Subject: Hang with fair cgroup scheduler (reproducer is attached.)
Posted by KAMEZAWA Hiroyuki on Fri, 14 Dec 2007 07:18:34 GMT

View Forum Message <> Reply to Message

Hi,

While | was testing 2.6.24-rc5-mm1l's fair group scheduler (with cgroup),
the system hangs. please confirm. it's reproducible on my box.

My test program is attached.

What happens:
the system hangs. (panic ?)

Environ:
ia64/NUMA 8CPU systems. 4 cpus per node.

How to reproduce:
Compile attached one.
gcc -0 reg reg.c
Create group as following
mount -t cgroup none /opt/cgroup -0 cpu
mkdir /opt/cgroup/group_1
mkdir /opt/cgroup/group_2

And run attached program
#./reg88

What 'reg’ does;
usage :reg ABC...
This program forks child process and assign
A of processes to group_1
B of processes to group_2
C of processes to group_3
kick and waitpid all and repeat.

Thanks,
-Kame

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

File Attachnents

1) reg.c, downl oaded 346 tines

Page 1 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=777
https://new-forum.openvz.org/index.php?t=rview&th=4980&goto=25077#msg_25077
https://new-forum.openvz.org/index.php?t=post&reply_to=25077
https://new-forum.openvz.org/index.php?t=getfile&id=469
https://new-forum.openvz.org/index.php

Subject: Re: Hang with fair cgroup scheduler (reproducer is attached.)

Posted by KAMEZAWA Hiroyuki on Fri, 14 Dec 2007 08:17:59 GMT

View Forum Message <> Reply to Message

Tested again, and got NULL access and panic.

This is my guess from stack dump. (raw stack dump is attached below.)

static struct task_struct *pick_next_task_fair(struct rq *rq)
{

struct cfs_rq *cfs_rq = &rg->cfs;

struct sched_entity *se;

if (unlikely(!cfs_rg->nr_running))
return NULL;

do{

se = pick_next_entity(cfs_rq); <-- se was NULL.

cfs_rq = group_cfs_rqg(se); <--se->my_q causes SEGV
} while (cfs_rq);

return task_of(se);

}

Seems first_fair() was NULL in

static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)

{
struct sched_entity *se = NULL,;

if (first_fair(cfs_rq)) { <------r---rmmemmoemmeemoeeees (*)
se = __ pick_next_entity(cfs_rq);
set_next_entity(cfs_rq, se);

}

return se;

}

from register information.

Thanks,
-Kame

Stack dump is here.
Pid: 8197, CPU 6, comm: reg
psr: 00001210085a2010 ifs : 8000000000000206 ip : [<a000000100067c01>]

Not tainted

Page 2 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=777
https://new-forum.openvz.org/index.php?t=rview&th=4980&goto=25079#msg_25079
https://new-forum.openvz.org/index.php?t=post&reply_to=25079
https://new-forum.openvz.org/index.php

ip is at pick_next_task_fair+0x81/0xe0
unat: 0000000000000000 pfs : 0000000000000206 rsc : 0000000000000003
rnat: 0000000000000000 bsps: 0000000000000000 pr : 0000000000556959
Idrs: 0000000000000000 ccv : 0000000000000000 fpsr: 0009804c0270033f
csd : 0000000000000000 ssd : 0000000000000000
b0 : a000000100067c00 b6 : a000000100076a60 b7 : a00000010000ee50
NaT consumption 2216203124768 [1]*M
Modules linked in: sunrpc binfmt_misc dm_mirror dm_mod fan sg thermal 1000 processor button
conta
iner e100 eepro100 mii Ipfc mptspi mptscsih mptbase ehci_hcd ohci_hcd uhci_hcd*M
"M
Pid: 8197, CPU 6, comm: reg"M
psr : 00001210085a2010 ifs : 8000000000000206 ip : [<a000000100067c01>] Not taintedM
ip is at pick_next_task_fair+0x81/0xe0"M
unat: 0000000000000000 pfs : 0000000000000206 rsc : 0000000000000003*"M
rnat: 0000000000000000 bsps: 0000000000000000 pr : 0000000000556959"M
Idrs: 0000000000000000 ccv : 0000000000000000 fpsr: 0009804c0270033f*M
csd : 0000000000000000 ssd : 0000000000000000"M
b0 : a000000100067c00 b6 : a000000100076a60 b7 : a00000010000ee50"M
f6 : 000000000000000000000 f7 : 000000000000000000000"M
f8 : 1003e00000000a0000007 f9 : 1003e00000059499dd2c3"M
f10 : 1003ece02a62ae350c355 f11 : 1003e0000000000000037*M
rl : a000000100d87a60 r2 : 000000df13538d0b r3 : 0000000000000060"M
r8 : 0000000000000000 r9 : e00001a004034b30 r10 : 0000000000000000"M
rll : e00001a004034aa8 r12 : e00001a10397fel0 r13 : e00001a103970000"M
r14 : 00000000d594bde3 r15 : e00001a004034ab0 r16 : e00001a004034ab8"M
rl7 : e00001a004034ac8 r18 : e00001a004038320 r19 : e00001a10426ff20"M
r20 : 0000000000000000 r21 : 0000000000000000 r22 : 0000000000000001"M
r23 : e00001a004034a91 r24 : e00001a004034a90 r25 : e00001a10426ff10"M
r26 : 0000000000000002 r27 : e00001a0040382f0 r28 : e00001a004038288"M
r29 : a0000001008a5468 r30 : a000000100076a60 r31 : a000000100b726e0"M
"M
Call Trace:"M
[<a000000100013bc0>] show_stack+0x40/0xa0"M

sp=e00001a10397f860 bsp=e00001a103970f18"M
[<a000000100014840>] show_regs+0x840/0x880"M

