
Subject: [PATCH 2/2] Make res_counter hierarchical
Posted by Pavel Emelianov on Fri, 07 Mar 2008 15:32:20 GMT
View Forum Message <> Reply to Message

This allows us two things basically:

1. If the subgroup has the limit higher than its parent has
 then the one will get more memory than allowed.
2. When we will need to account for a resource in more than
 one place, we'll be able to use this technics.

 Look, consider we have a memory limit and swap limit. The
 memory limit is the limit for the sum of RSS, page cache
 and swap usage. To account for this gracefuly, we'll set
 two counters:

	 res_counter mem_counter;
	 res_counter swap_counter;

 attach mm to the swap one

	 mm->mem_cnt = &swap_counter;

 and make the swap_counter be mem's child. That's it. If we
 want hierarchical support, then the tree will look like this:

 mem_counter_top
 swap_counter_top <- mm_struct living at top
 mem_counter_sub
 swap_counter_sub <- mm_struct living at sub

Signed-off-by: Pavel Emelyanov <xemul@openvz.org>

 include/linux/res_counter.h | 11 ++++++++++-
 kernel/res_counter.c | 36 +++++++++++++++++++++++++++++-------
 mm/memcontrol.c | 9 ++++++---
 3 files changed, 45 insertions(+), 11 deletions(-)

diff --git a/include/linux/res_counter.h b/include/linux/res_counter.h
index 2c4deb5..a27105e 100644
--- a/include/linux/res_counter.h
+++ b/include/linux/res_counter.h
@@ -41,6 +41,10 @@ struct res_counter {
 	 * the routines below consider this to be IRQ-safe
 	 */
 	spinlock_t lock;
+	/*

Page 1 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=725
https://new-forum.openvz.org/index.php?t=rview&th=5623&goto=28080#msg_28080
https://new-forum.openvz.org/index.php?t=post&reply_to=28080
https://new-forum.openvz.org/index.php

+	 * the parent counter. used for hierarchical resource accounting
+	 */
+	struct res_counter *parent;
 };

 /**
@@ -80,7 +84,12 @@ enum {
 * helpers for accounting
 */

-void res_counter_init(struct res_counter *counter);
+/*
+ * the parent pointer is set only once - during the counter
+ * initialization. caller then must itself provide that this
+ * pointer is valid during the new counter lifetime
+ */
+void res_counter_init(struct res_counter *counter, struct res_counter *parent);

 /*
 * charge - try to consume more resource.
diff --git a/kernel/res_counter.c b/kernel/res_counter.c
index f1f20c2..046f6f4 100644
--- a/kernel/res_counter.c
+++ b/kernel/res_counter.c
@@ -13,10 +13,11 @@
 #include <linux/res_counter.h>
 #include <linux/uaccess.h>

-void res_counter_init(struct res_counter *counter)
+void res_counter_init(struct res_counter *counter, struct res_counter *parent)
 {
 	spin_lock_init(&counter->lock);
 	counter->limit = (unsigned long long)LLONG_MAX;
+	counter->parent = parent;
 }

 int res_counter_charge_locked(struct res_counter *counter, unsigned long val)
@@ -36,10 +37,26 @@ int res_counter_charge(struct res_counter *counter, unsigned long val)
 {
 	int ret;
 	unsigned long flags;
+	struct res_counter *c, *unroll_c;
+
+	local_irq_save(flags);
+	for (c = counter; c != NULL; c = c->parent) {
+		spin_lock(&c->lock);
+		ret = res_counter_charge_locked(c, val);
+		spin_unlock(&c->lock);

Page 2 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+		if (ret < 0)
+			goto unroll;
+	}
+	local_irq_restore(flags);
+	return 0;

-	spin_lock_irqsave(&counter->lock, flags);
-	ret = res_counter_charge_locked(counter, val);
-	spin_unlock_irqrestore(&counter->lock, flags);
+unroll:
+	for (unroll_c = counter; unroll_c != c; unroll_c = unroll_c->parent) {
+		spin_lock(&unroll_c->lock);
+		res_counter_uncharge_locked(unroll_c, val);
+		spin_unlock(&unroll_c->lock);
+	}
+	local_irq_restore(flags);
 	return ret;
 }

@@ -54,10 +71,15 @@ void res_counter_uncharge_locked(struct res_counter *counter,
unsigned long val)
 void res_counter_uncharge(struct res_counter *counter, unsigned long val)
 {
 	unsigned long flags;
+	struct res_counter *c;

-	spin_lock_irqsave(&counter->lock, flags);
-	res_counter_uncharge_locked(counter, val);
-	spin_unlock_irqrestore(&counter->lock, flags);
+	local_irq_save(flags);
+	for (c = counter; c != NULL; c = c->parent) {
+		spin_lock(&c->lock);
+		res_counter_uncharge_locked(c, val);
+		spin_unlock(&c->lock);
+	}
+	local_irq_restore(flags);
 }

diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index e5c741a..61db79c 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -976,19 +976,22 @@ static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem, int node)
 static struct cgroup_subsys_state *
 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
 {

Page 3 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-	struct mem_cgroup *mem;
+	struct mem_cgroup *mem, *parent;
 	int node;

 	if (unlikely((cont->parent) == NULL)) {
 		mem = &init_mem_cgroup;
 		init_mm.mem_cgroup = mem;
-	} else
+		parent = NULL;
+	} else {
 		mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
+		parent = mem_cgroup_from_cont(cont->parent);
+	}

 	if (mem == NULL)
 		return ERR_PTR(-ENOMEM);

-	res_counter_init(&mem->res);
+	res_counter_init(&mem->res, parent ? &parent->res : NULL);

 	memset(&mem->info, 0, sizeof(mem->info));

--
1.5.3.4

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH 2/2] Make res_counter hierarchical
Posted by KAMEZAWA Hiroyuki on Sat, 08 Mar 2008 04:44:23 GMT
View Forum Message <> Reply to Message

On Fri, 07 Mar 2008 18:32:20 +0300
Pavel Emelyanov <xemul@openvz.org> wrote:

> This allows us two things basically:
>
> 1. If the subgroup has the limit higher than its parent has
> then the one will get more memory than allowed.
> 2. When we will need to account for a resource in more than
> one place, we'll be able to use this technics.
>
> Look, consider we have a memory limit and swap limit. The
> memory limit is the limit for the sum of RSS, page cache
> and swap usage. To account for this gracefuly, we'll set

Page 4 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=777
https://new-forum.openvz.org/index.php?t=rview&th=5623&goto=28092#msg_28092
https://new-forum.openvz.org/index.php?t=post&reply_to=28092
https://new-forum.openvz.org/index.php

> two counters:
>
> 	 res_counter mem_counter;
> 	 res_counter swap_counter;
>
> attach mm to the swap one
>
> 	 mm->mem_cnt = &swap_counter;
>
> and make the swap_counter be mem's child. That's it. If we
> want hierarchical support, then the tree will look like this:
>
> mem_counter_top
> swap_counter_top <- mm_struct living at top
> mem_counter_sub
> swap_counter_sub <- mm_struct living at sub
>
Hmm? seems strange.

IMO, a parent's usage is just sum of all childs'.
And, historically, memory overcommit is done agaist "memory usage + swap".

How about this ?
 <mem_counter_top, swap_counter_top>
	<mem_counter_sub, swap_counter_sub>
	<mem_counter_sub, swap_counter_sub>
	<mem_counter_sub, swap_counter_sub>

 mem_counter_top.usage == sum of all mem_coutner_sub.usage
 swap_counter_sub.usage = sum of all swap_counter_sub.usage

> @@ -976,19 +976,22 @@ static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem, int node)
> static struct cgroup_subsys_state *
> mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
> {
> -	struct mem_cgroup *mem;
> +	struct mem_cgroup *mem, *parent;
> 	int node;
>
> 	if (unlikely((cont->parent) == NULL)) {
> 		mem = &init_mem_cgroup;
> 		init_mm.mem_cgroup = mem;
> -	} else
> +		parent = NULL;
> +	} else {
> 		mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);

Page 5 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> +		parent = mem_cgroup_from_cont(cont->parent);
> +	}
>
> 	if (mem == NULL)
> 		return ERR_PTR(-ENOMEM);
>
> -	res_counter_init(&mem->res);
> +	res_counter_init(&mem->res, parent ? &parent->res : NULL);
>
I have no objection to add some hierarchical support to res_counter.

But we should wait to add it to mem_cgroup because we have to add
some amount of codes to handle hierarchy under mem_cgroup in reasonable way.
for example)
	- hierarchical memory reclaim
	- keeping fairness between sub memory controllers.
	 etc...

Thanks,
-Kame

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH 2/2] Make res_counter hierarchical
Posted by Balbir Singh on Sat, 08 Mar 2008 19:06:42 GMT
View Forum Message <> Reply to Message

Pavel Emelyanov wrote:
> This allows us two things basically:
>
> 1. If the subgroup has the limit higher than its parent has
> then the one will get more memory than allowed.

But should we allow such configuration? I suspect that we should catch such
things at the time of writing the limit.

