 0, sizeof(wh));
+	memset(acc, 0, 4);
+	nitems = sscanf(buffer, "%c %9s %9s %3s", &type, maj, min,
+			acc);
+	retval = -EINVAL;
+	if (nitems != 4)
+		goto out2;
+	wh.type = convert_type(type);
+	if (wh.type < 0)
+		goto out2;

Page 13 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+	wh.access = convert_access(acc);
+	if (convert_majmin(maj, &wh.major))
+		goto out2;
+	if (convert_majmin(min, &wh.minor))
+		goto out2;
+	if (wh.access < 0)
+		goto out2;
+	retval = 0;
+	switch (filetype) {
+	case DEVCG_ALLOW:
+		retval = dev_whitelist_add(devcgrp, &wh);
+		break;
+	case DEVCG_DENY:
+		dev_whitelist_rm(devcgrp, &wh);
+		break;
+	default:
+		retval = -EINVAL;
+		goto out2;
+	}
+
+	if (retval == 0)
+		retval = nbytes;
+
+out2:
+	cgroup_unlock();
+out1:
+	kfree(buffer);
+	return retval;
+}
+
+static struct cftype dev_cgroup_files[] = {
+	{
+		.name = "allow",
+		.read = devcg_access_read,
+		.write = devcg_access_write,
+		.private = DEVCG_ALLOW,
+	},
+	{
+		.name = "deny",
+		.write = devcg_access_write,
+		.private = DEVCG_DENY,
+	},
+};
+
+static int devcg_populate(struct cgroup_subsys *ss,
+				struct cgroup *cont)
+{
+	return cgroup_add_files(cont, ss, dev_cgroup_files,

Page 14 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+					ARRAY_SIZE(dev_cgroup_files));
+}
+
+struct cgroup_subsys devcg_subsys = {
+	.name = "devcg",
+	.can_attach = devcg_can_attach,
+	.create = devcg_create,
+	.destroy = devcg_destroy,
+	.populate = devcg_populate,
+	.subsys_id = devcg_subsys_id,
+};
diff --git a/security/Kconfig b/security/Kconfig
index 5dfc206..c7960c0 100644
--- a/security/Kconfig
+++ b/security/Kconfig
@@ -81,9 +81,13 @@ config SECURITY_CAPABILITIES
 	 This enables the "default" Linux capabilities functionality.
 	 If you are unsure how to answer this question, answer Y.

+config COMMONCAP
+	bool
+	default !SECURITY || SECURITY_CAPABILITIES || SECURITY_ROOTPLUG ||
SECURITY_SMACK || CGROUP_DEV
+
 config SECURITY_FILE_CAPABILITIES
 	bool "File POSIX Capabilities (EXPERIMENTAL)"
-	depends on (SECURITY=n || SECURITY_CAPABILITIES!=n) && EXPERIMENTAL
+	depends on COMMONCAP && EXPERIMENTAL
 	default n
 	help
 	 This enables filesystem capabilities, allowing you to give
diff --git a/security/Makefile b/security/Makefile
index 9e8b025..6093003 100644
--- a/security/Makefile
+++ b/security/Makefile
@@ -6,15 +6,13 @@ obj-$(CONFIG_KEYS)			+= keys/
 subdir-$(CONFIG_SECURITY_SELINUX)	+= selinux
 subdir-$(CONFIG_SECURITY_SMACK)		+= smack

-# if we don't select a security model, use the default capabilities
-ifneq ($(CONFIG_SECURITY),y)
-obj-y		+= commoncap.o
-endif
+obj-$(CONFIG_COMMONCAP)			+= commoncap.o

 # Object file lists
 obj-$(CONFIG_SECURITY)			+= security.o dummy.o inode.o
 # Must precede capability.o in order to stack properly.

Page 15 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 obj-$(CONFIG_SECURITY_SELINUX)		+= selinux/built-in.o
-obj-$(CONFIG_SECURITY_SMACK)		+= commoncap.o smack/built-in.o
-obj-$(CONFIG_SECURITY_CAPABILITIES)	+= commoncap.o capability.o
-obj-$(CONFIG_SECURITY_ROOTPLUG)		+= commoncap.o root_plug.o
+obj-$(CONFIG_SECURITY_SMACK)		+= smack/built-in.o
+obj-$(CONFIG_SECURITY_CAPABILITIES)	+= capability.o
+obj-$(CONFIG_SECURITY_ROOTPLUG)		+= root_plug.o
+obj-$(CONFIG_CGROUP_DEV)		+= dev_cgroup.o
diff --git a/security/capability.c b/security/capability.c
index 8340655..1202991 100644
--- a/security/capability.c
+++ b/security/capability.c
@@ -39,6 +39,8 @@ static struct security_operations capability_ops = {
 	.inode_removexattr =		cap_inode_removexattr,
 	.inode_need_killpriv =		cap_inode_need_killpriv,
 	.inode_killpriv =		cap_inode_killpriv,
+	.inode_permission =		cap_inode_permission,
+	.inode_mknod =			cap_inode_mknod,

 	.task_kill =			cap_task_kill,
 	.task_setscheduler =		cap_task_setscheduler,
diff --git a/security/commoncap.c b/security/commoncap.c
index 83f2691..68c6a97 100644
--- a/security/commoncap.c
+++ b/security/commoncap.c
@@ -26,6 +26,7 @@
 #include <linux/sched.h>
 #include <linux/prctl.h>
 #include <linux/securebits.h>
+#include <linux/devcg.h>

 int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
 {
@@ -160,6 +161,18 @@ static inline void bprm_clear_caps(struct linux_binprm *bprm)
 	bprm->cap_effective = false;
 }