sp=e00001a10397fa30 bsp=e00001a103970ec0"M
[<a000000100036fa0>] die+0x1a0/0x2a0"M

sp=e00001a10397fa30 bsp=e00001a103970e78"M
[<a0000001000370f0>] die_if kernel+0x50/0x80"M

sp=e00001a10397fa30 bsp=e00001a103970e48"M
[<a000000100038260>] ia64_fault+0x1140/0x1260"M

sp=e00001a10397fa30 bsp=e00001a103970de8"M
[<a00000010000ae20>] ia64_leave_kernel+0x0/0x270"M

sp=e00001a10397fc40 bsp=e00001a103970de8"M
[<a000000100067c00>] pick_next_task_fair+0x80/0xe0"M

sp=e00001a10397fe10 bsp=e00001a103970db8"M
[<a0000001006f6a60>] schedule+0x8e0/0x1280"M

Page 3 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

sp=e00001a10397fe10 bsp=e00001a103970d08"M

[<a000000100074e20>] sys_sched_yield+0xe0/0x100"M

sp=e00001a10397fe30 bsp=e00001a103970ca8"M

[<a00000010000aca0>] ia64 ret_from_syscall+0x0/0x20"M

sp=e00001a10397fe30 bsp=e00001a103970ca8"M

[<a000000000010720>] _ kernel_syscall_via_break+0x0/0x20"M

Disassemble.

a000000100067b80 <pick_next_task_fair>:

a000000100067hb80:
a000000100067h86:
a000000100067h8c:
a000000100067hb90:
a000000100067h96:
a000000100067h9c:
a000000100067ba0:
a000000100067ba6:
a000000100067bac:
a000000100067bb0:
a000000100067bbé:
a000000100067bbc:

18 10 19 08 80 05
2080 83 00 42 00
00 00 00 20
092081410021
00 00 00 02 00 20
04 00 c4 00
Ob 70 00 04 18 10
70 00 38 Oc 72 00
00 00 04 00
10 00 00 00 01 cO
81 00 00 00 c2 03
80 00 00 41

<pick_next_task_fair+0xb

0>

a000000100067bc0:
a000000100067bc6:
a000000100067bcc:
a000000100067bdO:
a000000100067bd6:
a000000100067bdc:
a000000100067be0:
a000000100067be6:
a000000100067bec:

a000000100067bf0:
a000000100067bf6:
a000000100067bfc:
<set_next_entity>;;

a000000100067c00:
a000000100067c06:
a000000100067cOc:
a000000100067c10:
a000000100067c16:
a000000100067clc

0948 c04800 21
00 00 00 02 00 00
04 00 00 84

09 00 00 00 01 00
80 00 24 30 20 00
00 00 04 00

03 00 00 00 01 00
b0 00 20 14 72 05
04 47 fc 8c
512901400021
00 00 00 02 00 05
58 fe ff ba

Ob 18 80 41 00 21
40 02 0c 30 20 00
00 00 04 00

10 00 00 00 01 00
90 0090 10 72 04
b0 ff ff 4a

<pick_next_task_fair+0x4

sp=e00001a103980000 bsp=e00001a103970ca8"M

[MMB] alloc r34=ar.pfs,6,4,0
adds r2=112,r32
nop.b 0x0
[MMI] adds r36=96,r32
nop.m 0x0
mov r33=b0;;
[MMI] |d8 r14=[r2];;
cmp.eq p7,p6=0,r14
nop.i 0x0;;
[MIB] nop.m 0x0
(p07) mov r8=r0
(p07) br.cond.spnt.few a000000100067c30

[MMI] adds r9=48,r36
nop.m 0x0
mov r32=r0;;
[MMI] nop.m 0x0
1d8 r8=[r9]
nop.i 0x0;;
nop.m 0x0
cmp.eq pl11,p10=0,r8;;
(p10) adds r32=-16,r8;;
[MIB] (p10) mov r37=r32
nop.i 0x0
(p10) br.call.dptk.many b0=a000000100067a40

[MII]

[MMI] adds r3=96,r32;;
|d8 r36=[r3] <---------- panic.
nop.i 0x0;;
[MIB] nop.m 0x0
cmp.eq p9,p8=0,r36
(p08) br.cond.dptk.few a000000100067bc0

Containers mailing list

Page 4 of 41 ----

Generated from

OpenVZ Forum

https://new-forum.openvz.org/index.php

Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: Hang with fair cgroup scheduler (reproducer is attached.)
Posted by Ingo Molnar on Fri, 14 Dec 2007 09:48:46 GMT

View Forum Message <> Reply to Message

(Cc:-ed other folks as well)
* KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> wrote:

> Hi,

>

> While | was testing 2.6.24-rc5-mm1l's fair group scheduler (with cgroup),
> the system hangs. please confirm. it's reproducible on my box.

>

> My test program is attached.

>

> What happens:

> the system hangs. (panic ?)

>

> Environ:

> ja64/NUMA 8CPU systems. 4 cpus per node.
>

> How to reproduce:

> Compile attached one.

gcc -0 reg reg.c

Create group as following

mount -t cgroup none /opt/cgroup -0 cpu
mkdir /opt/cgroup/group_1

mkdir /opt/cgroup/group_2

And run attached program
./reg88

VVVVYVYVYVYVYV

> What 'reg' does;

> usage:regABC...

> This program forks child process and assign
> A of processes to group_1

> B of processes to group_2

> C of processes to group_3

> kick and waitpid all and repeat.