> 2. When we will need to account for a resource in more than
> one place, we'll be able to use this technics.
>
> Look, consider we have a memory limit and swap limit. The
> memory limit is the limit for the sum of RSS, page cache
> and swap usage. To account for this gracefuly, we'll set
> two counters:
>

Page 6 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=675
https://new-forum.openvz.org/index.php?t=rview&th=5623&goto=28105#msg_28105
https://new-forum.openvz.org/index.php?t=post&reply_to=28105
https://new-forum.openvz.org/index.php

> 	 res_counter mem_counter;
> 	 res_counter swap_counter;
>
> attach mm to the swap one
>
> 	 mm->mem_cnt = &swap_counter;
>
> and make the swap_counter be mem's child. That's it. If we
> want hierarchical support, then the tree will look like this:
>
> mem_counter_top
> swap_counter_top <- mm_struct living at top
> mem_counter_sub
> swap_counter_sub <- mm_struct living at sub
>

Hmm... not sure about this one. What I want to see is a resource counter
hierarchy to mimic the container hierarchy. Then ensure that all limits are set
sanely. I am planning to implement shares support on to of resource counters.

> Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
>
> ---
> include/linux/res_counter.h | 11 ++++++++++-
> kernel/res_counter.c | 36 +++++++++++++++++++++++++++++-------
> mm/memcontrol.c | 9 ++++++---
> 3 files changed, 45 insertions(+), 11 deletions(-)
>
> diff --git a/include/linux/res_counter.h b/include/linux/res_counter.h
> index 2c4deb5..a27105e 100644
> --- a/include/linux/res_counter.h
> +++ b/include/linux/res_counter.h
> @@ -41,6 +41,10 @@ struct res_counter {
> 	 * the routines below consider this to be IRQ-safe
> 	 */
> 	spinlock_t lock;
> +	/*
> +	 * the parent counter. used for hierarchical resource accounting
> +	 */
> +	struct res_counter *parent;
> };
>
> /**
> @@ -80,7 +84,12 @@ enum {
> * helpers for accounting
> */
>

Page 7 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> -void res_counter_init(struct res_counter *counter);
> +/*
> + * the parent pointer is set only once - during the counter
> + * initialization. caller then must itself provide that this
> + * pointer is valid during the new counter lifetime
> + */
> +void res_counter_init(struct res_counter *counter, struct res_counter *parent);
>
> /*
> * charge - try to consume more resource.
> diff --git a/kernel/res_counter.c b/kernel/res_counter.c
> index f1f20c2..046f6f4 100644
> --- a/kernel/res_counter.c
> +++ b/kernel/res_counter.c
> @@ -13,10 +13,11 @@
> #include <linux/res_counter.h>
> #include <linux/uaccess.h>
>
> -void res_counter_init(struct res_counter *counter)
> +void res_counter_init(struct res_counter *counter, struct res_counter *parent)
> {
> 	spin_lock_init(&counter->lock);
> 	counter->limit = (unsigned long long)LLONG_MAX;
> +	counter->parent = parent;
> }
>
> int res_counter_charge_locked(struct res_counter *counter, unsigned long val)
> @@ -36,10 +37,26 @@ int res_counter_charge(struct res_counter *counter, unsigned long val)
> {
> 	int ret;
> 	unsigned long flags;
> +	struct res_counter *c, *unroll_c;
> +
> +	local_irq_save(flags);
> +	for (c = counter; c != NULL; c = c->parent) {
> +		spin_lock(&c->lock);
> +		ret = res_counter_charge_locked(c, val);
> +		spin_unlock(&c->lock);
> +		if (ret < 0)
> +			goto unroll;

We'd like to know which resource counter failed to allow charging, so that we
can reclaim from that mem_res_cgroup.

> +	}
> +	local_irq_restore(flags);
> +	return 0;
>

Page 8 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> -	spin_lock_irqsave(&counter->lock, flags);
> -	ret = res_counter_charge_locked(counter, val);
> -	spin_unlock_irqrestore(&counter->lock, flags);
> +unroll:
> +	for (unroll_c = counter; unroll_c != c; unroll_c = unroll_c->parent) {
> +		spin_lock(&unroll_c->lock);
> +		res_counter_uncharge_locked(unroll_c, val);
> +		spin_unlock(&unroll_c->lock);
> +	}
> +	local_irq_restore(flags);
> 	return ret;
> }
>
> @@ -54,10 +71,15 @@ void res_counter_uncharge_locked(struct res_counter *counter,
unsigned long val)
> void res_counter_uncharge(struct res_counter *counter, unsigned long val)
> {
> 	unsigned long flags;
> +	struct res_counter *c;
>
> -	spin_lock_irqsave(&counter->lock, flags);
> -	res_counter_uncharge_locked(counter, val);
> -	spin_unlock_irqrestore(&counter->lock, flags);
> +	local_irq_save(flags);
> +	for (c = counter; c != NULL; c = c->parent) {
> +		spin_lock(&c->lock);
> +		res_counter_uncharge_locked(c, val);
> +		spin_unlock(&c->lock);
> +	}
> +	local_irq_restore(flags);
> }
>
>
> diff --git a/mm/memcontrol.c b/mm/memcontrol.c
> index e5c741a..61db79c 100644
> --- a/mm/memcontrol.c
> +++ b/mm/memcontrol.c
> @@ -976,19 +976,22 @@ static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem, int node)
> static struct cgroup_subsys_state *
> mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
> {
> -	struct mem_cgroup *mem;
> +	struct mem_cgroup *mem, *parent;
> 	int node;
>
> 	if (unlikely((cont->parent) == NULL)) {
> 		mem = &init_mem_cgroup;

Page 9 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> 		init_mm.mem_cgroup = mem;
> -	} else
> +		parent = NULL;
> +	} else {
> 		mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
> +		parent = mem_cgroup_from_cont(cont->parent);
> +	}
>
> 	if (mem == NULL)
> 		return ERR_PTR(-ENOMEM);
>
> -	res_counter_init(&mem->res);
> +	res_counter_init(&mem->res, parent ? &parent->res : NULL);
>
> 	memset(&mem->info, 0, sizeof(mem->info));
>

--
	Warm Regards,
	Balbir Singh
	Linux Technology Center
	IBM, ISTL

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH 2/2] Make res_counter hierarchical
Posted by Pavel Emelianov on Tue, 11 Mar 2008 08:15:56 GMT
View Forum Message <> Reply to Message

KAMEZAWA Hiroyuki wrote:
> On Fri, 07 Mar 2008 18:32:20 +0300
> Pavel Emelyanov <xemul@openvz.org> wrote:
>
>> This allows us two things basically:
>>
>> 1. If the subgroup has the limit higher than its parent has
>> then the one will get more memory than allowed.
>> 2. When we will need to account for a resource in more than
>> one place, we'll be able to use this technics.
>>
>> Look, consider we have a memory limit and swap limit. The
>> memory limit is the limit for the sum of RSS, page cache
>> and swap usage. To account for this gracefuly, we'll set

Page 10 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=725
https://new-forum.openvz.org/index.php?t=rview&th=5623&goto=28170#msg_28170
https://new-forum.openvz.org/index.php?t=post&reply_to=28170
https://new-forum.openvz.org/index.php

>> two counters:
>>
>> 	 res_counter mem_counter;
>> 	 res_counter swap_counter;
>>
>> attach mm to the swap one
>>
>> 	 mm->mem_cnt = &swap_counter;
>>
>> and make the swap_counter be mem's child. That's it. If we
>> want hierarchical support, then the tree will look like this:
>>
>> mem_counter_top
>> swap_counter_top <- mm_struct living at top
>> mem_counter_sub
>> swap_counter_sub <- mm_struct living at sub
>>
> Hmm? seems strange.
>
> IMO, a parent's usage is just sum of all childs'.
> And, historically, memory overcommit is done agaist "memory usage + swap".
>
> How about this ?
> <mem_counter_top, swap_counter_top>
> 	<mem_counter_sub, swap_counter_sub>
> 	<mem_counter_sub, swap_counter_sub>
> 	<mem_counter_sub, swap_counter_sub>
>
> mem_counter_top.usage == sum of all mem_coutner_sub.usage
> swap_counter_sub.usage = sum of all swap_counter_sub.usage

I've misprinted in y tree, sorry.
The correct hierarchy as I see it is

<mem_couter_0>
 + -- <swap_counter_0>
 + -- <mem_counter_1>
 | + -- <swap_counter_1>
 | + -- <mem_counter_11>
 | | + -- <swap_counter_11>
 | + -- <mem_counter_12>
 | + -- <swap_counter_12>
 + -- <mem_counter_2>
 | + -- <swap_counter_2>
 | + -- <mem_counter_21>
 | | + -- <swap_counter_21>
 | + -- <mem_counter_22>
 | + -- <swap_counter_22>

Page 11 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 + -- <mem_counter_N>
 + -- <swap_counter_N>
 + -- <mem_counter_N1>
 | + -- <swap_counter_N1>
 + -- <mem_counter_N2>
 + -- <swap_counter_N2>