+int cap_inode_permission(struct inode *inode, int mask,
+				 struct nameidata *nd)
+{
+	return devcgroup_inode_permission(inode, mask, nd);
+}
+
+int cap_inode_mknod(struct inode *dir, struct dentry *dentry,
+			 int mode, dev_t dev)
+{
+	return devcgroup_inode_mknod(dir, dentry, mode, dev);
+}

Page 16 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+
 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES

 int cap_inode_need_killpriv(struct dentry *dentry)
diff --git a/security/dev_cgroup.c b/security/dev_cgroup.c
new file mode 100644
index 0000000..eb65411
--- /dev/null
+++ b/security/dev_cgroup.c
@@ -0,0 +1,83 @@
+/*
+ * LSM portion of the device cgroup subsystem.
+ *
+ * Copyright 2007 IBM Corp
+ */
+
+#include <linux/devcg.h>
+
+int devcgroup_inode_permission(struct inode *inode, int mask,
+				 struct nameidata *nd)
+{
+	struct cgroup *cgroup;
+	struct dev_cgroup *dev_cgroup;
+	struct dev_whitelist_item *wh;
+
+	dev_t device = inode->i_rdev;
+	if (!device)
+		return 0;
+	if (!S_ISBLK(inode->i_mode) && !S_ISCHR(inode->i_mode))
+		return 0;
+	cgroup = task_cgroup(current, devcg_subsys.subsys_id);
+	dev_cgroup = cgroup_to_devcg(cgroup);
+	if (!dev_cgroup)
+		return 0;
+
+	spin_lock(&dev_cgroup->lock);
+	list_for_each_entry(wh, &dev_cgroup->whitelist, list) {
+		if (wh->type & DEV_ALL)
+			goto acc_check;
+		if ((wh->type & DEV_BLOCK) && !S_ISBLK(inode->i_mode))
+			continue;
+		if ((wh->type & DEV_CHAR) && !S_ISCHR(inode->i_mode))
+			continue;
+		if (wh->major != ~0 && wh->major != imajor(inode))
+			continue;
+		if (wh->minor != ~0 && wh->minor != iminor(inode))
+			continue;
+acc_check:

Page 17 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+		if ((mask & MAY_WRITE) && !(wh->access & ACC_WRITE))
+			continue;
+		if ((mask & MAY_READ) && !(wh->access & ACC_READ))
+			continue;
+		spin_unlock(&dev_cgroup->lock);
+		return 0;
+	}
+	spin_unlock(&dev_cgroup->lock);
+
+	return -EPERM;
+}
+
+int devcgroup_inode_mknod(struct inode *dir, struct dentry *dentry,
+			 int mode, dev_t dev)
+{
+	struct cgroup *cgroup;
+	struct dev_cgroup *dev_cgroup;
+	struct dev_whitelist_item *wh;
+
+	cgroup = task_cgroup(current, devcg_subsys.subsys_id);
+	dev_cgroup = cgroup_to_devcg(cgroup);
+	if (!dev_cgroup)
+		return 0;
+
+	spin_lock(&dev_cgroup->lock);
+	list_for_each_entry(wh, &dev_cgroup->whitelist, list) {
+		if (wh->type & DEV_ALL)
+			goto acc_check;
+		if ((wh->type & DEV_BLOCK) && !S_ISBLK(mode))
+			continue;
+		if ((wh->type & DEV_CHAR) && !S_ISCHR(mode))
+			continue;
+		if (wh->major != ~0 && wh->major != MAJOR(dev))
+			continue;
+		if (wh->minor != ~0 && wh->minor != MINOR(dev))
+			continue;
+acc_check:
+		if (!(wh->access & ACC_MKNOD))
+			continue;
+		spin_unlock(&dev_cgroup->lock);
+		return 0;
+	}
+	spin_unlock(&dev_cgroup->lock);
+	return -EPERM;
+}
diff --git a/security/root_plug.c b/security/root_plug.c
index a41cf42..090015d 100644
--- a/security/root_plug.c

Page 18 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+++ b/security/root_plug.c
@@ -80,6 +80,8 @@ static struct security_operations rootplug_security_ops = {
 	.capset_check =			cap_capset_check,
 	.capset_set =			cap_capset_set,
 	.capable =			cap_capable,
+	.inode_mknod =			cap_inode_mknod,
+	.inode_permission =		cap_inode_permission,

 	.bprm_apply_creds =		cap_bprm_apply_creds,
 	.bprm_set_security =		cap_bprm_set_security,
diff --git a/security/smack/smack_lsm.c b/security/smack/smack_lsm.c
index 20ec35c..6814aaa 100644
--- a/security/smack/smack_lsm.c
+++ b/security/smack/smack_lsm.c
@@ -523,6 +523,10 @@ static int smack_inode_rename(struct inode *old_inode,
 static int smack_inode_permission(struct inode *inode, int mask,
 				 struct nameidata *nd)
 {
+	int err;
+	err = cap_inode_permission(inode, mask, nd);
+	if (err)
+		return err;
 	/*
 	 * No permission to check. Existence test. Yup, it's there.
 	 */
@@ -2460,6 +2464,7 @@ struct security_operations smack_ops = {
 	.inode_getsecurity = 		smack_inode_getsecurity,
 	.inode_setsecurity = 		smack_inode_setsecurity,
 	.inode_listsecurity = 		smack_inode_listsecurity,
+	.inode_mknod =			cap_inode_mknod,

 	.file_permission = 		smack_file_permission,
 	.file_alloc_security = 		smack_file_alloc_security,
--
1.5.1

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] cgroups: implement device whitelist lsm (v3)
Posted by James Morris on Fri, 14 Mar 2008 10:17:12 GMT
View Forum Message <> Reply to Message

On Thu, 13 Mar 2008, Serge E. Hallyn wrote:

Page 19 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=313
https://new-forum.openvz.org/index.php?t=rview&th=5667&goto=28338#msg_28338
https://new-forum.openvz.org/index.php?t=post&reply_to=28338
https://new-forum.openvz.org/index.php

> Implement a cgroup using the LSM interface to enforce open and mknod
> on device files.