>

> Thanks,

> -Kame

> #include <stdlib.h>

Page 5 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=122
https://new-forum.openvz.org/index.php?t=rview&th=4980&goto=25086#msg_25086
https://new-forum.openvz.org/index.php?t=post&reply_to=25086
https://new-forum.openvz.org/index.php

> #include <stdio.h>

> #include <strings.h>

> #include <sys/types.h>

> #include <unistd.h>

> #include <sched.h>

> #include <asm/intrinsics.h>
> #include <sys/ipc.h>

> #include <sys/shm.h>

> #include <errno.h>

> #include <sys/times.h>

>

> static char *shared,;

> #define MAX_PROCS 32
> #define SHMSIZE (16384)
>

> struct start_stop {

> int go;

>}

>

> [* Assign PID to a group....

> *work as # echo PID > /opt/cgroup/group_%d/tasks
> *f

> void assign_to(int pid, int group)

>{
FILE *fp;
char buf[32];

\

memset(buf, 0, sizeof(buf));
sprintf(buf,"/opt/cgroup/group_%d/tasks",group);
fp = fopen(buf,"w");

if (fp == NULL) {

perror(“fopen™);

fprintf(stderr, "failed : fopen™);

exit(0);

}

fprintf(fp, "%d", pid);

fclose(fp);

> printf("%d to %s\n", pid, buf);

>}

>

> [*

> * gpin wait and go into small loop.

> * # of loops are counted as score.

> * This process's utime is recorded in times]id]
> */

> int worker(int id)

>{

> struct start_stop *shared_flag;

VVVVVVVYVYVYVYVYV

Page 6 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

shared_flag = (struct start_stop*)shared;
do {
sched_yield();
ia64_mf();
} while ('shared_flag->go);
}

/~k

* If you want to assign..

* 2 proces to group 1, 3 procs to group 2 -># ./a.out 2 3

* 3 proces to group 1, 3 procs to group 2, 3 procs to group 3
*-># Ja.out333

* Total 32 procs are supported.

*/

VVVVVVVVVVVYVYVYVYVYV

> int main(int argc, char *argv(])
> {

int nprocs;

int shmid, i;

struct start_stop *shared_flag;
int pids[MAX_PROCS];

int groups[MAX_PROCS];

\

memset(pids, 0, sizeof(pids));
memset(groups, 0, sizeof(groups));

again:

for (nprocs =0, i =1; i < argc; i++) {
int num = atoi(argv[i]);
int j;

for (j = 0;j < num; j++) {
groups[nprocs +j] = i;

}
nprocs += num;

}

shmid = shmget(IPC_PRIVATE, SHMSIZE, IPC_CREAT | 0666);
if (shmid ==-1) {

perror("shmget");

exit(1);

}

shared = shmat(shmid, NULL, 0);
shared_flag = (struct start_stop *)shared,;

memset(shared, 0, SHMSIZE);
shmctl(shmid, IPC_RMID, 0);

VVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYV

Page 7 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

for (i = 0; i < nprocs; i++) {
int ret;
ret = fork();
if (ret == 0) {
worker(i);
exit(0);
} else if (ret == -1) {
perror(“fork");
exit(0);
}
pids[i] = ret;
}
sleep(1);
for (i = 0; i < nprocs; i++)
assign_to(pidsJi], groupsJi]);
sleep(1);
ia64_mf();
shared_flag->go = 1;

for (i = 0; i < nprocs; i++) {
int status;

waitpid(pidsJi], &status, 0);
}

goto again;

VVVVVVVVVVVVVVVVVVVYVVYVYVYVYVYV

> return O;

>}

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: Hang with fair cgroup scheduler (reproducer is attached.)
Posted by Ingo Molnar on Fri, 14 Dec 2007 09:49:09 GMT

View Forum Message <> Reply to Message

(Cc:-ed other folks as well)
* KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> wrote:

> Tested again, and got NULL access and panic.
>

> This is my guess from stack dump. (raw stack dump is attached below.)
> ==
>

Page 8 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=122
https://new-forum.openvz.org/index.php?t=rview&th=4980&goto=25087#msg_25087
https://new-forum.openvz.org/index.php?t=post&reply_to=25087
https://new-forum.openvz.org/index.php

> static struct task_struct *pick_next_task_fair(struct rq *rq)

> {

> struct cfs_rq *cfs_rq = &rqg->cfs;

> struct sched_entity *se;

>

> if (unlikely(!cfs_rg->nr_running))

> return NULL;

>

> do {

> se = pick_next_entity(cfs_rq); <-- se was NULL.
> cfs_rq = group_cfs_rq(se); <--se->my_q causes SEGV
> } while (cfs_rq);

>

> return task_of(se);

>}

> ===

> Seems first_fair() was NULL in

> ==

> static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
> {

> struct sched_entity *se = NULL,;

>

> if (first_fair(cfs_rq)) { <-----------------=-mm-mmmmem- *)
> se = __ pick_next_entity(cfs_rq);

> set_next_entity(cfs_rq, se);

> }

>

> return se;

>}

> ==

> from register information.

>

> Thanks,

> -Kame

>

>

> Stack dump is here.

> ==

> Pid: 8197, CPU 6, comm: reg

> psr: 00001210085a2010 ifs : 8000000000000206 ip : [<a000000100067c01>] Not tainted
> ip is at pick_next_task_fair+0x81/0xe0

> unat: 0000000000000000 pfs : 0000000000000206 rsc : 0000000000000003

> rnat: 0000000000000000 bsps: 0000000000000000 pr : 0000000000556959

> |drs: 0000000000000000 ccv : 0000000000000000 fpsr: 0009804c0270033f

> c¢sd : 0000000000000000 ssd : 0000000000000000

> b0 : a000000100067c00 b6 : a000000100076a60 b7 : a00000010000ee50

> NaT consumption 2216203124768 [1]*"M

> Modules linked in: sunrpc binfmt_misc dm_mirror dm_mod fan sg thermal e1000 processor