>
>> @@ -976,19 +976,22 @@ static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem, int node)
>> static struct cgroup_subsys_state *
>> mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
>> {
>> -	struct mem_cgroup *mem;
>> +	struct mem_cgroup *mem, *parent;
>> 	int node;
>>
>> 	if (unlikely((cont->parent) == NULL)) {
>> 		mem = &init_mem_cgroup;
>> 		init_mm.mem_cgroup = mem;
>> -	} else
>> +		parent = NULL;
>> +	} else {
>> 		mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
>> +		parent = mem_cgroup_from_cont(cont->parent);
>> +	}
>>
>> 	if (mem == NULL)
>> 		return ERR_PTR(-ENOMEM);
>>
>> -	res_counter_init(&mem->res);
>> +	res_counter_init(&mem->res, parent ? &parent->res : NULL);
>>
> I have no objection to add some hierarchical support to res_counter.
>
> But we should wait to add it to mem_cgroup because we have to add
> some amount of codes to handle hierarchy under mem_cgroup in reasonable way.
> for example)
> 	- hierarchical memory reclaim
> 	- keeping fairness between sub memory controllers.
> 	 etc...
>
> Thanks,
> -Kame
>
>

Page 12 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH 2/2] Make res_counter hierarchical
Posted by Pavel Emelianov on Tue, 11 Mar 2008 08:17:59 GMT
View Forum Message <> Reply to Message

Balbir Singh wrote:
> Pavel Emelyanov wrote:
>> This allows us two things basically:
>>
>> 1. If the subgroup has the limit higher than its parent has
>> then the one will get more memory than allowed.
>
> But should we allow such configuration? I suspect that we should catch such
> things at the time of writing the limit.

We cannot catch this at the limit-set-time. See, if you have a cgroup A
with a 1GB limit and the usage is 999Mb, then creating a subgroup B with
even 500MB limit will cause the A group consume 1.5GB of memory
effectively.

>> 2. When we will need to account for a resource in more than
>> one place, we'll be able to use this technics.
>>
>> Look, consider we have a memory limit and swap limit. The
>> memory limit is the limit for the sum of RSS, page cache
>> and swap usage. To account for this gracefuly, we'll set
>> two counters:
>>
>> 	 res_counter mem_counter;
>> 	 res_counter swap_counter;
>>
>> attach mm to the swap one
>>
>> 	 mm->mem_cnt = &swap_counter;
>>
>> and make the swap_counter be mem's child. That's it. If we
>> want hierarchical support, then the tree will look like this:
>>
>> mem_counter_top
>> swap_counter_top <- mm_struct living at top
>> mem_counter_sub
>> swap_counter_sub <- mm_struct living at sub
>>
>

Page 13 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=725
https://new-forum.openvz.org/index.php?t=rview&th=5623&goto=28173#msg_28173
https://new-forum.openvz.org/index.php?t=post&reply_to=28173
https://new-forum.openvz.org/index.php

> Hmm... not sure about this one. What I want to see is a resource counter
> hierarchy to mimic the container hierarchy. Then ensure that all limits are set
> sanely. I am planning to implement shares support on to of resource counters.
>
>
>> Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
>>
>> ---
>> include/linux/res_counter.h | 11 ++++++++++-
>> kernel/res_counter.c | 36 +++++++++++++++++++++++++++++-------
>> mm/memcontrol.c | 9 ++++++---
>> 3 files changed, 45 insertions(+), 11 deletions(-)
>>
>> diff --git a/include/linux/res_counter.h b/include/linux/res_counter.h
>> index 2c4deb5..a27105e 100644
>> --- a/include/linux/res_counter.h
>> +++ b/include/linux/res_counter.h
>> @@ -41,6 +41,10 @@ struct res_counter {
>> 	 * the routines below consider this to be IRQ-safe
>> 	 */
>> 	spinlock_t lock;
>> +	/*
>> +	 * the parent counter. used for hierarchical resource accounting
>> +	 */
>> +	struct res_counter *parent;
>> };
>>
>> /**
>> @@ -80,7 +84,12 @@ enum {
>> * helpers for accounting
>> */
>>
>> -void res_counter_init(struct res_counter *counter);
>> +/*
>> + * the parent pointer is set only once - during the counter
>> + * initialization. caller then must itself provide that this
>> + * pointer is valid during the new counter lifetime
>> + */
>> +void res_counter_init(struct res_counter *counter, struct res_counter *parent);
>>
>> /*
>> * charge - try to consume more resource.
>> diff --git a/kernel/res_counter.c b/kernel/res_counter.c
>> index f1f20c2..046f6f4 100644
>> --- a/kernel/res_counter.c
>> +++ b/kernel/res_counter.c
>> @@ -13,10 +13,11 @@
>> #include <linux/res_counter.h>

Page 14 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>> #include <linux/uaccess.h>
>>
>> -void res_counter_init(struct res_counter *counter)
>> +void res_counter_init(struct res_counter *counter, struct res_counter *parent)
>> {
>> 	spin_lock_init(&counter->lock);
>> 	counter->limit = (unsigned long long)LLONG_MAX;
>> +	counter->parent = parent;
>> }
>>
>> int res_counter_charge_locked(struct res_counter *counter, unsigned long val)
>> @@ -36,10 +37,26 @@ int res_counter_charge(struct res_counter *counter, unsigned long
val)
>> {
>> 	int ret;
>> 	unsigned long flags;
>> +	struct res_counter *c, *unroll_c;
>> +
>> +	local_irq_save(flags);
>> +	for (c = counter; c != NULL; c = c->parent) {
>> +		spin_lock(&c->lock);
>> +		ret = res_counter_charge_locked(c, val);
>> +		spin_unlock(&c->lock);
>> +		if (ret < 0)
>> +			goto unroll;
>
> We'd like to know which resource counter failed to allow charging, so that we
> can reclaim from that mem_res_cgroup.
>
>> +	}
>> +	local_irq_restore(flags);
>> +	return 0;
>>
>> -	spin_lock_irqsave(&counter->lock, flags);
>> -	ret = res_counter_charge_locked(counter, val);
>> -	spin_unlock_irqrestore(&counter->lock, flags);
>> +unroll:
>> +	for (unroll_c = counter; unroll_c != c; unroll_c = unroll_c->parent) {
>> +		spin_lock(&unroll_c->lock);
>> +		res_counter_uncharge_locked(unroll_c, val);
>> +		spin_unlock(&unroll_c->lock);
>> +	}
>> +	local_irq_restore(flags);
>> 	return ret;
>> }
>>
>> @@ -54,10 +71,15 @@ void res_counter_uncharge_locked(struct res_counter *counter,
unsigned long val)

Page 15 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>> void res_counter_uncharge(struct res_counter *counter, unsigned long val)
>> {
>> 	unsigned long flags;
>> +	struct res_counter *c;
>>
>> -	spin_lock_irqsave(&counter->lock, flags);
>> -	res_counter_uncharge_locked(counter, val);
>> -	spin_unlock_irqrestore(&counter->lock, flags);
>> +	local_irq_save(flags);
>> +	for (c = counter; c != NULL; c = c->parent) {
>> +		spin_lock(&c->lock);
>> +		res_counter_uncharge_locked(c, val);
>> +		spin_unlock(&c->lock);
>> +	}
>> +	local_irq_restore(flags);
>> }
>>
>>
>> diff --git a/mm/memcontrol.c b/mm/memcontrol.c
>> index e5c741a..61db79c 100644
>> --- a/mm/memcontrol.c
>> +++ b/mm/memcontrol.c
>> @@ -976,19 +976,22 @@ static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem, int node)
>> static struct cgroup_subsys_state *
>> mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
>> {
>> -	struct mem_cgroup *mem;
>> +	struct mem_cgroup *mem, *parent;
>> 	int node;
>>
>> 	if (unlikely((cont->parent) == NULL)) {
>> 		mem = &init_mem_cgroup;
>> 		init_mm.mem_cgroup = mem;
>> -	} else
>> +		parent = NULL;
>> +	} else {
>> 		mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
>> +		parent = mem_cgroup_from_cont(cont->parent);
>> +	}
>>
>> 	if (mem == NULL)
>> 		return ERR_PTR(-ENOMEM);
>>
>> -	res_counter_init(&mem->res);
>> +	res_counter_init(&mem->res, parent ? &parent->res : NULL);
>>
>> 	memset(&mem->info, 0, sizeof(mem->info));

Page 16 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>>
>
>

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH 2/2] Make res_counter hierarchical
Posted by Balbir Singh on Tue, 11 Mar 2008 08:24:24 GMT
View Forum Message <> Reply to Message

Pavel Emelyanov wrote:
> Balbir Singh wrote:
>> Pavel Emelyanov wrote:
>>> This allows us two things basically:
>>>
>>> 1. If the subgroup has the limit higher than its parent has
>>> then the one will get more memory than allowed.
>> But should we allow such configuration? I suspect that we should catch such
>> things at the time of writing the limit.
>
> We cannot catch this at the limit-set-time. See, if you have a cgroup A
> with a 1GB limit and the usage is 999Mb, then creating a subgroup B with
> even 500MB limit will cause the A group consume 1.5GB of memory
> effectively.
>

No... If you propagate the charge of the child up to the parent, then it won't.
If each page charged to a child is also charged to the parent, this cannot
happen. The code you have below does that right?