Actually, I'm not sure that the LSM approach in general is best here.

The LSM model is that standard DAC logic lives in the core kernel, and
that extended security logic (e.g. MAC) is called after DAC via hooks.
cgroups has introduced new security logic of its own, which is arguably
"standard DAC" when cgroups is enabled.

I can understand Greg not wanting this security logic in the core kernel,
but it is specific to cgroups (which itself is security model agnostic)
and does not stand alone as a distinct security framework.

The fact that all existing LSMs need to invoke exactly the same code is an
indicator that it doesn't belong in LSM.

Moving this logic into LSM means that instead of the cgroups security
logic being called from one place in the main kernel (where cgroups
lives), it must be called identically from each LSM (none of which are
even aware of cgroups), which I think is pretty obviously the wrong
solution.

This is baggage which comes with cgroups -- please don't push it into LSM
to try and hide that.

- James
--
James Morris
<jmorris@namei.org>

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] cgroups: implement device whitelist lsm (v3)
Posted by Stephen Smalley on Fri, 14 Mar 2008 13:27:28 GMT
View Forum Message <> Reply to Message

On Fri, 2008-03-14 at 21:17 +1100, James Morris wrote:
> On Thu, 13 Mar 2008, Serge E. Hallyn wrote:
>
> > Implement a cgroup using the LSM interface to enforce open and mknod
> > on device files.
>
> Actually, I'm not sure that the LSM approach in general is best here.

Page 20 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=2110
https://new-forum.openvz.org/index.php?t=rview&th=5667&goto=28377#msg_28377
https://new-forum.openvz.org/index.php?t=post&reply_to=28377
https://new-forum.openvz.org/index.php

>
> The LSM model is that standard DAC logic lives in the core kernel, and
> that extended security logic (e.g. MAC) is called after DAC via hooks.
> cgroups has introduced new security logic of its own, which is arguably
> "standard DAC" when cgroups is enabled.
>
> I can understand Greg not wanting this security logic in the core kernel,
> but it is specific to cgroups (which itself is security model agnostic)
> and does not stand alone as a distinct security framework.
>
> The fact that all existing LSMs need to invoke exactly the same code is an
> indicator that it doesn't belong in LSM.
>
> Moving this logic into LSM means that instead of the cgroups security
> logic being called from one place in the main kernel (where cgroups
> lives), it must be called identically from each LSM (none of which are
> even aware of cgroups), which I think is pretty obviously the wrong
> solution.
>
> This is baggage which comes with cgroups -- please don't push it into LSM
> to try and hide that.

I agree with the above, and would further note that I would expect the
SELinux solution to the problem would be done not by stacking with or
calling this device whitelist lsm but instead by introducing the ability
to bind security labels to devices within the kernel (independent of the
particular device node(s) in the filesystem used to access that device)
and applying permission checks on those device labels when processes
attempt to create or access those devices (again independent of the
particular device node used to access them). That keeps the policy
integrated and analyzable and avoids an external dependency.

--
Stephen Smalley
National Security Agency

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] cgroups: implement device whitelist lsm (v3)
Posted by serue on Fri, 14 Mar 2008 14:32:16 GMT
View Forum Message <> Reply to Message

Quoting Stephen Smalley (sds@epoch.ncsc.mil):
>

Page 21 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=204
https://new-forum.openvz.org/index.php?t=rview&th=5667&goto=28344#msg_28344
https://new-forum.openvz.org/index.php?t=post&reply_to=28344
https://new-forum.openvz.org/index.php

> On Fri, 2008-03-14 at 21:17 +1100, James Morris wrote:
> > On Thu, 13 Mar 2008, Serge E. Hallyn wrote:
> >
> > > Implement a cgroup using the LSM interface to enforce open and mknod
> > > on device files.
> >
> > Actually, I'm not sure that the LSM approach in general is best here.
> >
> > The LSM model is that standard DAC logic lives in the core kernel, and
> > that extended security logic (e.g. MAC) is called after DAC via hooks.
> > cgroups has introduced new security logic of its own, which is arguably
> > "standard DAC" when cgroups is enabled.
> >
> > I can understand Greg not wanting this security logic in the core kernel,
> > but it is specific to cgroups (which itself is security model agnostic)
> > and does not stand alone as a distinct security framework.

I completely disagree. We have two separate frameworks in the kernel,
one to enforce generic additional security stuff, and one to track
tasks. When I need a feature which tracks tasks to do some security
tasks, it seems obvious that I would use both, just like to enforce a
certain type of MAC I end up using both netfilter and LSM through
selinux.

> > The fact that all existing LSMs need to invoke exactly the same code is an
> > indicator that it doesn't belong in LSM.

No, that's like saying capabilities don't belong in LSM because all LSMS
need to invoke it the same way. What it is an indicator of is that
there are (not-quite-)orthogonal pieces of security which users might
want to use together.

As I told stephen I hope to provide the enhanced selinux support for
devices, and at that point perhaps you won't want to support
SELINUX+CGROUPS_DEV anymore.

Now that's just my opinion and it doesn't count for much. I'll do
whatever everyone can agree on, but will wait for Paul's opinion about
adding cgroup hooks next to the two security hooks.

> > Moving this logic into LSM means that instead of the cgroups security
> > logic being called from one place in the main kernel (where cgroups
> > lives), it must be called identically from each LSM (none of which are
> > even aware of cgroups), which I think is pretty obviously the wrong
> > solution.
> >
> > This is baggage which comes with cgroups -- please don't push it into LSM
> > to try and hide that.