Page 9 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

button conta

> iner €100 eepro100 mii Ipfc mptspi mptscsih mptbase ehci_hcd ohci_hcd uhci_hcd*M
> "M

> Pid: 8197, CPU 6, comm: reg"M

> psr : 00001210085a2010 ifs : 8000000000000206 ip : [<a000000100067c01>] Not taintedM
> ip is at pick_next_task_fair+0x81/0xe0"M

> unat: 0000000000000000 pfs : 0000000000000206 rsc : 0000000000000003*M
> rnat: 0000000000000000 bsps: 0000000000000000 pr : 0000000000556959"M
> |drs: 0000000000000000 ccv : 0000000000000000 fpsr: 0009804c0270033f*"M
> c¢sd : 0000000000000000 ssd : 0000000000000000M"M

> b0 : a000000100067c00 b6 : a000000100076a60 b7 : a00000010000ee50"M
> {6 : 000000000000000000000 f7 : 000000000000000000000"M

> {8 : 1003e00000000a0000007 f9 : 1003e00000059499dd2¢c3™"M

> {10 : 1003ece02a62ae350c355 f11 : 1003e0000000000000037 M

>rl :a000000100d87a60 r2 : 000000df13538d0b r3 : 0000000000000060"M
>r8 : 0000000000000000 r9 : e00001a004034b30 r10 : 0000000000000000"M
>rll:e00001a004034aa8 r12 : e00001a10397fel10 r13 : e00001a103970000"M
> rl14 : 00000000d594bde3 r15 : e00001a004034ab0 r16 : e€00001a004034ab8"M
> rl7 : e00001a004034ac8 r18 : e00001a004038320 r19 : e00001a10426ff20"M
> r20 : 0000000000000000 r21 : 0000000000000000 r22 : 0000000000000001"M
> 123 : e00001a004034a91 r24 : e00001a004034a90 r25 : e00001a10426ff10"M
> r26 : 0000000000000002 r27 : e00001a0040382f0 r28 : e€00001a004038288"M
> r29 : a0000001008a5468 r30 : a000000100076a60 r31 : a000000100b726e0™"M
> \M

> Call Trace:"M

> [<a000000100013bc0>] show_stack+0x40/0xa0"M

> sp=e00001a10397f860 bsp=e00001a103970f18"M

> [<a000000100014840>] show_regs+0x840/0x880"M

> sp=e00001a10397fa30 bsp=e00001a103970ec0"™"M

> [<a000000100036fa0>] die+0x1a0/0x2a0"M

> sp=e00001a10397fa30 bsp=e00001a103970e78"M

> [<a0000001000370f0>] die_if kernel+0x50/0x80"M

> sp=e00001a10397fa30 bsp=e00001a103970e48"M

> [<a000000100038260>] ia64_fault+0x1140/0x1260"M

> sp=e00001a10397fa30 bsp=e00001a103970de8"M

> [<a00000010000ae20>] ia64 leave kernel+0x0/0x270"M

> sp=e00001a10397fc40 bsp=e00001a103970de8"M

> [<a000000100067c00>] pick_next_task_fair+0x80/0xe0"M

> sp=e00001a10397fe10 bsp=e00001a103970db8"M

> [<a0000001006f6a60>] schedule+0x8e0/0x1280"M

> sp=e00001a10397fel10 bsp=e00001a103970d08"M

> [<a000000100074e20>] sys_sched_yield+0xe0/0x100"M

> sp=e00001a10397fe30 bsp=e00001a103970ca8"M

> [<a00000010000aca0>] ia64 ret_from_syscall+0x0/0x20"M

> sp=e00001a10397fe30 bsp=e00001a103970ca8 "M

> [<a000000000010720>] __ kernel_syscall_via_break+0x0/0x20"M

> sp=e00001a103980000 bsp=e00001a103970ca8"M

>

Page 10 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> Disassemble.
> ==

> a000000100067b80 <pick_next_task_fair>:

> a000000100067b80:
> a000000100067b86:
> a000000100067b8c:
> a000000100067b90:
> a000000100067b96:
> a000000100067b9c:
> a000000100067bao:
> a000000100067baé:
> a000000100067bac:
> a000000100067bb0:
> a000000100067bbé:
> a000000100067bbc:
<pick_next_task_fair+0xb

> 0>

> a000000100067bc0:
> a000000100067bc6:
> a000000100067hcc:
> a000000100067bdO:
> a000000100067bd6:
> a000000100067bdc:
> a000000100067be0:
> a000000100067be6:
> a000000100067bec:

> a000000100067bf0:
> a000000100067bf6:
> a000000100067bfc:
<set_next_entity>;;

> a000000100067c00:
> a000000100067c06:
> a000000100067c0c:
> a000000100067¢10:
> a000000100067c16:
> a000000100067clc:
<pick_next_task_fair+0x4

18 10 19 08 80 05
20 80 83 00 42 00
00 00 00 20
092081410021
00 00 00 02 00 20
04 00 c4 00
Ob 70 00 04 18 10
70 00 38 Oc 72 00
00 00 04 00
10 00 00 00 01 cO
81 00 00 00 c2 03
80 00 00 41

0948 c048 00 21
00 00 00 02 00 00
04 00 00 84

09 00 00 00 01 00
80 00 24 30 20 00
00 00 04 00

03 00 00 00 01 00
b0 00 20 14 72 05
04 47 fc 8c
512901400021
00 00 00 02 00 05
58 fe ff ba

Ob 18 8041 00 21
40 02 Oc 30 20 00
00 00 04 00

10 00 00 00 01 0O
90 009010 72 04
b0 ff ff 4a

[MMB] alloc r34=ar.pfs,6,4,0
adds r2=112,r32
nop.b 0x0
[MMI] adds r36=96,r32
nop.m 0x0
mov r33=b0;;
[MMI] [d8 r14=[r2];;
cmp.eq p7,p6=0,r14
nop.i 0x0;;
[MIB] nop.m 0x0
(p07) mov r8=r0