>>> 2. When we will need to account for a resource in more than
>>> one place, we'll be able to use this technics.
>>>
>>> Look, consider we have a memory limit and swap limit. The
>>> memory limit is the limit for the sum of RSS, page cache
>>> and swap usage. To account for this gracefuly, we'll set
>>> two counters:
>>>
>>> 	 res_counter mem_counter;
>>> 	 res_counter swap_counter;
>>>
>>> attach mm to the swap one
>>>
>>> 	 mm->mem_cnt = &swap_counter;

Page 17 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=675
https://new-forum.openvz.org/index.php?t=rview&th=5623&goto=28171#msg_28171
https://new-forum.openvz.org/index.php?t=post&reply_to=28171
https://new-forum.openvz.org/index.php

>>>
>>> and make the swap_counter be mem's child. That's it. If we
>>> want hierarchical support, then the tree will look like this:
>>>
>>> mem_counter_top
>>> swap_counter_top <- mm_struct living at top
>>> mem_counter_sub
>>> swap_counter_sub <- mm_struct living at sub
>>>
>> Hmm... not sure about this one. What I want to see is a resource counter
>> hierarchy to mimic the container hierarchy. Then ensure that all limits are set
>> sanely. I am planning to implement shares support on to of resource counters.
>>
>>
>>> Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
>>>
>>> ---
>>> include/linux/res_counter.h | 11 ++++++++++-
>>> kernel/res_counter.c | 36 +++++++++++++++++++++++++++++-------
>>> mm/memcontrol.c | 9 ++++++---
>>> 3 files changed, 45 insertions(+), 11 deletions(-)
>>>
>>> diff --git a/include/linux/res_counter.h b/include/linux/res_counter.h
>>> index 2c4deb5..a27105e 100644
>>> --- a/include/linux/res_counter.h
>>> +++ b/include/linux/res_counter.h
>>> @@ -41,6 +41,10 @@ struct res_counter {
>>> 	 * the routines below consider this to be IRQ-safe
>>> 	 */
>>> 	spinlock_t lock;
>>> +	/*
>>> +	 * the parent counter. used for hierarchical resource accounting
>>> +	 */
>>> +	struct res_counter *parent;
>>> };
>>>
>>> /**
>>> @@ -80,7 +84,12 @@ enum {
>>> * helpers for accounting
>>> */
>>>
>>> -void res_counter_init(struct res_counter *counter);
>>> +/*
>>> + * the parent pointer is set only once - during the counter
>>> + * initialization. caller then must itself provide that this
>>> + * pointer is valid during the new counter lifetime
>>> + */
>>> +void res_counter_init(struct res_counter *counter, struct res_counter *parent);

Page 18 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>>>
>>> /*
>>> * charge - try to consume more resource.
>>> diff --git a/kernel/res_counter.c b/kernel/res_counter.c
>>> index f1f20c2..046f6f4 100644
>>> --- a/kernel/res_counter.c
>>> +++ b/kernel/res_counter.c
>>> @@ -13,10 +13,11 @@
>>> #include <linux/res_counter.h>
>>> #include <linux/uaccess.h>
>>>
>>> -void res_counter_init(struct res_counter *counter)
>>> +void res_counter_init(struct res_counter *counter, struct res_counter *parent)
>>> {
>>> 	spin_lock_init(&counter->lock);
>>> 	counter->limit = (unsigned long long)LLONG_MAX;
>>> +	counter->parent = parent;
>>> }
>>>
>>> int res_counter_charge_locked(struct res_counter *counter, unsigned long val)
>>> @@ -36,10 +37,26 @@ int res_counter_charge(struct res_counter *counter, unsigned long
val)
>>> {
>>> 	int ret;
>>> 	unsigned long flags;
>>> +	struct res_counter *c, *unroll_c;
>>> +
>>> +	local_irq_save(flags);
>>> +	for (c = counter; c != NULL; c = c->parent) {
>>> +		spin_lock(&c->lock);
>>> +		ret = res_counter_charge_locked(c, val);
>>> +		spin_unlock(&c->lock);
>>> +		if (ret < 0)
>>> +			goto unroll;
>> We'd like to know which resource counter failed to allow charging, so that we
>> can reclaim from that mem_res_cgroup.
>>

This is also important, so that we can reclaim from the nodes that go over their
limit.

>>> +	}
>>> +	local_irq_restore(flags);
>>> +	return 0;
>>>
>>> -	spin_lock_irqsave(&counter->lock, flags);
>>> -	ret = res_counter_charge_locked(counter, val);
>>> -	spin_unlock_irqrestore(&counter->lock, flags);

Page 19 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>>> +unroll:
>>> +	for (unroll_c = counter; unroll_c != c; unroll_c = unroll_c->parent) {
>>> +		spin_lock(&unroll_c->lock);
>>> +		res_counter_uncharge_locked(unroll_c, val);
>>> +		spin_unlock(&unroll_c->lock);
>>> +	}
>>> +	local_irq_restore(flags);
>>> 	return ret;
>>> }
>>>
>>> @@ -54,10 +71,15 @@ void res_counter_uncharge_locked(struct res_counter *counter,
unsigned long val)
>>> void res_counter_uncharge(struct res_counter *counter, unsigned long val)
>>> {
>>> 	unsigned long flags;
>>> +	struct res_counter *c;
>>>
>>> -	spin_lock_irqsave(&counter->lock, flags);
>>> -	res_counter_uncharge_locked(counter, val);
>>> -	spin_unlock_irqrestore(&counter->lock, flags);
>>> +	local_irq_save(flags);
>>> +	for (c = counter; c != NULL; c = c->parent) {
>>> +		spin_lock(&c->lock);
>>> +		res_counter_uncharge_locked(c, val);
>>> +		spin_unlock(&c->lock);
>>> +	}
>>> +	local_irq_restore(flags);
>>> }
>>>
>>>
>>> diff --git a/mm/memcontrol.c b/mm/memcontrol.c
>>> index e5c741a..61db79c 100644
>>> --- a/mm/memcontrol.c
>>> +++ b/mm/memcontrol.c
>>> @@ -976,19 +976,22 @@ static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem, int node)
>>> static struct cgroup_subsys_state *
>>> mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
>>> {
>>> -	struct mem_cgroup *mem;
>>> +	struct mem_cgroup *mem, *parent;
>>> 	int node;
>>>
>>> 	if (unlikely((cont->parent) == NULL)) {
>>> 		mem = &init_mem_cgroup;
>>> 		init_mm.mem_cgroup = mem;
>>> -	} else
>>> +		parent = NULL;

Page 20 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>>> +	} else {
>>> 		mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
>>> +		parent = mem_cgroup_from_cont(cont->parent);
>>> +	}
>>>
>>> 	if (mem == NULL)
>>> 		return ERR_PTR(-ENOMEM);
>>>
>>> -	res_counter_init(&mem->res);
>>> +	res_counter_init(&mem->res, parent ? &parent->res : NULL);
>>>
>>> 	memset(&mem->info, 0, sizeof(mem->info));
>>>
>>
>
> --
> To unsubscribe, send a message with 'unsubscribe linux-mm' in
> the body to majordomo@kvack.org. For more info on Linux MM,
> see: http://www.linux-mm.org/ .
> Don't email: email@kvack.org

--
	Warm Regards,
	Balbir Singh
	Linux Technology Center
	IBM, ISTL

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH 2/2] Make res_counter hierarchical
Posted by KAMEZAWA Hiroyuki on Tue, 11 Mar 2008 08:32:25 GMT
View Forum Message <> Reply to Message

On Tue, 11 Mar 2008 11:15:56 +0300
Pavel Emelyanov <xemul@openvz.org> wrote:
> > Hmm? seems strange.
> >
> > IMO, a parent's usage is just sum of all childs'.
> > And, historically, memory overcommit is done agaist "memory usage + swap".
> >
> > How about this ?
> > <mem_counter_top, swap_counter_top>
> > 	<mem_counter_sub, swap_counter_sub>
> > 	<mem_counter_sub, swap_counter_sub>

Page 21 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=777
https://new-forum.openvz.org/index.php?t=rview&th=5623&goto=28174#msg_28174
https://new-forum.openvz.org/index.php?t=post&reply_to=28174
https://new-forum.openvz.org/index.php

> > 	<mem_counter_sub, swap_counter_sub>
> >
> > mem_counter_top.usage == sum of all mem_coutner_sub.usage
> > swap_counter_sub.usage = sum of all swap_counter_sub.usage
>
> I've misprinted in y tree, sorry.
> The correct hierarchy as I see it is
>
thank you.