Page 22 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>
> I agree with the above, and would further note that I would expect the
> SELinux solution to the problem would be done not by stacking with or
> calling this device whitelist lsm but instead by introducing the ability
> to bind security labels to devices within the kernel (independent of the
> particular device node(s) in the filesystem used to access that device)
> and applying permission checks on those device labels when processes
> attempt to create or access those devices (again independent of the
> particular device node used to access them). That keeps the policy
> integrated and analyzable and avoids an external dependency.

Agreed.

-serge

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] cgroups: implement device whitelist lsm (v3)
Posted by Stephen Smalley on Fri, 14 Mar 2008 17:41:56 GMT
View Forum Message <> Reply to Message

On Fri, 2008-03-14 at 09:32 -0500, Serge E. Hallyn wrote:
> Quoting Stephen Smalley (sds@epoch.ncsc.mil):
> >
> > On Fri, 2008-03-14 at 21:17 +1100, James Morris wrote:
> > > On Thu, 13 Mar 2008, Serge E. Hallyn wrote:
> > >
> > > > Implement a cgroup using the LSM interface to enforce open and mknod
> > > > on device files.
> > >
> > > Actually, I'm not sure that the LSM approach in general is best here.
> > >
> > > The LSM model is that standard DAC logic lives in the core kernel, and
> > > that extended security logic (e.g. MAC) is called after DAC via hooks.
> > > cgroups has introduced new security logic of its own, which is arguably
> > > "standard DAC" when cgroups is enabled.
> > >
> > > I can understand Greg not wanting this security logic in the core kernel,
> > > but it is specific to cgroups (which itself is security model agnostic)
> > > and does not stand alone as a distinct security framework.
>
> I completely disagree. We have two separate frameworks in the kernel,
> one to enforce generic additional security stuff, and one to track
> tasks. When I need a feature which tracks tasks to do some security
> tasks, it seems obvious that I would use both, just like to enforce a

Page 23 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=2110
https://new-forum.openvz.org/index.php?t=rview&th=5667&goto=28378#msg_28378
https://new-forum.openvz.org/index.php?t=post&reply_to=28378
https://new-forum.openvz.org/index.php

> certain type of MAC I end up using both netfilter and LSM through
> selinux.

Depends on whether you think LSM hooks are like netfilter hooks (i.e.
fine for each module to just implement a few here and there, then
combine resulting modules), or whether they are about implementing
complete security models (ala SELinux or Smack). As they currently
exist, they aren't very well suited to the former - they impose a cost
on all hooked operations in order to hook any at all, as has been a
concern for your device controller.

> > > The fact that all existing LSMs need to invoke exactly the same code is an
> > > indicator that it doesn't belong in LSM.
>
> No, that's like saying capabilities don't belong in LSM because all LSMS
> need to invoke it the same way. What it is an indicator of is that
> there are (not-quite-)orthogonal pieces of security which users might
> want to use together.

Likely not a popular view, but capabilities don't belong in LSM. Look
at them: the capability state is still directly embedded in the
relevant kernel data structures, various bits of capability specific
logic and interfaces remain in the core kernel, they don't present a
complete security model (just an auxiliary to some other model like DAC
or Smack for privilege purposes), they use only a small subset of the
hooks, they force LSM to violate its usual restrictive-only paradigm to
support capable(), CONFIG_SECURITY=n still has to invoke the capability
functions, and all of the other LSMs do need to call it the same way to
keep Linux working as expected for applications and users.

The original promise was that LSM would allow kernels to be built that
shed capabilities altogether, but in practice no one seems to do that as
both users and applications expect them to exist in Linux. In fact, the
possibility of not having capabilities present has caused problems that
have led to the dummy module being turned more and more into a clone of
the capabilities module (actually managing and testing the capability
bits rather than just uid == 0 as originally).

So I wouldn't point to capabilities as a counter example to James' point
- they are actually a supporting example.

> As I told stephen I hope to provide the enhanced selinux support for
> devices, and at that point perhaps you won't want to support
> SELINUX+CGROUPS_DEV anymore.
>
> Now that's just my opinion and it doesn't count for much. I'll do
> whatever everyone can agree on, but will wait for Paul's opinion about
> adding cgroup hooks next to the two security hooks.

Page 24 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>
> > > Moving this logic into LSM means that instead of the cgroups security
> > > logic being called from one place in the main kernel (where cgroups
> > > lives), it must be called identically from each LSM (none of which are
> > > even aware of cgroups), which I think is pretty obviously the wrong
> > > solution.
> > >
> > > This is baggage which comes with cgroups -- please don't push it into LSM
> > > to try and hide that.
> >
> > I agree with the above, and would further note that I would expect the
> > SELinux solution to the problem would be done not by stacking with or
> > calling this device whitelist lsm but instead by introducing the ability
> > to bind security labels to devices within the kernel (independent of the
> > particular device node(s) in the filesystem used to access that device)
> > and applying permission checks on those device labels when processes
> > attempt to create or access those devices (again independent of the
> > particular device node used to access them). That keeps the policy
> > integrated and analyzable and avoids an external dependency.
>
> Agreed.
>
> -serge
--
Stephen Smalley
National Security Agency

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] cgroups: implement device whitelist lsm (v3)
Posted by Casey Schaufler on Fri, 14 Mar 2008 22:44:26 GMT
View Forum Message <> Reply to Message

--- Stephen Smalley <sds@epoch.ncsc.mil> wrote:

>
> ...
> > I completely disagree. We have two separate frameworks in the kernel,
> > one to enforce generic additional security stuff, and one to track
> > tasks. When I need a feature which tracks tasks to do some security
> > tasks, it seems obvious that I would use both, just like to enforce a
> > certain type of MAC I end up using both netfilter and LSM through
> > selinux.
>

Page 25 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=2111
https://new-forum.openvz.org/index.php?t=rview&th=5667&goto=28370#msg_28370
https://new-forum.openvz.org/index.php?t=post&reply_to=28370
https://new-forum.openvz.org/index.php

> Depends on whether you think LSM hooks are like netfilter hooks (i.e.
> fine for each module to just implement a few here and there, then
> combine resulting modules), or whether they are about implementing
> complete security models (ala SELinux or Smack). As they currently
> exist, they aren't very well suited to the former - they impose a cost
> on all hooked operations in order to hook any at all, as has been a
> concern for your device controller.

