
Subject: Re: [RFC/PATCH] cgroup swap subsystem
Posted by Paul Menage on Wed, 05 Mar 2008 06:36:19 GMT
View Forum Message <> Reply to Message

Hi Daisuke,

Most of my comments below are to do with style issues with cgroups,
rather than the details of the memory management code.

2008/3/4 Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>:
> +/*
> + * A page_cgroup page is associated with every page descriptor. The
> + * page_cgroup helps us identify information about the cgroup
> + */
> +struct page_cgroup {
> + struct list_head lru; /* per cgroup LRU list */
> + struct page *page;
> + struct mem_cgroup *mem_cgroup;
> +#ifdef CONFIG_CGROUP_SWAP_LIMIT
> + struct mm_struct *pc_mm;
> +#endif
> + atomic_t ref_cnt; /* Helpful when pages move b/w */
> + /* mapped and cached states */
> + int flags;
> +};
>
> +
> +#ifdef CONFIG_CGROUP_SWAP_LIMIT
> +struct swap_cgroup {
> + struct cgroup_subsys_state css;
> + struct res_counter res;
> +};
> +
> +static inline struct swap_cgroup *swap_cgroup_from_cgrp(struct cgroup *cgrp)
> +{
> + return container_of(cgroup_subsys_state(cgrp, swap_subsys_id),
> + struct swap_cgroup,
> + css);
> +}
> +
> +static inline struct swap_cgroup *swap_cgroup_from_task(struct task_struct *p)
> +{
> + return container_of(task_subsys_state(p, swap_subsys_id),
> + struct swap_cgroup, css);
> +}

Can't these definitions be moved into swap_limit.c?

Page 1 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=5600&goto=27987#msg_27987
https://new-forum.openvz.org/index.php?t=post&reply_to=27987
https://new-forum.openvz.org/index.php

> @@ -254,15 +243,27 @@ struct mem_cgroup *mem_cgroup_from_task(
> void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
> {
> struct mem_cgroup *mem;
> +#ifdef CONFIG_CGROUP_SWAP_LIMIT
> + struct swap_cgroup *swap;
> +#endif
>
> mem = mem_cgroup_from_task(p);
> css_get(&mem->css);
> mm->mem_cgroup = mem;
> +
> +#ifdef CONFIG_CGROUP_SWAP_LIMIT
> + swap = swap_cgroup_from_task(p);
> + css_get(&swap->css);
> + mm->swap_cgroup = swap;
> +#endif

My feeling is that it would be cleaner to move this code into
swap_limit.c, and have a separate mm_init_swap_cgroup() function. (And
a mm_free_swap_cgroup() function).

> + pc = page_get_page_cgroup(page);
> + if (WARN_ON(!pc))
> + mm = &init_mm;
> + else
> + mm = pc->pc_mm;
> + BUG_ON(!mm);

Is this safe against races with the mem.force_empty operation?

> +
> + rcu_read_lock();
> + swap = rcu_dereference(mm->swap_cgroup);
> + rcu_read_unlock();
> + BUG_ON(!swap);

Is it safe to do rcu_read_unlock() while you are still planning to
operate on the value of "swap"?

> +
> +static ssize_t swap_cgroup_read(struct cgroup *cgrp,
> + struct cftype *cft, struct file *file,
> + char __user *userbuf, size_t nbytes,
> + loff_t *ppos)
> +{
> + return res_counter_read(&swap_cgroup_from_cgrp(cgrp)->res,
> + cft->private, userbuf, nbytes, ppos,

Page 2 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> + NULL);
> +}

Can you use the cgroups read_u64 method, and just call res_counter_read_u64?

> +
> +static int swap_cgroup_write_strategy(char *buf, unsigned long long *tmp)
> +{
> + *tmp = memparse(buf, &buf);
> + if (*buf != '\0')
> + return -EINVAL;
> +
> + /*
> + * Round up the value to the closest page size
> + */
> + *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
> + return 0;
> +}

This is the same as mem_cgroup_write_strategy. As part of your patch,
can you create a res_counter_write_pagealign() strategy function in
res_counter.c and use it from the memory and swap cgroups?

> +
> +#ifdef CONFIG_CGROUP_SWAP_LIMIT
> + p->swap_cgroup = vmalloc(maxpages * sizeof(*swap_cgroup));
> + if (!(p->swap_cgroup)) {
> + error = -ENOMEM;
> + goto bad_swap;
> + }
> + memset(p->swap_cgroup, 0, maxpages * sizeof(*swap_cgroup));
> +#endif

It would be nice to only allocate these the first time the swap cgroup
subsystem becomes active, to avoid the overhead for people not using
it; even better if you can free it again if the swap subsystem becomes
inactive again.

Paul

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: Re: [RFC/PATCH] cgroup swap subsystem
Posted by Paul Menage on Thu, 06 Mar 2008 08:52:41 GMT

Page 3 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php

View Forum Message <> Reply to Message

On Thu, Mar 6, 2008 at 12:50 AM, Pavel Emelyanov <xemul@openvz.org> wrote:
> > The change that you're referring to is allowing a cgroup to have a
> > total memory limit for itself and all its children, and then giving
> > that cgroup's children separate memory limits within that overall
> > limit?
>
> Yup. Isn't this reasonable?

Yes, sounds like a good plan.

Paul

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC/PATCH] cgroup swap subsystem
Posted by Daisuke Nishimura on Thu, 06 Mar 2008 12:20:58 GMT
View Forum Message <> Reply to Message

Hi.

Paul Menage wrote:
>> + pc = page_get_page_cgroup(page);
>> + if (WARN_ON(!pc))
>> + mm = &init_mm;
>> + else
>> + mm = pc->pc_mm;
>> + BUG_ON(!mm);
>
> Is this safe against races with the mem.force_empty operation?
>
I've not considered yet about force_empty operation
of memory subsystem.
Thank you for pointing it out.