> <mem_couter_0>
> + -- <swap_counter_0>
> + -- <mem_counter_1>
> | + -- <swap_counter_1>
> | + -- <mem_counter_11>
> | | + -- <swap_counter_11>
> | + -- <mem_counter_12>
> | + -- <swap_counter_12>
> + -- <mem_counter_2>
> | + -- <swap_counter_2>
> | + -- <mem_counter_21>
> | | + -- <swap_counter_21>
> | + -- <mem_counter_22>
> | + -- <swap_counter_22>
> + -- <mem_counter_N>
> + -- <swap_counter_N>
> + -- <mem_counter_N1>
> | + -- <swap_counter_N1>
> + -- <mem_counter_N2>
> + -- <swap_counter_N2>
>
please let me confirm.

- swap_counter_X.limit can be defined independent from mem_counter_X.limit ?
- swap_conter_N1's limit and swap_counter_N's have some relationship ?

Thanks,
-kame

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH 2/2] Make res_counter hierarchical
Posted by Pavel Emelianov on Tue, 11 Mar 2008 08:38:50 GMT

Page 22 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=725
https://new-forum.openvz.org/index.php

View Forum Message <> Reply to Message

KAMEZAWA Hiroyuki wrote:
> On Tue, 11 Mar 2008 11:15:56 +0300
> Pavel Emelyanov <xemul@openvz.org> wrote:
>>> Hmm? seems strange.
>>>
>>> IMO, a parent's usage is just sum of all childs'.
>>> And, historically, memory overcommit is done agaist "memory usage + swap".
>>>
>>> How about this ?
>>> <mem_counter_top, swap_counter_top>
>>> 	<mem_counter_sub, swap_counter_sub>
>>> 	<mem_counter_sub, swap_counter_sub>
>>> 	<mem_counter_sub, swap_counter_sub>
>>>
>>> mem_counter_top.usage == sum of all mem_coutner_sub.usage
>>> swap_counter_sub.usage = sum of all swap_counter_sub.usage
>> I've misprinted in y tree, sorry.
>> The correct hierarchy as I see it is
>>
> thank you.
>
>> <mem_couter_0>
>> + -- <swap_counter_0>
>> + -- <mem_counter_1>
>> | + -- <swap_counter_1>
>> | + -- <mem_counter_11>
>> | | + -- <swap_counter_11>
>> | + -- <mem_counter_12>
>> | + -- <swap_counter_12>
>> + -- <mem_counter_2>
>> | + -- <swap_counter_2>
>> | + -- <mem_counter_21>
>> | | + -- <swap_counter_21>
>> | + -- <mem_counter_22>
>> | + -- <swap_counter_22>
>> + -- <mem_counter_N>
>> + -- <swap_counter_N>
>> + -- <mem_counter_N1>
>> | + -- <swap_counter_N1>
>> + -- <mem_counter_N2>
>> + -- <swap_counter_N2>
>>
> please let me confirm.
>
> - swap_counter_X.limit can be defined independent from mem_counter_X.limit ?
> - swap_conter_N1's limit and swap_counter_N's have some relationship ?

Page 23 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=rview&th=5623&goto=28177#msg_28177
https://new-forum.openvz.org/index.php?t=post&reply_to=28177
https://new-forum.openvz.org/index.php

No. The mem_counter_N_limit is the limit for all the memory, that the
Nth group consumes. This includes the RSS, page cache and swap for this
group and all the child groups. Since RSS and page cache are accounted
together, this limit tracks the sum of (memory + swap) values over the
subtree started at the given group.

> Thanks,
> -kame
>
>

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH 2/2] Make res_counter hierarchical
Posted by Pavel Emelianov on Tue, 11 Mar 2008 08:40:04 GMT
View Forum Message <> Reply to Message

Balbir Singh wrote:
> Pavel Emelyanov wrote:
>> Balbir Singh wrote:
>>> Pavel Emelyanov wrote:
>>>> This allows us two things basically:
>>>>
>>>> 1. If the subgroup has the limit higher than its parent has
>>>> then the one will get more memory than allowed.
>>> But should we allow such configuration? I suspect that we should catch such
>>> things at the time of writing the limit.
>> We cannot catch this at the limit-set-time. See, if you have a cgroup A
>> with a 1GB limit and the usage is 999Mb, then creating a subgroup B with
>> even 500MB limit will cause the A group consume 1.5GB of memory
>> effectively.
>>
>
> No... If you propagate the charge of the child up to the parent, then it won't.
> If each page charged to a child is also charged to the parent, this cannot
> happen. The code you have below does that right?

Yup! What you described is available with this patch only.

>>>> 2. When we will need to account for a resource in more than
>>>> one place, we'll be able to use this technics.
>>>>
>>>> Look, consider we have a memory limit and swap limit. The
>>>> memory limit is the limit for the sum of RSS, page cache

Page 24 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=725
https://new-forum.openvz.org/index.php?t=rview&th=5623&goto=28175#msg_28175
https://new-forum.openvz.org/index.php?t=post&reply_to=28175
https://new-forum.openvz.org/index.php

>>>> and swap usage. To account for this gracefuly, we'll set
>>>> two counters:
>>>>
>>>> 	 res_counter mem_counter;
>>>> 	 res_counter swap_counter;
>>>>
>>>> attach mm to the swap one
>>>>
>>>> 	 mm->mem_cnt = &swap_counter;
>>>>
>>>> and make the swap_counter be mem's child. That's it. If we
>>>> want hierarchical support, then the tree will look like this:
>>>>
>>>> mem_counter_top
>>>> swap_counter_top <- mm_struct living at top
>>>> mem_counter_sub
>>>> swap_counter_sub <- mm_struct living at sub
>>>>
>>> Hmm... not sure about this one. What I want to see is a resource counter
>>> hierarchy to mimic the container hierarchy. Then ensure that all limits are set
>>> sanely. I am planning to implement shares support on to of resource counters.
>>>
>>>
>>>> Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
>>>>
>>>> ---
>>>> include/linux/res_counter.h | 11 ++++++++++-
>>>> kernel/res_counter.c | 36 +++++++++++++++++++++++++++++-------
>>>> mm/memcontrol.c | 9 ++++++---
>>>> 3 files changed, 45 insertions(+), 11 deletions(-)
>>>>
>>>> diff --git a/include/linux/res_counter.h b/include/linux/res_counter.h
>>>> index 2c4deb5..a27105e 100644
>>>> --- a/include/linux/res_counter.h
>>>> +++ b/include/linux/res_counter.h
>>>> @@ -41,6 +41,10 @@ struct res_counter {
>>>> 	 * the routines below consider this to be IRQ-safe
>>>> 	 */
>>>> 	spinlock_t lock;
>>>> +	/*
>>>> +	 * the parent counter. used for hierarchical resource accounting
>>>> +	 */
>>>> +	struct res_counter *parent;
>>>> };
>>>>
>>>> /**
>>>> @@ -80,7 +84,12 @@ enum {
>>>> * helpers for accounting

Page 25 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>>>> */
>>>>
>>>> -void res_counter_init(struct res_counter *counter);
>>>> +/*
>>>> + * the parent pointer is set only once - during the counter
>>>> + * initialization. caller then must itself provide that this
>>>> + * pointer is valid during the new counter lifetime
>>>> + */
>>>> +void res_counter_init(struct res_counter *counter, struct res_counter *parent);
>>>>
>>>> /*
>>>> * charge - try to consume more resource.
>>>> diff --git a/kernel/res_counter.c b/kernel/res_counter.c
>>>> index f1f20c2..046f6f4 100644
>>>> --- a/kernel/res_counter.c
>>>> +++ b/kernel/res_counter.c
>>>> @@ -13,10 +13,11 @@
>>>> #include <linux/res_counter.h>
>>>> #include <linux/uaccess.h>
>>>>
>>>> -void res_counter_init(struct res_counter *counter)
>>>> +void res_counter_init(struct res_counter *counter, struct res_counter *parent)
>>>> {
>>>> 	spin_lock_init(&counter->lock);
>>>> 	counter->limit = (unsigned long long)LLONG_MAX;
>>>> +	counter->parent = parent;
>>>> }
>>>>
>>>> int res_counter_charge_locked(struct res_counter *counter, unsigned long val)
>>>> @@ -36,10 +37,26 @@ int res_counter_charge(struct res_counter *counter, unsigned long
val)
>>>> {
>>>> 	int ret;
>>>> 	unsigned long flags;
>>>> +	struct res_counter *c, *unroll_c;
>>>> +
>>>> +	local_irq_save(flags);
>>>> +	for (c = counter; c != NULL; c = c->parent) {
>>>> +		spin_lock(&c->lock);
>>>> +		ret = res_counter_charge_locked(c, val);
>>>> +		spin_unlock(&c->lock);
>>>> +		if (ret < 0)
>>>> +			goto unroll;
>>> We'd like to know which resource counter failed to allow charging, so that we
>>> can reclaim from that mem_res_cgroup.
>>>
>
> This is also important, so that we can reclaim from the nodes that go over their

Page 26 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> limit.

Agree. I'll think over how to provide this facility.