I don't intend that Smack be thought of as a complete security model.
Smack implements Mandatory Access Control, but leaves the privilege
mechanism (root and/or capabilities) to the whims of others. Similarly
Smack does not do DAC (unlike SELinux with MCS) although "owned rules"
has been proposed as an additional feature. I certainly wouldn't
want every new facility that comes in to require multiple versions
that depend on the other LSMs involved. It's true that today's LSM is
optimized for the only LSM that existed a year ago, and that was a
monolythic security model.

> > > > The fact that all existing LSMs need to invoke exactly the same code is
> an
> > > > indicator that it doesn't belong in LSM.
> >
> > No, that's like saying capabilities don't belong in LSM because all LSMS
> > need to invoke it the same way. What it is an indicator of is that
> > there are (not-quite-)orthogonal pieces of security which users might
> > want to use together.
>
> Likely not a popular view, but capabilities don't belong in LSM.

I share this view, which add credibility to the claim that it's
not popular. (smiley)

> Look
> at them: the capability state is still directly embedded in the
> relevant kernel data structures, various bits of capability specific
> logic and interfaces remain in the core kernel,

It does seem as if a separate Linux Privilege Module framework
might be a better scheme. It would be very easy to pull out, and
simple to create the obvious LPMs:

- Traditional root
 hooks look like "return (euid == 0) ? 0 : -EACCES;"
- No access check at all
 hooks look like "return 0;"
- Root or capabilities
 hooks look like "return (euid == 0 || capable(xxx)) ? 0 : -EACCES;"
- Pure capabilities

Page 26 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 hooks look like "return capable(xxx) ? 0 : -EACCES;"

> they don't present a
> complete security model (just an auxiliary to some other model like DAC
> or Smack for privilege purposes), they use only a small subset of the
> hooks, they force LSM to violate its usual restrictive-only paradigm to
> support capable(), CONFIG_SECURITY=n still has to invoke the capability
> functions, and all of the other LSMs do need to call it the same way to
> keep Linux working as expected for applications and users.

Plus, if SELinux wants to abandon capabilities they can add thier own
scheme or insist the user use the noop LPM and do whatever they like
in the LSM. Smack has no intention of mucking with the privilege
mechanism, and will happily go along with whatever the rest of the
system wants to use, although the noop LSM seems a bit pointless in
that case.

> The original promise was that LSM would allow kernels to be built that
> shed capabilities altogether,

I don't remember that, but it's been a long time so it could be true.

> but in practice no one seems to do that as
> both users and applications expect them to exist in Linux. In fact, the
> possibility of not having capabilities present has caused problems that
> have led to the dummy module being turned more and more into a clone of
> the capabilities module (actually managing and testing the capability
> bits rather than just uid == 0 as originally).

This is why Smack is sticking to MAC rather than trying to be a
wholistic security policy mechanism. To quote the prophet, "God
created the world in 7 days, but then, He didn't have an install
base".

> So I wouldn't point to capabilities as a counter example to James' point
> - they are actually a supporting example.

In particular, capabilities are not an access control mechanism,
they are a privilege mechanism. A lot of discussion about LSM has
centered around the appropriate charactoristics of an LSM, and
these discussions always assume that the LSM in question is
exactly an access control mechanism. If we split the LSM into
a LACM for access control and an LPM for privilege management
maybe we can eliminate the most contentious issues.

Does anyone know why that would be stoopid before I whack out
patches?

Page 27 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Thank you.

Casey Schaufler
casey@schaufler-ca.com

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] cgroups: implement device whitelist lsm (v3)
Posted by Stephen Smalley on Mon, 17 Mar 2008 13:26:39 GMT
View Forum Message <> Reply to Message

On Fri, 2008-03-14 at 15:44 -0700, Casey Schaufler wrote:
> --- Stephen Smalley <sds@epoch.ncsc.mil> wrote:
>
> >
> > ...
> > > I completely disagree. We have two separate frameworks in the kernel,
> > > one to enforce generic additional security stuff, and one to track
> > > tasks. When I need a feature which tracks tasks to do some security
> > > tasks, it seems obvious that I would use both, just like to enforce a
> > > certain type of MAC I end up using both netfilter and LSM through
> > > selinux.
> >
> > Depends on whether you think LSM hooks are like netfilter hooks (i.e.
> > fine for each module to just implement a few here and there, then
> > combine resulting modules), or whether they are about implementing
> > complete security models (ala SELinux or Smack). As they currently
> > exist, they aren't very well suited to the former - they impose a cost
> > on all hooked operations in order to hook any at all, as has been a
> > concern for your device controller.
>
> I don't intend that Smack be thought of as a complete security model.
> Smack implements Mandatory Access Control, but leaves the privilege
> mechanism (root and/or capabilities) to the whims of others. Similarly
> Smack does not do DAC (unlike SELinux with MCS) although "owned rules"
> has been proposed as an additional feature. I certainly wouldn't
> want every new facility that comes in to require multiple versions
> that depend on the other LSMs involved. It's true that today's LSM is
> optimized for the only LSM that existed a year ago, and that was a
> monolythic security model.