(p07) br.cond.spnt.few a000000100067¢c30

[MMI] adds r9=48,r36
nop.m 0x0
mov r32=r0;;
[MMI] nop.m 0x0
|d8 r8=[r9]
nop.i 0x0;;
nop.m 0x0
cmp.eq pl1,p10=0,r8;;
(p10) adds r32=-16,r8;;
[MIB] (p10) mov r37=r32
nop.i 0x0

[MII]

(p10) br.call.dptk.many b0=a000000100067a40

[MMI] adds r3=96,r32;;
|d8 r36=[r3]
nop.i 0x0;;
[MIB] nop.m 0x0
cmp.eq p9,p8=0,r36

(p08) br.cond.dptk.few a000000100067bc0

Containers mailing list

Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: Hang with fair cgroup scheduler (reproducer is attached.)
Posted by KAMEZAWA Hiroyuki on Fri, 14 Dec 2007 10:58:37 GMT

View Forum Message <> Reply to Message

Here is much easier test.

Page 11 of 41 ----

CGenerated from

OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=777
https://new-forum.openvz.org/index.php?t=rview&th=4980&goto=25094#msg_25094
https://new-forum.openvz.org/index.php?t=post&reply_to=25094
https://new-forum.openvz.org/index.php

(I'm sorry I'll be absent tomorrow.)

the number of cpus is 8. ia64/NUMA.

The hang occurs when the number of tasks is not smaller than available cpus.

Can be a hint ?

[root@rhel51GA testpro]# cat yield.c
#include <sched.h>

int main()
{
while (1)
sched_yield();

[root@rhel51GA testproj# cat batch-test.sh
#!/bin/bash -x

mount -t cgroup none /opt/cgroup -o cpu
mkdir /opt/cgroup/group_1
mkdir /opt/cgroup/group_2

Jyield &
PIDA=S$!
Jyield &
PIDB=$!

while true; do
echo $PIDA > /opt/cgroup/group_1/tasks
echo $PIDB > /opt/cgroup/group_1/tasks
echo $PIDA > /opt/cgroup/group_2/tasks;
echo $PIDB > /opt/cgroup/group_2/tasks
done

[root@rhel51GA testpro]#./batech-test.sh
no hang.

[root@rhel51GA testproj#taskset Of ./batech-test.sh
no hang

[root@rhel51GA testproj#taskset 03 ./batech-test.sh
hang.

Pid: 8132, CPU 0, comm: yield

psr: 00001210085a2010 ifs : 8000000000000206 ip
ip is at pick_next_task_fair+0x81/0xe0

- [<a000000100067¢01>]

Not tainted

Page 12 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

unat: 0000000000000000 pfs : 0000000000000b1d rsc : 0000000000000003
rnat: 0000000000000000 bsps: 0000000000000000 pr : 0000000000566959
Idrs: 0000000000000000 ccv : 0000000000000000 fpsr: 0009804c0270033f
csd : 0000000000000000 ssd : 0000000000000000

b0 : a0000001006f6acO b6 : a000000100076a60 b7 : a000000100067b80
f6 : 000000000000000000000 f7 : 000000000000000000000

f8 : 1003e00000000a0000007 f9 : 1003e0000004633b23e65

f10 : 1003ee04f68ea89dfb4c3 f11 : 1003e000000000000002b

rl :a000000100d87a60 r2 : e0000000011082f0 r3 : 0000000000000060
r8 : 0000000000000000 r9 : e000000001108310 r10 : e000004080032018
r1l1 : 00000000f86¢ccc70 r12 : e00000408394fel0 r13 : e000004083940000
r14 : 0000000000000001 r15 : 0000000000000064 r16 : e0000000011089f0
r17 : ffffeefff r18 : e000000001108360 r19 : 0000000000000000

r20 : e00000408003ef10 r21 : 0000000001e9555b r22 : 000000af762794d4
r23 : 00000015elabc70b r24 : ffffffffffffe463 r25 : e00000408003ef10

r26 : 0000000000000002 r27 : e0000000011082f0 r28 : e000000001108288
r29 : a0000001008a5468 r30 : a000000100076a60 r31 : a000000100b726€0

Call Trace:
[<a000000100013bc0>] show_stack+0x40/0xa0
sp=e00000408394f860 bsp=e000004083940f18
[<a000000100014840>] show_regs+0x840/0x880
sp=e00000408394fa30 bsp=e000004083940ec0
[<a000000100036fa0>] die+0x1a0/0x2a0
Ssp=e00000408394fa30 bsp=e000004083940e78
[<a0000001000370f0>] die_if_kernel+0x50/0x80
Ssp=e00000408394fa30 bsp=e000004083940e48
[<a000000100038260>] ia64_fault+0x1140/0x1260
Sp=e00000408394fa30 bsp=e000004083940de8
[<a00000010000ae20>] ia64 _leave_kernel+0x0/0x270
sp=e00000408394fc40 bsp=e000004083940de8
[<a000000100067c00>] pick_next_task fair+0x80/0xe0
sp=e00000408394fe10 bsp=e000004083940db8
[<a0000001006f6ac0>] schedule+0x940/0x1280
sp=e00000408394fe10 bsp=e000004083940d08
[<a000000100074e20>] sys_sched_yield+0xe0/0x100
sp=e00000408394fe30 bsp=e000004083940ca8
[<a00000010000aca0>] ia64_ret_from_syscall+0x0/0x20
sp=e00000408394fe30 bsp=e000004083940ca8
[<a000000000010720>] _ kernel_syscall_via_break+0x0/0x20
sp=e000004083950000 bsp=e000004083940ca8
Thanks,
-Kame

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

https://new-forum.openvz.org/index.php

Subject: Re: Hang with fair cgroup scheduler (reproducer is attached.)
Posted by Dhaval Giani on Fri, 14 Dec 2007 11:48:03 GMT

View Forum Message <> Reply to Message

On Fri, Dec 14, 2007 at 07:58:37PM +0900, KAMEZAWA Hiroyuki wrote:
> Here is much easier test.