>>>> +	}
>>>> +	local_irq_restore(flags);
>>>> +	return 0;
>>>>
>>>> -	spin_lock_irqsave(&counter->lock, flags);
>>>> -	ret = res_counter_charge_locked(counter, val);
>>>> -	spin_unlock_irqrestore(&counter->lock, flags);
>>>> +unroll:
>>>> +	for (unroll_c = counter; unroll_c != c; unroll_c = unroll_c->parent) {
>>>> +		spin_lock(&unroll_c->lock);
>>>> +		res_counter_uncharge_locked(unroll_c, val);
>>>> +		spin_unlock(&unroll_c->lock);
>>>> +	}
>>>> +	local_irq_restore(flags);
>>>> 	return ret;
>>>> }
>>>>
>>>> @@ -54,10 +71,15 @@ void res_counter_uncharge_locked(struct res_counter *counter,
unsigned long val)
>>>> void res_counter_uncharge(struct res_counter *counter, unsigned long val)
>>>> {
>>>> 	unsigned long flags;
>>>> +	struct res_counter *c;
>>>>
>>>> -	spin_lock_irqsave(&counter->lock, flags);
>>>> -	res_counter_uncharge_locked(counter, val);
>>>> -	spin_unlock_irqrestore(&counter->lock, flags);
>>>> +	local_irq_save(flags);
>>>> +	for (c = counter; c != NULL; c = c->parent) {
>>>> +		spin_lock(&c->lock);
>>>> +		res_counter_uncharge_locked(c, val);
>>>> +		spin_unlock(&c->lock);
>>>> +	}
>>>> +	local_irq_restore(flags);
>>>> }
>>>>
>>>>
>>>> diff --git a/mm/memcontrol.c b/mm/memcontrol.c
>>>> index e5c741a..61db79c 100644
>>>> --- a/mm/memcontrol.c
>>>> +++ b/mm/memcontrol.c
>>>> @@ -976,19 +976,22 @@ static void free_mem_cgroup_per_zone_info(struct
mem_cgroup *mem, int node)
>>>> static struct cgroup_subsys_state *

Page 27 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>>>> mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
>>>> {
>>>> -	struct mem_cgroup *mem;
>>>> +	struct mem_cgroup *mem, *parent;
>>>> 	int node;
>>>>
>>>> 	if (unlikely((cont->parent) == NULL)) {
>>>> 		mem = &init_mem_cgroup;
>>>> 		init_mm.mem_cgroup = mem;
>>>> -	} else
>>>> +		parent = NULL;
>>>> +	} else {
>>>> 		mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
>>>> +		parent = mem_cgroup_from_cont(cont->parent);
>>>> +	}
>>>>
>>>> 	if (mem == NULL)
>>>> 		return ERR_PTR(-ENOMEM);
>>>>
>>>> -	res_counter_init(&mem->res);
>>>> +	res_counter_init(&mem->res, parent ? &parent->res : NULL);
>>>>
>>>> 	memset(&mem->info, 0, sizeof(mem->info));
>>>>
>> --
>> To unsubscribe, send a message with 'unsubscribe linux-mm' in
>> the body to majordomo@kvack.org. For more info on Linux MM,
>> see: http://www.linux-mm.org/ .
>> Don't email: email@kvack.org
>
>

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH 2/2] Make res_counter hierarchical
Posted by Paul Menage on Tue, 11 Mar 2008 08:57:43 GMT
View Forum Message <> Reply to Message

On Tue, Mar 11, 2008 at 1:15 AM, Pavel Emelyanov <xemul@openvz.org> wrote:
>
> <mem_couter_0>
> + -- <swap_counter_0>
> + -- <mem_counter_1>
> | + -- <swap_counter_1>

Page 28 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=5623&goto=28178#msg_28178
https://new-forum.openvz.org/index.php?t=post&reply_to=28178
https://new-forum.openvz.org/index.php

> | + -- <mem_counter_11>
> | | + -- <swap_counter_11>
> | + -- <mem_counter_12>
> | + -- <swap_counter_12>
> + -- <mem_counter_2>
> | + -- <swap_counter_2>
> | + -- <mem_counter_21>
> | | + -- <swap_counter_21>
> | + -- <mem_counter_22>
> | + -- <swap_counter_22>
> + -- <mem_counter_N>
> + -- <swap_counter_N>
> + -- <mem_counter_N1>
> | + -- <swap_counter_N1>
> + -- <mem_counter_N2>
> + -- <swap_counter_N2>
>

The idea of hierarchy is good, but I don't think this particular
hierarchy works for memory.

Main memory and swap space are very different resources, with very
different performance characteristics. Suppose you have a 2G machine,
and you want to guarantee each job 1GB of main memory, plus give them
the option of 1GB of swap for when they go over the 1G main memory
limit. With the hierarchy given above, you've need to give each job a
2GB mem.limit and a 1GB swap.limit, and so there would be no main
memory isolation.

My feeling is that people are going to want to limit swap and main
memory usage as two independent resource hierarchies more often than
they're going to want to limit overall virtual memory. But assuming
that there are people who need to do the latter, then you should make
it configurable how the hierarchies fit together.

Alternatively, you could make it possible for a res_counter to have
multiple parents (each of which constrains the overall usage of it and
its siblings), and have three counters for each cgroup:

- vm_counter: overall virtual memory limit for group, parent =
parent_mem_cgroup->vm_counter

- mem_counter: main memory limit for group, parents = vm_counter,
parent_mem_cgroup->mem_counter

- swap_counter: swap limit for group, parents = vm_counter,
parent_mem_cgroup->swap_counter

Page 29 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Paul

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH 2/2] Make res_counter hierarchical
Posted by Daisuke Nishimura on Tue, 11 Mar 2008 09:03:20 GMT
View Forum Message <> Reply to Message

Hi.

> No. The mem_counter_N_limit is the limit for all the memory, that the
> Nth group consumes. This includes the RSS, page cache and swap for this
> group and all the child groups. Since RSS and page cache are accounted
> together, this limit tracks the sum of (memory + swap) values over the
> subtree started at the given group.
>
It seems a bit confusing for me, because current memcg manages
only RSS and page cache, not swap.

>>>> IMO, a parent's usage is just sum of all childs'.
>>>> And, historically, memory overcommit is done agaist "memory usage + swap".
>>>>
>>>> How about this ?
>>>> <mem_counter_top, swap_counter_top>
>>>> 	<mem_counter_sub, swap_counter_sub>
>>>> 	<mem_counter_sub, swap_counter_sub>
>>>> 	<mem_counter_sub, swap_counter_sub>
>>>>
>>>> mem_counter_top.usage == sum of all mem_coutner_sub.usage
>>>> swap_counter_sub.usage = sum of all swap_counter_sub.usage

I prefer Kamezawa-san's idea.

Thanks,
Daisuke Nishimura.

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH 2/2] Make res_counter hierarchical

Page 30 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=2435
https://new-forum.openvz.org/index.php?t=rview&th=5623&goto=28179#msg_28179
https://new-forum.openvz.org/index.php?t=post&reply_to=28179
https://new-forum.openvz.org/index.php

Posted by KAMEZAWA Hiroyuki on Tue, 11 Mar 2008 09:07:46 GMT
View Forum Message <> Reply to Message

On Tue, 11 Mar 2008 11:38:50 +0300
Pavel Emelyanov <xemul@openvz.org> wrote:

> >> <mem_couter_0>
> >> + -- <swap_counter_0>
> >> + -- <mem_counter_1>
> >> | + -- <swap_counter_1>
> >> | + -- <mem_counter_11>
> >> | | + -- <swap_counter_11>
> >> | + -- <mem_counter_12>
> >> | + -- <swap_counter_12>
> >> + -- <mem_counter_2>
> >> | + -- <swap_counter_2>
> >> | + -- <mem_counter_21>
> >> | | + -- <swap_counter_21>
> >> | + -- <mem_counter_22>
> >> | + -- <swap_counter_22>
> >> + -- <mem_counter_N>
> >> + -- <swap_counter_N>
> >> + -- <mem_counter_N1>
> >> | + -- <swap_counter_N1>
> >> + -- <mem_counter_N2>
> >> + -- <swap_counter_N2>
> >>
> > please let me confirm.
> >
> > - swap_counter_X.limit can be defined independent from mem_counter_X.limit ?
> > - swap_conter_N1's limit and swap_counter_N's have some relationship ?
>
> No. The mem_counter_N_limit is the limit for all the memory, that the
> Nth group consumes. This includes the RSS, page cache and swap for this
> group and all the child groups. Since RSS and page cache are accounted
> together, this limit tracks the sum of (memory + swap) values over the
> subtree started at the given group.
>

Hmm, how should I set limit to allow "tons of swap but small limit to memory".