By complete security model, I don't mean it has to be MAC+DAC
+privileges. Just that it does in fact implement a well formed security
model, not just an ad hoc set of stupid security tricks. Smack and

Page 28 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=2110
https://new-forum.openvz.org/index.php?t=rview&th=5667&goto=28416#msg_28416
https://new-forum.openvz.org/index.php?t=post&reply_to=28416
https://new-forum.openvz.org/index.php

SELinux are examples of the former.

> > > > > The fact that all existing LSMs need to invoke exactly the same code is
> > an
> > > > > indicator that it doesn't belong in LSM.
> > >
> > > No, that's like saying capabilities don't belong in LSM because all LSMS
> > > need to invoke it the same way. What it is an indicator of is that
> > > there are (not-quite-)orthogonal pieces of security which users might
> > > want to use together.
> >
> > Likely not a popular view, but capabilities don't belong in LSM.
>
> I share this view, which add credibility to the claim that it's
> not popular. (smiley)
>
> > Look
> > at them: the capability state is still directly embedded in the
> > relevant kernel data structures, various bits of capability specific
> > logic and interfaces remain in the core kernel,
>
> It does seem as if a separate Linux Privilege Module framework
> might be a better scheme. It would be very easy to pull out, and
> simple to create the obvious LPMs:
>
> - Traditional root
> hooks look like "return (euid == 0) ? 0 : -EACCES;"
> - No access check at all
> hooks look like "return 0;"
> - Root or capabilities
> hooks look like "return (euid == 0 || capable(xxx)) ? 0 : -EACCES;"
> - Pure capabilities
> hooks look like "return capable(xxx) ? 0 : -EACCES;"
>
> > they don't present a
> > complete security model (just an auxiliary to some other model like DAC
> > or Smack for privilege purposes), they use only a small subset of the
> > hooks, they force LSM to violate its usual restrictive-only paradigm to
> > support capable(), CONFIG_SECURITY=n still has to invoke the capability
> > functions, and all of the other LSMs do need to call it the same way to
> > keep Linux working as expected for applications and users.
>
> Plus, if SELinux wants to abandon capabilities they can add thier own
> scheme or insist the user use the noop LPM and do whatever they like
> in the LSM. Smack has no intention of mucking with the privilege
> mechanism, and will happily go along with whatever the rest of the
> system wants to use, although the noop LSM seems a bit pointless in
> that case.

Page 29 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>
> > The original promise was that LSM would allow kernels to be built that
> > shed capabilities altogether,
>
> I don't remember that, but it's been a long time so it could be true.

"One of the explicit requirements to get LSM into the kernel was to have
the ability to make capabilities be a module. This allows the embedded
people to completely remove capabilities, as they really want this. I
don't think we can ignore this, no matter how much of a pain in the butt
it is :)" - Greg KH

Quoted from:
http://marc.info/?l=linux-security-module&m=99236500727804&w=2

Ironically, since that time, capabilities have doubled in size and still
can't be removed from the core kernel since LSM didn't push the state
into the security blobs.

>
> > but in practice no one seems to do that as
> > both users and applications expect them to exist in Linux. In fact, the
> > possibility of not having capabilities present has caused problems that
> > have led to the dummy module being turned more and more into a clone of
> > the capabilities module (actually managing and testing the capability
> > bits rather than just uid == 0 as originally).
>
> This is why Smack is sticking to MAC rather than trying to be a
> wholistic security policy mechanism. To quote the prophet, "God
> created the world in 7 days, but then, He didn't have an install
> base".
>
> > So I wouldn't point to capabilities as a counter example to James' point
> > - they are actually a supporting example.
>
> In particular, capabilities are not an access control mechanism,
> they are a privilege mechanism. A lot of discussion about LSM has
> centered around the appropriate charactoristics of an LSM, and
> these discussions always assume that the LSM in question is
> exactly an access control mechanism. If we split the LSM into
> a LACM for access control and an LPM for privilege management
> maybe we can eliminate the most contentious issues.
>
> Does anyone know why that would be stoopid before I whack out
> patches?

If you do re-factor it in that manner, SELinux will have to register
under both schemes in order to preserve its current logic, of course.

Page 30 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

And there are points of overlap between the two schemes even for
non-privilege-managing security modules (e.g. they both need hooks on
ptrace, inode_setxattr, etc).

Lastly, since LSM didn't really do the job of migrating the capability
state out of the core kernel data structures and fully encapsulating the
capability logic, you'd have to do that work too to do it right.

--
Stephen Smalley
National Security Agency

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] cgroups: implement device whitelist lsm (v3)
Posted by serue on Mon, 17 Mar 2008 14:08:53 GMT
View Forum Message <> Reply to Message

Quoting Casey Schaufler (casey@schaufler-ca.com):
>
> --- Stephen Smalley <sds@epoch.ncsc.mil> wrote:
>
> >
> > ...
> > > I completely disagree. We have two separate frameworks in the kernel,
> > > one to enforce generic additional security stuff, and one to track
> > > tasks. When I need a feature which tracks tasks to do some security
> > > tasks, it seems obvious that I would use both, just like to enforce a
> > > certain type of MAC I end up using both netfilter and LSM through
> > > selinux.
> >
> > Depends on whether you think LSM hooks are like netfilter hooks (i.e.
> > fine for each module to just implement a few here and there, then
> > combine resulting modules), or whether they are about implementing
> > complete security models (ala SELinux or Smack). As they currently
> > exist, they aren't very well suited to the former - they impose a cost
> > on all hooked operations in order to hook any at all, as has been a
> > concern for your device controller.
>
> I don't intend that Smack be thought of as a complete security model.
> Smack implements Mandatory Access Control, but leaves the privilege
> mechanism (root and/or capabilities) to the whims of others. Similarly
> Smack does not do DAC (unlike SELinux with MCS) although "owned rules"