Thanks for the test! Let me see if | can reproduce it here.

regards,
Dhaval

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: Hang with fair cgroup scheduler (reproducer is attached.)
Posted by Dmitry Adamushko on Fri, 14 Dec 2007 12:47:13 GMT

View Forum Message <> Reply to Message

On 14/12/2007, KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> wrote:
> Here is much easier test.

> (I'm sorry I'll be absent tomorrow.)

>

> the number of cpus is 8. ia64/NUMA.

>

> The hang occurs when the number of tasks is not smaller than available cpus.
> Can be a hint ?

>

>[...]

>

> [root@rhel51GA testprol#./batech-test.sh

> no hang.

>

> [root@rhel51GA testpro]#taskset Of ./batech-test.sh

> no hang

>

> [root@rhel51GA testpro]#taskset 03 ./batech-test.sh

> hang.

have you tried :
[root@rhel51GA testproj#taskset 01 ./batech-test.sh

hang?

Page 14 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1528
https://new-forum.openvz.org/index.php?t=rview&th=4980&goto=25097#msg_25097
https://new-forum.openvz.org/index.php?t=post&reply_to=25097
https://new-forum.openvz.org/index.php?t=usrinfo&id=1843
https://new-forum.openvz.org/index.php?t=rview&th=4980&goto=25099#msg_25099
https://new-forum.openvz.org/index.php?t=post&reply_to=25099
https://new-forum.openvz.org/index.php

just to be sure SMP does matter here (most likely yes, | guess).
TIA,

>
> Thanks,

> -Kame
>

Best regards,
Dmitry Adamushko

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: Re: Hang with fair cgroup scheduler (reproducer is attached.)
Posted by KAMEZAWA Hiroyuki on Fri, 14 Dec 2007 12:50:44 GMT

View Forum Message <> Reply to Message

>have you tried :
>

>[root@rhel51GA testpro]#taskset 01 ./batech-test.sh
>

yes

>hang?
>
no.

>just to be sure SMP does matter here (most likely yes, | guess).
>

maybe. As far as | tested, there was no hang if the number of cpus is 1.

Regards,
-Kame

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: Hang with fair cgroup scheduler (reproducer is attached.)
Posted by Dhaval Giani on Fri, 14 Dec 2007 14:15:28 GMT

Page 15 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=777
https://new-forum.openvz.org/index.php?t=rview&th=4980&goto=25101#msg_25101
https://new-forum.openvz.org/index.php?t=post&reply_to=25101
https://new-forum.openvz.org/index.php?t=usrinfo&id=1528
https://new-forum.openvz.org/index.php

View Forum Message <> Reply to Message

On Fri, Dec 14, 2007 at 01:47:13PM +0100, Dmitry Adamushko wrote:
> 0On 14/12/2007, KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> wrote:
> > Here is much easier test.

> > (I'm sorry I'll be absent tomorrow.)

> >

> > the number of cpus is 8. ia64/NUMA.

> >

> > The hang occurs when the number of tasks is not smaller than available cpus.
> > Can be a hint ?

> >

>>[..]

> >

> > [root@rhel51GA testpro]#./batech-test.sh

> > no hang.

> >

> > [root@rhel51GA testpro]#taskset Of ./batech-test.sh

> > no hang

> >

> > [root@rhel51GA testproj#taskset 03 ./batech-test.sh

> > hang.

>

> have you tried :

>

> [root@rhel51GA testpro]#taskset 01 ./batech-test.sh

>

> hang?

>

> just to be sure SMP does matter here (most likely yes, | guess).

>

NUMA? | am not able to reproduce it here locally on an x86 8 CPU box.

regards,
Dhaval

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: Re: Hang with fair cgroup scheduler (reproducer is attached.)
Posted by KAMEZAWA Hiroyuki on Fri, 14 Dec 2007 14:24:28 GMT

View Forum Message <> Reply to Message

Page 16 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=rview&th=4980&goto=25105#msg_25105
https://new-forum.openvz.org/index.php?t=post&reply_to=25105
https://new-forum.openvz.org/index.php?t=usrinfo&id=777
https://new-forum.openvz.org/index.php?t=rview&th=4980&goto=25108#msg_25108
https://new-forum.openvz.org/index.php?t=post&reply_to=25108
https://new-forum.openvz.org/index.php

>> just to be sure SMP does matter here (most likely yes, | guess).
>>
>

>NUMA? | am not able to reproduce it here locally on an x86 8 CPU box.
>

yes. | used NUMA. 2 Nodes/4CPU x 2

Hmm..

Thanks,
-Kame

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: Re: Hang with fair cgroup scheduler (reproducer is attached.)
Posted by Dhaval Giani on Fri, 14 Dec 2007 15:36:07 GMT

View Forum Message <> Reply to Message

On Fri, Dec 14, 2007 at 11:24:28PM +0900, kamezawa.hiroyu@jp.fujitsu.com wrote:
> >> just to be sure SMP does matter here (most likely yes, | guess).

> >>

> >

> >NUMA? | am not able to reproduce it here locally on an x86 8 CPU box.

> >

> yes. | used NUMA. 2 Nodes/4CPU x 2
>

OK, I got hold of an 1A64 box, non numa and have managed to reproduce
it.