Thanks,
-Kame

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 31 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=777
https://new-forum.openvz.org/index.php?t=rview&th=5623&goto=28180#msg_28180
https://new-forum.openvz.org/index.php?t=post&reply_to=28180
https://new-forum.openvz.org/index.php

Subject: Re: [PATCH 2/2] Make res_counter hierarchical
Posted by Paul Menage on Tue, 11 Mar 2008 09:11:49 GMT
View Forum Message <> Reply to Message

On Tue, Mar 11, 2008 at 2:13 AM, KAMEZAWA Hiroyuki
<kamezawa.hiroyu@jp.fujitsu.com> wrote:
> or remove all relationship among counters of *different* type of resources.
> user-land-daemon will do enough jobs.
>

Yes, that would be my preferred choice, if people agree that
hierarchically limiting overall virtual memory isn't useful. (I don't
think I have a use for it myself).

Paul

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH 2/2] Make res_counter hierarchical
Posted by KAMEZAWA Hiroyuki on Tue, 11 Mar 2008 09:13:25 GMT
View Forum Message <> Reply to Message

On Tue, 11 Mar 2008 01:57:43 -0700
"Paul Menage" <menage@google.com> wrote:

> Alternatively, you could make it possible for a res_counter to have
> multiple parents (each of which constrains the overall usage of it and
> its siblings), and have three counters for each cgroup:
>
> - vm_counter: overall virtual memory limit for group, parent =
> parent_mem_cgroup->vm_counter
>
> - mem_counter: main memory limit for group, parents = vm_counter,
> parent_mem_cgroup->mem_counter
>
> - swap_counter: swap limit for group, parents = vm_counter,
> parent_mem_cgroup->swap_counter
>
or remove all relationship among counters of *different* type of resources.
user-land-daemon will do enough jobs.

Thanks,
-Kame

Page 32 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=5623&goto=28181#msg_28181
https://new-forum.openvz.org/index.php?t=post&reply_to=28181
https://new-forum.openvz.org/index.php?t=usrinfo&id=777
https://new-forum.openvz.org/index.php?t=rview&th=5623&goto=28182#msg_28182
https://new-forum.openvz.org/index.php?t=post&reply_to=28182
https://new-forum.openvz.org/index.php

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH 2/2] Make res_counter hierarchical
Posted by Balbir Singh on Tue, 11 Mar 2008 09:16:58 GMT
View Forum Message <> Reply to Message

Paul Menage wrote:
> On Tue, Mar 11, 2008 at 2:13 AM, KAMEZAWA Hiroyuki
> <kamezawa.hiroyu@jp.fujitsu.com> wrote:
>> or remove all relationship among counters of *different* type of resources.
>> user-land-daemon will do enough jobs.
>>
>
> Yes, that would be my preferred choice, if people agree that
> hierarchically limiting overall virtual memory isn't useful. (I don't
> think I have a use for it myself).
>

Virtual limits are very useful. I have a patch ready to send out.
They limit the amount of paging a cgroup can do (virtual limit - RSS limit).
Some times end users want to set virtual limit == RSS limit, so that the cgroup
OOMs on cross the RSS limit.

--
	Warm Regards,
	Balbir Singh
	Linux Technology Center
	IBM, ISTL

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH 2/2] Make res_counter hierarchical
Posted by KAMEZAWA Hiroyuki on Tue, 11 Mar 2008 09:39:03 GMT
View Forum Message <> Reply to Message

On Tue, 11 Mar 2008 14:46:58 +0530
Balbir Singh <balbir@linux.vnet.ibm.com> wrote:

> Paul Menage wrote:
> > On Tue, Mar 11, 2008 at 2:13 AM, KAMEZAWA Hiroyuki
> > <kamezawa.hiroyu@jp.fujitsu.com> wrote:

Page 33 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=675
https://new-forum.openvz.org/index.php?t=rview&th=5623&goto=28183#msg_28183
https://new-forum.openvz.org/index.php?t=post&reply_to=28183
https://new-forum.openvz.org/index.php?t=usrinfo&id=777
https://new-forum.openvz.org/index.php?t=rview&th=5623&goto=28184#msg_28184
https://new-forum.openvz.org/index.php?t=post&reply_to=28184
https://new-forum.openvz.org/index.php

> >> or remove all relationship among counters of *different* type of resources.
> >> user-land-daemon will do enough jobs.
> >>
> >
> > Yes, that would be my preferred choice, if people agree that
> > hierarchically limiting overall virtual memory isn't useful. (I don't
> > think I have a use for it myself).
> >
>
> Virtual limits are very useful. I have a patch ready to send out.
> They limit the amount of paging a cgroup can do (virtual limit - RSS limit).
> Some times end users want to set virtual limit == RSS limit, so that the cgroup
> OOMs on cross the RSS limit.
>
I have no objection to adding virtual limit itself.
(It can be considered as extended ulimit.)

But if you'd like to add relationship between virtual-limit/memory-usage-limit,
please take care to make it clear that relationship is reaseonable.

- memory-usage includes page-cache.
- memory-usage doesn't include hugepages.
- How to treat MAP_NORESERVE is depends on over-commit-memory type.
 how cgroup does ?
- shared memory will be conuted per mmap.

Thanks,
-Kame

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH 2/2] Make res_counter hierarchical
Posted by Balbir Singh on Tue, 11 Mar 2008 09:53:04 GMT
View Forum Message <> Reply to Message

KAMEZAWA Hiroyuki wrote:
> On Tue, 11 Mar 2008 14:46:58 +0530
> Balbir Singh <balbir@linux.vnet.ibm.com> wrote:
>
>> Paul Menage wrote:
>>> On Tue, Mar 11, 2008 at 2:13 AM, KAMEZAWA Hiroyuki
>>> <kamezawa.hiroyu@jp.fujitsu.com> wrote:
>>>> or remove all relationship among counters of *different* type of resources.

Page 34 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=675
https://new-forum.openvz.org/index.php?t=rview&th=5623&goto=28185#msg_28185
https://new-forum.openvz.org/index.php?t=post&reply_to=28185
https://new-forum.openvz.org/index.php

>>>> user-land-daemon will do enough jobs.
>>>>
>>> Yes, that would be my preferred choice, if people agree that
>>> hierarchically limiting overall virtual memory isn't useful. (I don't
>>> think I have a use for it myself).
>>>
>> Virtual limits are very useful. I have a patch ready to send out.
>> They limit the amount of paging a cgroup can do (virtual limit - RSS limit).
>> Some times end users want to set virtual limit == RSS limit, so that the cgroup
>> OOMs on cross the RSS limit.
>>
> I have no objection to adding virtual limit itself.
> (It can be considered as extended ulimit.)
>
> But if you'd like to add relationship between virtual-limit/memory-usage-limit,
> please take care to make it clear that relationship is reaseonable.
>

No, I don't want to add a relationship, just plain virtual memory limits and let
the system administrators determine what works for them.

--
	Warm Regards,
	Balbir Singh
	Linux Technology Center
	IBM, ISTL

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH 2/2] Make res_counter hierarchical
Posted by KAMEZAWA Hiroyuki on Tue, 11 Mar 2008 10:03:18 GMT
View Forum Message <> Reply to Message

On Tue, 11 Mar 2008 15:23:04 +0530
Balbir Singh <balbir@linux.vnet.ibm.com> wrote:
> > But if you'd like to add relationship between virtual-limit/memory-usage-limit,
> > please take care to make it clear that relationship is reaseonable.
> >
>
> No, I don't want to add a relationship, just plain virtual memory limits and let
> the system administrators determine what works for them.
>
ok :)

Page 35 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=777
https://new-forum.openvz.org/index.php?t=rview&th=5623&goto=28186#msg_28186
https://new-forum.openvz.org/index.php?t=post&reply_to=28186
https://new-forum.openvz.org/index.php

Thanks,
-Kame

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH 2/2] Make res_counter hierarchical
Posted by Paul Menage on Tue, 11 Mar 2008 15:56:08 GMT
View Forum Message <> Reply to Message

On Tue, Mar 11, 2008 at 2:16 AM, Balbir Singh <balbir@linux.vnet.ibm.com> wrote:
>
> Paul Menage wrote:
> > On Tue, Mar 11, 2008 at 2:13 AM, KAMEZAWA Hiroyuki
> > <kamezawa.hiroyu@jp.fujitsu.com> wrote:
> >> or remove all relationship among counters of *different* type of resources.
> >> user-land-daemon will do enough jobs.
> >>
> >
> > Yes, that would be my preferred choice, if people agree that
> > hierarchically limiting overall virtual memory isn't useful. (I don't
> > think I have a use for it myself).
> >
>
> Virtual limits are very useful. I have a patch ready to send out.
> They limit the amount of paging a cgroup can do (virtual limit - RSS limit).

Ah, from this should I assume that you're talking about virtual
address space limits, not virtual memory limits?

My comment above was referring to Pavel's proposal to limit total
virtual memory (RAM + swap) for a cgroup, and then limit swap as a
subset of that, which basically makes it impossible to limit the RAM
usage of cgroups properly if you also want to allow swap usage.

Virtual address space limits are somewhat orthogonal to that.