Page 31 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=204
https://new-forum.openvz.org/index.php?t=rview&th=5667&goto=28410#msg_28410
https://new-forum.openvz.org/index.php?t=post&reply_to=28410
https://new-forum.openvz.org/index.php

> has been proposed as an additional feature. I certainly wouldn't
> want every new facility that comes in to require multiple versions
> that depend on the other LSMs involved. It's true that today's LSM is
> optimized for the only LSM that existed a year ago, and that was a
> monolythic security model.
>
> > > > > The fact that all existing LSMs need to invoke exactly the same code is
> > an
> > > > > indicator that it doesn't belong in LSM.
> > >
> > > No, that's like saying capabilities don't belong in LSM because all LSMS
> > > need to invoke it the same way. What it is an indicator of is that
> > > there are (not-quite-)orthogonal pieces of security which users might
> > > want to use together.
> >
> > Likely not a popular view, but capabilities don't belong in LSM.
>
> I share this view, which add credibility to the claim that it's
> not popular. (smiley)
>
> > Look
> > at them: the capability state is still directly embedded in the
> > relevant kernel data structures, various bits of capability specific
> > logic and interfaces remain in the core kernel,
>
> It does seem as if a separate Linux Privilege Module framework
> might be a better scheme. It would be very easy to pull out, and
> simple to create the obvious LPMs:
>
> - Traditional root
> hooks look like "return (euid == 0) ? 0 : -EACCES;"
> - No access check at all
> hooks look like "return 0;"
> - Root or capabilities
> hooks look like "return (euid == 0 || capable(xxx)) ? 0 : -EACCES;"
> - Pure capabilities
> hooks look like "return capable(xxx) ? 0 : -EACCES;"
>
> > they don't present a
> > complete security model (just an auxiliary to some other model like DAC
> > or Smack for privilege purposes), they use only a small subset of the
> > hooks, they force LSM to violate its usual restrictive-only paradigm to
> > support capable(), CONFIG_SECURITY=n still has to invoke the capability
> > functions, and all of the other LSMs do need to call it the same way to
> > keep Linux working as expected for applications and users.
>
> Plus, if SELinux wants to abandon capabilities they can add thier own
> scheme or insist the user use the noop LPM and do whatever they like

Page 32 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> in the LSM. Smack has no intention of mucking with the privilege
> mechanism, and will happily go along with whatever the rest of the
> system wants to use, although the noop LSM seems a bit pointless in
> that case.
>
> > The original promise was that LSM would allow kernels to be built that
> > shed capabilities altogether,
>
> I don't remember that, but it's been a long time so it could be true.
>
> > but in practice no one seems to do that as
> > both users and applications expect them to exist in Linux. In fact, the
> > possibility of not having capabilities present has caused problems that
> > have led to the dummy module being turned more and more into a clone of
> > the capabilities module (actually managing and testing the capability
> > bits rather than just uid == 0 as originally).
>
> This is why Smack is sticking to MAC rather than trying to be a
> wholistic security policy mechanism. To quote the prophet, "God
> created the world in 7 days, but then, He didn't have an install
> base".
>
> > So I wouldn't point to capabilities as a counter example to James' point
> > - they are actually a supporting example.
>
> In particular, capabilities are not an access control mechanism,
> they are a privilege mechanism. A lot of discussion about LSM has
> centered around the appropriate charactoristics of an LSM, and
> these discussions always assume that the LSM in question is
> exactly an access control mechanism. If we split the LSM into
> a LACM for access control and an LPM for privilege management
> maybe we can eliminate the most contentious issues.
>
> Does anyone know why that would be stoopid before I whack out
> patches?

No I'd like to see those patches. It would ideally allow LSM to become
purely restrictive and LPM to be purely empowering, presumably making
the resulting hook sets easier to review and maintain. The LPM wouldn't
(I assume) gain any *new* hook points so we wouldn't be adding any new
places for hooks to be overriden by a rootkit.

-serge

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 33 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Subject: Re: [PATCH] cgroups: implement device whitelist lsm (v3)
Posted by Casey Schaufler on Mon, 17 Mar 2008 16:16:42 GMT
View Forum Message <> Reply to Message

--- "Serge E. Hallyn" <serue@us.ibm.com> wrote:

> Quoting Casey Schaufler (casey@schaufler-ca.com):
> ...
> > In particular, capabilities are not an access control mechanism,
> > they are a privilege mechanism. A lot of discussion about LSM has
> > centered around the appropriate charactoristics of an LSM, and
> > these discussions always assume that the LSM in question is
> > exactly an access control mechanism. If we split the LSM into
> > a LACM for access control and an LPM for privilege management
> > maybe we can eliminate the most contentious issues.
> >
> > Does anyone know why that would be stoopid before I whack out
> > patches?
>
> No I'd like to see those patches. It would ideally allow LSM to become
> *purely* restrictive and LPM to be purely empowering, presumably making
> the resulting hook sets easier to review and maintain. The LPM wouldn't
> (I assume) gain any *new* hook points so we wouldn't be adding any new
> places for hooks to be overriden by a rootkit.