> Hmm..
>

> Thanks,
> -Kame

regards,
Dhaval

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 17 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1528
https://new-forum.openvz.org/index.php?t=rview&th=4980&goto=25110#msg_25110
https://new-forum.openvz.org/index.php?t=post&reply_to=25110
https://new-forum.openvz.org/index.php

Subject: Re: Re: Hang with fair cgroup scheduler (reproducer is attached.)
Posted by Dhaval Giani on Fri, 14 Dec 2007 15:38:23 GMT

View Forum Message <> Reply to Message

On Fri, Dec 14, 2007 at 09:06:07PM +0530, Dhaval Giani wrote:

> On Fri, Dec 14, 2007 at 11:24:28PM +0900, kamezawa.hiroyu@jp.fujitsu.com wrote:
> > >> just to be sure SMP does matter here (most likely yes, | guess).

> > >>

>>>

> > >NUMA? | am not able to reproduce it here locally on an x86 8 CPU box.
>>>

> > yes. | used NUMA. 2 Nodes/4CPU x 2

> >

>

> OK, | got hold of an IA64 box, non numa and have managed to reproduce
> it.

>

Actually no, its another bug. Thanks for the program!

reg[3330]: NaT consumption 2216203124768 [1]

Modules linked in: ipv6 button binfmt_misc nls_iso8859 1 loop dm_mod tg3
ext3 jbd fan thermal processor sg mptspi mptscsih mptbase
scsi_transport_spi via82cxxx sd_mod scsi_mod ide_disk ide_core

Pid: 3330, CPU 3, comm: reg

psr: 00001210085a2010 ifs : 8000000000000308 ip : [<a0000001002e0481>]
Not tainted

ip is at rb_erase+0x301/0x7e0

unat: 0000000000000000 pfs : 0000000000000308 rsc : 0000000000000003
rnat: 0000000000000000 bsps: 0000000000000000 pr : a5565666a9556959
Idrs: 0000000000000000 ccv : 0000000000000000 fpsr: 0009804c0270033f
csd : 0000000000000000 ssd : 0000000000000000

b0 : a000000100076290 b6 : a000000100086b20 b7 : a000000100076360
f6 : 1003e0000000000000d34 f7 : 1003e000000000000000a

f8 : 1003e0000000000000000 f9 : 1003e0000000000000152

f10 : 1003e0000000000000004 f11 : Offf2fffffffffO000000

rl :a000000100c92030 r2 : e000000244bd0068 r3 : e000000245882000
r8 :e000000245882000 r9 : e000000241e6edal r10 : 0000000000000001
r1l : e0000002458f0070 r12 : e0000002458a7d80 r13 : e0000002458a0000
r14 : e000000244bd0060 r15 : e000000244bd0058 r16 : 0000000000000000
r17 : e000000245920d34 r18 : 0000000000000000 r19 : 0000000000000000
r20 : e000000245920c90 r21 : 0000000000000001 r22 : a000000100076360
r23 : a000000100a7f2f8 r24 : a000000100a7f2b0 r25 : e0000002458c0058
r26 : e000000004e05b10 r27 : 0000000000000001 r28 : 0000000000000000
r29 : a000000100a7f2e0 r30 : a000000100a7f2b0 r31 : e000000245920098

Call Trace:
[<a000000100014a80>] show_stack+0x40/0xa0

Page 18 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1528
https://new-forum.openvz.org/index.php?t=rview&th=4980&goto=25112#msg_25112
https://new-forum.openvz.org/index.php?t=post&reply_to=25112
https://new-forum.openvz.org/index.php

sp=e0000002458a77d0 bsp=e0000002458a1310
[<a000000100015380>] show_regs+0x840/0x880
sp=e0000002458a79a0 bsp=e0000002458a12b8
[<a0000001000384a0>] die+0x1a0/0x2a0
sp=e0000002458a79a0 bsp=e0000002458a1270
[<a0000001000385f0>] die_if kernel+0x50/0x80
sp=e0000002458a79a0 bsp=e0000002458a1240
[<a0000001005b1a80>] ia64_fault+0x1180/0x12a0
sp=e0000002458a79a0 bsp=e0000002458al11e0
[<a00000010000b2a0>] ia64 leave_kernel+0x0/0x270
sp=e0000002458a7bb0 bsp=e0000002458a11e0
[<a0000001002e0480>] rb_erase+0x300/0x7e0
sp=e0000002458a7d80 bsp=e0000002458a11a0
[<a000000100076290>] _ dequeue_entity+0x70/0xa0
sp=e0000002458a7d80 bsp=e0000002458a1170
[<a000000100076300>] set_next_entity+0x40/0xa0
sp=e0000002458a7d80 bsp=e0000002458a1148
[<a0000001000763a0>] set_curr_task_fair+0x40/0xa0
sp=e0000002458a7d80 bsp=e0000002458a1128
[<a000000100078d90>] sched_move_task+0x2d0/0x340
sp=e0000002458a7d80 bsp=e0000002458a10e8
[<a000000100078e20>] cpu_cgroup_attach+0x20/0x40
sp=e0000002458a7d90 bsp=e0000002458a10b0
[<a0000001000e9370>] attach_task+0x9b0/0OxacO
sp=e0000002458a7d90 bsp=e0000002458a1058
[<a0000001000ed4e0>] cgroup_common_file_write+0x340/0x520
sp=e0000002458a7dc0 bsp=e0000002458a1010
[<a0000001000eccd0>] cgroup_file_write+0xf0/0x300
sp=e0000002458a7dd0 bsp=e0000002458a0fc0
[<a00000010017bbd0>] vfs_write+0x1d0/0x320
sp=e0000002458a7e20 bsp=e0000002458a0f70
[<a00000010017c7f0>] sys_write+0x70/0xe0
sp=e0000002458a7e20 bsp=e0000002458a0ef8
[<a00000010000b100>] ia64 ret_from_syscall+0x0/0x20
sp=e0000002458a7e30 bsp=e0000002458a0ef8
[<a000000000010720>] __ kernel_syscall_via_ break+0x0/0x20
sp=e0000002458a8000 bsp=e0000002458a0ef8

regards,
Dhaval

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 19 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Subject: Re: Re: Hang with fair cgroup scheduler (reproducer is attached.)
Posted by Dmitry Adamushko on Fri, 14 Dec 2007 16:25:39 GMT