Paul

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 36 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=5623&goto=28205#msg_28205
https://new-forum.openvz.org/index.php?t=post&reply_to=28205
https://new-forum.openvz.org/index.php

Subject: Re: [PATCH 2/2] Make res_counter hierarchical
Posted by Balbir Singh on Tue, 11 Mar 2008 15:59:38 GMT
View Forum Message <> Reply to Message

Paul Menage wrote:
> On Tue, Mar 11, 2008 at 2:16 AM, Balbir Singh <balbir@linux.vnet.ibm.com> wrote:
>> Paul Menage wrote:
>> > On Tue, Mar 11, 2008 at 2:13 AM, KAMEZAWA Hiroyuki
>> > <kamezawa.hiroyu@jp.fujitsu.com> wrote:
>> >> or remove all relationship among counters of *different* type of resources.
>> >> user-land-daemon will do enough jobs.
>> >>
>> >
>> > Yes, that would be my preferred choice, if people agree that
>> > hierarchically limiting overall virtual memory isn't useful. (I don't
>> > think I have a use for it myself).
>> >
>>
>> Virtual limits are very useful. I have a patch ready to send out.
>> They limit the amount of paging a cgroup can do (virtual limit - RSS limit).
>
> Ah, from this should I assume that you're talking about virtual
> address space limits, not virtual memory limits?
>
> My comment above was referring to Pavel's proposal to limit total
> virtual memory (RAM + swap) for a cgroup, and then limit swap as a
> subset of that, which basically makes it impossible to limit the RAM
> usage of cgroups properly if you also want to allow swap usage.
>
> Virtual address space limits are somewhat orthogonal to that.
>

Yes, I was referring to Virtual address limits (along the lines of RLIMIT_AS). I
guess it's just confusing terminology. I have patches for Virtual address
limits. I should send them out soon.

--
	Warm Regards,
	Balbir Singh
	Linux Technology Center
	IBM, ISTL

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 37 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=675
https://new-forum.openvz.org/index.php?t=rview&th=5623&goto=28207#msg_28207
https://new-forum.openvz.org/index.php?t=post&reply_to=28207
https://new-forum.openvz.org/index.php

Subject: Re: [PATCH 2/2] Make res_counter hierarchical
Posted by yamamoto on Wed, 12 Mar 2008 23:05:41 GMT
View Forum Message <> Reply to Message

> @@ -36,10 +37,26 @@ int res_counter_charge(struct res_counter *counter, unsigned long val)
> {
> 	int ret;
> 	unsigned long flags;
> +	struct res_counter *c, *unroll_c;
> +
> +	local_irq_save(flags);
> +	for (c = counter; c != NULL; c = c->parent) {
> +		spin_lock(&c->lock);
> +		ret = res_counter_charge_locked(c, val);
> +		spin_unlock(&c->lock);
> +		if (ret < 0)
> +			goto unroll;
> +	}
> +	local_irq_restore(flags);
> +	return 0;
>
> -	spin_lock_irqsave(&counter->lock, flags);
> -	ret = res_counter_charge_locked(counter, val);
> -	spin_unlock_irqrestore(&counter->lock, flags);
> +unroll:
> +	for (unroll_c = counter; unroll_c != c; unroll_c = unroll_c->parent) {
> +		spin_lock(&unroll_c->lock);
> +		res_counter_uncharge_locked(unroll_c, val);
> +		spin_unlock(&unroll_c->lock);
> +	}
> +	local_irq_restore(flags);
> 	return ret;
> }

what prevents the topology (in particular, ->parent pointers) from
changing behind us?

YAMAMOTO Takashi

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH 2/2] Make res_counter hierarchical
Posted by yamamoto on Wed, 12 Mar 2008 23:36:50 GMT
View Forum Message <> Reply to Message

Page 38 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1846
https://new-forum.openvz.org/index.php?t=rview&th=5623&goto=28270#msg_28270
https://new-forum.openvz.org/index.php?t=post&reply_to=28270
https://new-forum.openvz.org/index.php?t=usrinfo&id=1846
https://new-forum.openvz.org/index.php?t=rview&th=5623&goto=28271#msg_28271
https://new-forum.openvz.org/index.php?t=post&reply_to=28271
https://new-forum.openvz.org/index.php

> > @@ -36,10 +37,26 @@ int res_counter_charge(struct res_counter *counter, unsigned long
val)
> > {
> > 	int ret;
> > 	unsigned long flags;
> > +	struct res_counter *c, *unroll_c;
> > +
> > +	local_irq_save(flags);
> > +	for (c = counter; c != NULL; c = c->parent) {
> > +		spin_lock(&c->lock);
> > +		ret = res_counter_charge_locked(c, val);
> > +		spin_unlock(&c->lock);
> > +		if (ret < 0)
> > +			goto unroll;
> > +	}
> > +	local_irq_restore(flags);
> > +	return 0;
> >
> > -	spin_lock_irqsave(&counter->lock, flags);
> > -	ret = res_counter_charge_locked(counter, val);
> > -	spin_unlock_irqrestore(&counter->lock, flags);
> > +unroll:
> > +	for (unroll_c = counter; unroll_c != c; unroll_c = unroll_c->parent) {
> > +		spin_lock(&unroll_c->lock);
> > +		res_counter_uncharge_locked(unroll_c, val);
> > +		spin_unlock(&unroll_c->lock);
> > +	}
> > +	local_irq_restore(flags);
> > 	return ret;
> > }
>
> what prevents the topology (in particular, ->parent pointers) from
> changing behind us?
>
> YAMAMOTO Takashi

to answer myself: cgroupfs rename doesn't allow topological changes
in the first place.

btw, i think you need to do the same for res_counter_limit_check_locked
as well. i'm skeptical about doing these complicated stuffs in kernel,
esp. in this potentially performance critical code.

YAMAMOTO Takashi

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 39 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Subject: Re: [PATCH 2/2] Make res_counter hierarchical
Posted by Pavel Emelianov on Thu, 13 Mar 2008 08:56:58 GMT
View Forum Message <> Reply to Message

YAMAMOTO Takashi wrote:
>> @@ -36,10 +37,26 @@ int res_counter_charge(struct res_counter *counter, unsigned long
val)
>> {
>> 	int ret;
>> 	unsigned long flags;
>> +	struct res_counter *c, *unroll_c;
>> +
>> +	local_irq_save(flags);
>> +	for (c = counter; c != NULL; c = c->parent) {
>> +		spin_lock(&c->lock);
>> +		ret = res_counter_charge_locked(c, val);
>> +		spin_unlock(&c->lock);
>> +		if (ret < 0)
>> +			goto unroll;
>> +	}
>> +	local_irq_restore(flags);
>> +	return 0;
>>
>> -	spin_lock_irqsave(&counter->lock, flags);
>> -	ret = res_counter_charge_locked(counter, val);
>> -	spin_unlock_irqrestore(&counter->lock, flags);
>> +unroll:
>> +	for (unroll_c = counter; unroll_c != c; unroll_c = unroll_c->parent) {
>> +		spin_lock(&unroll_c->lock);
>> +		res_counter_uncharge_locked(unroll_c, val);
>> +		spin_unlock(&unroll_c->lock);
>> +	}
>> +	local_irq_restore(flags);
>> 	return ret;
>> }
>
> what prevents the topology (in particular, ->parent pointers) from
> changing behind us?

The res_counter client must provide this. Currently cgroup subsystem does this.

> YAMAMOTO Takashi
>

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 40 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=725
https://new-forum.openvz.org/index.php?t=rview&th=5623&goto=28288#msg_28288
https://new-forum.openvz.org/index.php?t=post&reply_to=28288
https://new-forum.openvz.org/index.php

Subject: Re: [PATCH 2/2] Make res_counter hierarchical
Posted by Balbir Singh on Wed, 02 Apr 2008 15:26:55 GMT
View Forum Message <> Reply to Message

Pavel Emelyanov wrote:
> This allows us two things basically:
>

Pavel,

Do you have any further updates on this. I think we need a way of being able to
implement reclaim per hierarchy as mentioned earlier. Do you want me to take a
look at it?

--
	Warm Regards,
	Balbir Singh
	Linux Technology Center
	IBM, ISTL

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH 2/2] Make res_counter hierarchical
Posted by Pavel Emelianov on Thu, 03 Apr 2008 12:06:06 GMT
View Forum Message <> Reply to Message

Balbir Singh wrote:
> Pavel Emelyanov wrote:
>> This allows us two things basically:
>>
>
> Pavel,
>
> Do you have any further updates on this. I think we need a way of being able to

No. Unfortunately I stopped following the discussion at some point
and decided that nobody liked this patch that much.

> implement reclaim per hierarchy as mentioned earlier. Do you want me to take a
> look at it?

Yes, sure. I'm now busy (among other stuff) with kmemsize controller, hope I
can finish its polishing and testing till summer :(

Page 41 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=675
https://new-forum.openvz.org/index.php?t=rview&th=5623&goto=28965#msg_28965
https://new-forum.openvz.org/index.php?t=post&reply_to=28965
https://new-forum.openvz.org/index.php?t=usrinfo&id=725
https://new-forum.openvz.org/index.php?t=rview&th=5623&goto=29034#msg_29034
https://new-forum.openvz.org/index.php?t=post&reply_to=29034
https://new-forum.openvz.org/index.php

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 42 of 42 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