I don't expect to put in any additional hooks points, although
it's safe to bet that someone will want to pretty quickly. What
I see as the big concern is our old friend the granularity question.
I can pretty well predict that we'll have quite a bruhaha over
whether each hook point should have it's own hook or if they should
be shared based on the privilege supported. For example, in namei.c
the function generic_permission() currently calls
capable(CAP_DAC_OVERRIDE). The privilege supported approach would
be to create a hook that gets used in many places that is a drop-in
replacement for that,

 if (capable(CAP_DAC_OVERRIDE))
becomes
 if (lpm_dac_override())

The alternative is to go the same route as the LSM, where it
becomes

 if (lpm_generic_permission_may_exec())

The former scheme is much easier to implement. It also would
mean that if would wanted to implement a finer granularity on
DAC overrides (e.g. CAP_DAC_READ, CAP_DAC_WRITE, CAP_DAC_EXECUTE)
you would have to introduce new hooks. That wouldn't be any worse

Page 34 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=2111
https://new-forum.openvz.org/index.php?t=rview&th=5667&goto=28414#msg_28414
https://new-forum.openvz.org/index.php?t=post&reply_to=28414
https://new-forum.openvz.org/index.php

than today's situation where you would have to change the argument
passed to capable as far as the calling (e.g. generic_permission)
code is concerned, but it would mean updating all the LPMs. I
currently count 1084 calls to capable (sloppy grep method) and that's
way too many hooks in my mind. But, if there's anyone who thinks
that the way to go is for each existing capable call to be a hook,
feel free to make a convincing argument.

This should be fun.

Casey Schaufler
casey@schaufler-ca.com

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] cgroups: implement device whitelist lsm (v3)
Posted by Stephen Smalley on Mon, 17 Mar 2008 16:48:10 GMT
View Forum Message <> Reply to Message

On Mon, 2008-03-17 at 09:16 -0700, Casey Schaufler wrote:
> --- "Serge E. Hallyn" <serue@us.ibm.com> wrote:
>
> > Quoting Casey Schaufler (casey@schaufler-ca.com):
> > ...
> > > In particular, capabilities are not an access control mechanism,
> > > they are a privilege mechanism. A lot of discussion about LSM has
> > > centered around the appropriate charactoristics of an LSM, and
> > > these discussions always assume that the LSM in question is
> > > exactly an access control mechanism. If we split the LSM into
> > > a LACM for access control and an LPM for privilege management
> > > maybe we can eliminate the most contentious issues.
> > >
> > > Does anyone know why that would be stoopid before I whack out
> > > patches?
> >
> > No I'd like to see those patches. It would ideally allow LSM to become
> > *purely* restrictive and LPM to be purely empowering, presumably making
> > the resulting hook sets easier to review and maintain. The LPM wouldn't
> > (I assume) gain any *new* hook points so we wouldn't be adding any new
> > places for hooks to be overriden by a rootkit.
>
> I don't expect to put in any additional hooks points, although
> it's safe to bet that someone will want to pretty quickly. What
> I see as the big concern is our old friend the granularity question.

Page 35 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=2110
https://new-forum.openvz.org/index.php?t=rview&th=5667&goto=28415#msg_28415
https://new-forum.openvz.org/index.php?t=post&reply_to=28415
https://new-forum.openvz.org/index.php

> I can pretty well predict that we'll have quite a bruhaha over
> whether each hook point should have it's own hook or if they should
> be shared based on the privilege supported. For example, in namei.c
> the function generic_permission() currently calls
> capable(CAP_DAC_OVERRIDE). The privilege supported approach would
> be to create a hook that gets used in many places that is a drop-in
> replacement for that,
>
> if (capable(CAP_DAC_OVERRIDE))
> becomes
> if (lpm_dac_override())

nit: I'd use priv_ rather than lpm_, just as we use security_ rather
than lsm_.

Do you plan to pass other arguments to the privilege hook call, like the
object? If not, then there is no point in changing the capable call
sites at all - just change its implementation to invoke a priv_capable()
hook instead of a security_capable() hook.

> The alternative is to go the same route as the LSM, where it
> becomes
>
> if (lpm_generic_permission_may_exec())
>
> The former scheme is much easier to implement. It also would
> mean that if would wanted to implement a finer granularity on
> DAC overrides (e.g. CAP_DAC_READ, CAP_DAC_WRITE, CAP_DAC_EXECUTE)
> you would have to introduce new hooks. That wouldn't be any worse
> than today's situation where you would have to change the argument
> passed to capable as far as the calling (e.g. generic_permission)
> code is concerned, but it would mean updating all the LPMs. I
> currently count 1084 calls to capable (sloppy grep method) and that's
> way too many hooks in my mind. But, if there's anyone who thinks
> that the way to go is for each existing capable call to be a hook,
> feel free to make a convincing argument.
>
> This should be fun.

Changing all of the call sites seems a bit prohibitive for an initial
implementation; rewiring the internals of capable() to use a new
privilege hook interface would be a lot simpler.

You also have to migrate the other security hooks presently used to
support capabilities to your privilege framework.

--
Stephen Smalley

Page 36 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

National Security Agency

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] cgroups: implement device whitelist lsm (v3)
Posted by Greg KH on Tue, 18 Mar 2008 06:48:42 GMT
View Forum Message <> Reply to Message

On Mon, Mar 17, 2008 at 09:26:39AM -0400, Stephen Smalley wrote:
> > > The original promise was that LSM would allow kernels to be built that
> > > shed capabilities altogether,
> >
> > I don't remember that, but it's been a long time so it could be true.
>
> "One of the explicit requirements to get LSM into the kernel was to have
> the ability to make capabilities be a module. This allows the embedded
> people to completely remove capabilities, as they really want this. I
> don't think we can ignore this, no matter how much of a pain in the butt
> it is :)" - Greg KH
>
> Quoted from:
> http://marc.info/?l=linux-security-module&m=99236500727804&w=2
>
> Ironically, since that time, capabilities have doubled in size and still
> can't be removed from the core kernel since LSM didn't push the state
> into the security blobs.

Maybe we need to seriously revisit this and perhaps rip capabilities
back out and put it always into the kernel if it's always a requirement.

Comments made 7 years ago might be totally wrong when we have now
learned how this all has worked out...

thanks,

greg k-h

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 37 of 37 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=216
https://new-forum.openvz.org/index.php?t=rview&th=5667&goto=28423#msg_28423
https://new-forum.openvz.org/index.php?t=post&reply_to=28423
https://new-forum.openvz.org/index.php