>> +
>> + rcu_read_lock();
>> + swap = rcu_dereference(mm->swap_cgroup);
>> + rcu_read_unlock();
>> + BUG_ON(!swap);
>
> Is it safe to do rcu_read_unlock() while you are still planning to
> operate on the value of "swap"?
>

Page 4 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=rview&th=5600&goto=28035#msg_28035
https://new-forum.openvz.org/index.php?t=post&reply_to=28035
https://new-forum.openvz.org/index.php?t=usrinfo&id=2435
https://new-forum.openvz.org/index.php?t=rview&th=5600&goto=28152#msg_28152
https://new-forum.openvz.org/index.php?t=post&reply_to=28152
https://new-forum.openvz.org/index.php

You are right.
I think I should css_get() before rcu_read_unlock() as
memory subsystem does.

>> +
>> +#ifdef CONFIG_CGROUP_SWAP_LIMIT
>> + p->swap_cgroup = vmalloc(maxpages * sizeof(*swap_cgroup));
>> + if (!(p->swap_cgroup)) {
>> + error = -ENOMEM;
>> + goto bad_swap;
>> + }
>> + memset(p->swap_cgroup, 0, maxpages * sizeof(*swap_cgroup));
>> +#endif
>
> It would be nice to only allocate these the first time the swap cgroup
> subsystem becomes active, to avoid the overhead for people not using
> it; even better if you can free it again if the swap subsystem becomes
> inactive again.
>
Hmm.. good idea.
I think this is possible by adding a flag file, like "swap.enable_limit",
to the top of cgroup directory, and charging all the swap entries
which are used when the flag is enabled to the top cgroup.

Thanks,
Daisuke Nishimura.

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: Re: [RFC/PATCH] cgroup swap subsystem
Posted by KAMEZAWA Hiroyuki on Thu, 06 Mar 2008 12:56:56 GMT
View Forum Message <> Reply to Message

>> At first look, remembering mm struct is not very good.
>> Remembering swap controller itself is better.
>
>The swap_cgroup when the page(and page_cgroup) is allocated and
>the swap_cgroup when the page is going to be swapped out may be
>different by swap_cgroup_move_task(), so I think swap_cgroup
>to be charged should be determined at the point of swapout.
>
Accounting swap against an entity which allocs anon memory is

Page 5 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=777
https://new-forum.openvz.org/index.php?t=rview&th=5600&goto=28046#msg_28046
https://new-forum.openvz.org/index.php?t=post&reply_to=28046
https://new-forum.openvz.org/index.php

not strange. Problem here is move_task itself.
Now, charges against anon is not moved when a task which uses it
is moved. please fix this behavior first if you think this is
problematic.

But, finally, a daemon driven by process event connector
determines the group before process starts using anon. It's
doubtful that it's worth to add complicated/costly ones.

Thanks,
-Kame

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC/PATCH] cgroup swap subsystem
Posted by Daisuke Nishimura on Fri, 07 Mar 2008 08:22:29 GMT
View Forum Message <> Reply to Message

Hi.

kamezawa.hiroyu@jp.fujitsu.com wrote:
>>> At first look, remembering mm struct is not very good.
>>> Remembering swap controller itself is better.
>> The swap_cgroup when the page(and page_cgroup) is allocated and
>> the swap_cgroup when the page is going to be swapped out may be
>> different by swap_cgroup_move_task(), so I think swap_cgroup
>> to be charged should be determined at the point of swapout.
>>
> Accounting swap against an entity which allocs anon memory is
> not strange. Problem here is move_task itself.
> Now, charges against anon is not moved when a task which uses it
> is moved. please fix this behavior first if you think this is
> problematic.
>
> But, finally, a daemon driven by process event connector
> determines the group before process starts using anon. It's
> doubtful that it's worth to add complicated/costly ones.
>

I agree with you.

I think the current behavior of move_task is problematic,
and should fix it.
But fixing it would be difficult and add a costly process,

Page 6 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=2435
https://new-forum.openvz.org/index.php?t=rview&th=5600&goto=28156#msg_28156
https://new-forum.openvz.org/index.php?t=post&reply_to=28156
https://new-forum.openvz.org/index.php

so I should consider more.

Thanks,
Daisuke Nishimura.

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: Re: [RFC/PATCH] cgroup swap subsystem
Posted by yamamoto on Wed, 12 Mar 2008 22:57:40 GMT
View Forum Message <> Reply to Message

> >> At first look, remembering mm struct is not very good.
> >> Remembering swap controller itself is better.
> >
> >The swap_cgroup when the page(and page_cgroup) is allocated and
> >the swap_cgroup when the page is going to be swapped out may be
> >different by swap_cgroup_move_task(), so I think swap_cgroup
> >to be charged should be determined at the point of swapout.
> >
> Accounting swap against an entity which allocs anon memory is
> not strange. Problem here is move_task itself.
> Now, charges against anon is not moved when a task which uses it
> is moved. please fix this behavior first if you think this is
> problematic.
>
> But, finally, a daemon driven by process event connector
> determines the group before process starts using anon. It's
> doubtful that it's worth to add complicated/costly ones.
>
>
> Thanks,
> -Kame

doesn't PEC work asynchronously and allows processes to use
anonymous memory before being moved by the daemon?

YAMAMOTO Takashi

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 7 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1846
https://new-forum.openvz.org/index.php?t=rview&th=5600&goto=28269#msg_28269
https://new-forum.openvz.org/index.php?t=post&reply_to=28269
https://new-forum.openvz.org/index.php

