
Subject: Re: [RFC/PATCH] cgroup swap subsystem
Posted by KAMEZAWA Hiroyuki on Wed, 05 Mar 2008 06:53:29 GMT
View Forum Message <> Reply to Message

On Wed, 05 Mar 2008 14:59:05 +0900
Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> wrote:

> #ifdef CONFIG_CGROUP_MEM_CONT
> +/*
> + * A page_cgroup page is associated with every page descriptor. The
> + * page_cgroup helps us identify information about the cgroup
> + */
> +struct page_cgroup {
> +	struct list_head lru;		/* per cgroup LRU list */
> +	struct page *page;
> +	struct mem_cgroup *mem_cgroup;
> +#ifdef CONFIG_CGROUP_SWAP_LIMIT
> +	struct mm_struct *pc_mm;
> +#endif
> +	atomic_t ref_cnt;		/* Helpful when pages move b/w */
> +					/* mapped and cached states */
> +	int	 flags;
> +};
>
As first impression, I don't like to increase size of this...but have no alternative
idea.

> static inline int page_cgroup_locked(struct page *page)
> @@ -664,6 +665,10 @@ retry:
> 	pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
> 	if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
> 		pc->flags |= PAGE_CGROUP_FLAG_CACHE;
> +#ifdef CONFIG_CGROUP_SWAP_LIMIT
> +	atomic_inc(&mm->mm_count);
> +	pc->pc_mm = mm;
> +#endif
>
Strongly Nack to this atomic_inc().
What happens when tmpfs pages goes to swap ?

> 	if (!page || page_cgroup_assign_new_page_cgroup(page, pc)) {
> 		/*
> @@ -673,6 +678,9 @@ retry:

> +int swap_cgroup_charge(struct page *page,

Page 1 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=777
https://new-forum.openvz.org/index.php?t=rview&th=5601&goto=27988#msg_27988
https://new-forum.openvz.org/index.php?t=post&reply_to=27988
https://new-forum.openvz.org/index.php

> +			struct swap_info_struct *si,
> +			unsigned long offset)
> +{
> +	int ret;
> +	struct page_cgroup *pc;
> +	struct mm_struct *mm;
> +	struct swap_cgroup *swap;
> +
> +	BUG_ON(!page);
> +
> +	/*
> +	 * Pages to be swapped out should have been charged by memory cgroup,
> +	 * but very rarely, pc would be NULL (pc is not reliable without lock,
> +	 * so I should fix here).
> +	 * In such cases, we charge the init_mm now.
> +	 */
> +	pc = page_get_page_cgroup(page);
> +	if (WARN_ON(!pc))
> +		mm = &init_mm;
> +	else
> +		mm = pc->pc_mm;
> +	BUG_ON(!mm);
> +
> +	rcu_read_lock();
> +	swap = rcu_dereference(mm->swap_cgroup);
> +	rcu_read_unlock();
> +	BUG_ON(!swap);
Is there no race ?

At first look, remembering mm struct is not very good.
Remembering swap controller itself is better.
If you go this direction, how about this way ?

==
enum {
#ifdef CONFIG_CGROUP_MEM_CONT
	MEMORY_RESOURCE_CONTROLLER,
#endif
#ifdef CONFIG_CGROUP_SWAP_CONT
	SWAP_CONTROLLER,
#endif
	NR_PAGE_CONTROLLER,
}

struct page_cgroup {

	void*	controlls[NR_PAGE_CONTROLLER];

Page 2 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

};
==

Thanks,
-Kame

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC/PATCH] cgroup swap subsystem
Posted by Hirokazu Takahashi on Wed, 05 Mar 2008 21:51:53 GMT
View Forum Message <> Reply to Message

Hi,

> > #ifdef CONFIG_CGROUP_MEM_CONT
> > +/*
> > + * A page_cgroup page is associated with every page descriptor. The
> > + * page_cgroup helps us identify information about the cgroup
> > + */
> > +struct page_cgroup {
> > +	struct list_head lru;		/* per cgroup LRU list */
> > +	struct page *page;
> > +	struct mem_cgroup *mem_cgroup;
> > +#ifdef CONFIG_CGROUP_SWAP_LIMIT
> > +	struct mm_struct *pc_mm;
> > +#endif
> > +	atomic_t ref_cnt;		/* Helpful when pages move b/w */
> > +					/* mapped and cached states */
> > +	int	 flags;
> > +};
> >
> As first impression, I don't like to increase size of this...but have no alternative
> idea.

If you really want to make the swap space subsystem and the memory subsystem
work independently each other, you can possibly introduce a new data
structure that binds pages in the swapcache and swap_cgroup.
It would be enough since only a small part of the pages are in the swapcache.

Thanks,

Page 3 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=2296
https://new-forum.openvz.org/index.php?t=rview&th=5601&goto=28024#msg_28024
https://new-forum.openvz.org/index.php?t=post&reply_to=28024
https://new-forum.openvz.org/index.php

Hirokazu Takahashi.

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC/PATCH] cgroup swap subsystem
Posted by Daisuke Nishimura on Thu, 06 Mar 2008 11:45:27 GMT
View Forum Message <> Reply to Message

Hi.

> At first look, remembering mm struct is not very good.
> Remembering swap controller itself is better.

The swap_cgroup when the page(and page_cgroup) is allocated and
the swap_cgroup when the page is going to be swapped out may be
different by swap_cgroup_move_task(), so I think swap_cgroup
to be charged should be determined at the point of swapout.

Instead of pointing mm_struct from page_cgroup, it would be
better to determine the mm_struct which the page to be swapped
out is belongs to by rmap, and charge swap_cgroup of the mm_struct.
In this implementation, I don't need to add new member to page_cgroup.

What do you think ?

Thanks,
Daisuke Nishimura.

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 4 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=2435
https://new-forum.openvz.org/index.php?t=rview&th=5601&goto=28154#msg_28154
https://new-forum.openvz.org/index.php?t=post&reply_to=28154
https://new-forum.openvz.org/index.php