View Forum Message <> Reply to Message

On 14/12/2007, Dhaval Giani <dhaval@linux.vnet.ibom.com> > >
> Actually no, its another bug. Thanks for the program!
>

Humm... this crash is very likely to be caused by the same bug. It
just reveals itself in a different place, but effectivelly the pattern
looks similar. Anyway, the rb-tree gets corrupted... and for both
cases, at the very least the ‘current’ must be within the tree.

| think, if you repeat your test a number of times, you'll likely get
the very same crash as was reported by Kame.

ia64 does define _ ARCH_WANT_UNLOCKED_CTXSW (I checked against
2.6.23.1 that | have at hand)

x86 -- not (it's not reproducible there, right?)

so for ia64 task_running() makes use of 'p->oncpu’ to determine
whether a given task is currently running
(as opposed to 'rg->curr == p' otherwise)...

But at first glance, it looks like there shouldn't be situations
leading to some sort of de-synchronization in determining the real
‘current’.

Will look at it closer.

>
> -

> regards,
> Dhaval
>

Best regards,
Dmitry Adamushko

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: Re: Hang with fair cgroup scheduler (reproducer is attached.)
Posted by Dmitry Adamushko on Fri, 14 Dec 2007 19:51:28 GMT

Page 20 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1843
https://new-forum.openvz.org/index.php?t=rview&th=4980&goto=25115#msg_25115
https://new-forum.openvz.org/index.php?t=post&reply_to=25115
https://new-forum.openvz.org/index.php?t=usrinfo&id=1843
https://new-forum.openvz.org/index.php

View Forum Message <> Reply to Message

>[...]

>

> [<a0000001002e0480>] rb_erase+0x300/0x7e0

> [<a000000100076290>] _ dequeue_entity+0x70/0xa0

> [<a000000100076300>] set_next_entity+0x40/0xa0

> [<a0000001000763a0>] set_curr_task_fair+0x40/0xa0

> [<a000000100078d90>] sched_move_task+0x2d0/0x340

> [<a000000100078e20>] cpu_cgroup_attach+0x20/0x40
>

>[...]
argh... it's a consequence of the 'current is not kept within the tree" indeed.

When sched_move_task() is called for the 'current’ (running on another CPU),
we get the following:

running = task_running(rq, tsk);
on_rq = tsk->se.on_rq;

if (on_rq) {
dequeue_task(rq, tsk, 0);
if (unlikely(running))
tsk->sched_class->put_prev_task(rg, tsk);

}

[1] tsk->sched_class->put_prev_task() actually _inserts_ 'tsk' back
into the cfs_rq of its _old_ group :

set_task_cfs_rq(tsk, task cpu(tsk));

[2] now task.se->cfs_rq gets changed

if (on_rq) {
if (unlikely(running))
tsk->sched_class->set_curr_task(rg);

[3] and now, tsk->sched_class->set_curr_task(rg) _removes_ the
‘current’ from the tree... but this tree belongs to the _new_ group
(the task is still within the 'old_group->cfs_rg->rb_tree") ---> oops!

enqueue_task(rq, tsk, 0);

}

Anyway, | have to admit that this problem is a consequence of the
special-case treatment for the ‘current’ by
'‘dequeue/enqueue_task()'... it makes the interface less transparent

Page 21 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=rview&th=4980&goto=25124#msg_25124
https://new-forum.openvz.org/index.php?t=post&reply_to=25124
https://new-forum.openvz.org/index.php

indeed.

/me thinking on how to get it fixed (e.g. set_task_cfs_rq() might take
care of it) or just get this special-case issue removed (have to check
whether we lose anything in this case)... sigh.

Best regards,
Dmitry Adamushko

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: Re: Hang with fair cgroup scheduler (reproducer is attached.)
Posted by Steven Rostedt on Fri, 14 Dec 2007 21:33:04 GMT

View Forum Message <> Reply to Message

On Fri, 14 Dec 2007, Dmitry Adamushko wrote:

>

> argh... it's a consequence of the ‘current is not kept within the tree" indeed.
>

Thanks Dmitry for tracking this down. Although I'm still not convinced we
hit the same bug. But I'm going to go ahead and release 2.6.24-rc5-rtl
anyway. When you have a fix, please CC me and I'll add it to -rt2.

Note: I've added a bunch of logdev (see
http://rostedt.homelinux.com/logdev/README) and | kicked off the hackbench
again. I'll let it run overnight, and if it hits the bug, it will give me

a lot more output to let me know what actually happened.

Thanks,

-- Steve

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: Re: Hang with fair cgroup scheduler (reproducer is attached.)

Page 22 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=2184
https://new-forum.openvz.org/index.php?t=rview&th=4980&goto=25179#msg_25179
https://new-forum.openvz.org/index.php?t=post&reply_to=25179
https://new-forum.openvz.org/index.php

Posted by Dmitry Adamushko on Sat, 15 Dec 2007 10:22:08 GMT

View Forum Message <> Reply to Message

On 14/12/2007, Steven Rostedt <rostedt@goodmis.org> wrote:
>

> On Fri, 14 Dec 2007, Dmitry Adamushko wrote:

>

> >

> > argh... it's a consequence of the ‘current is not kept within the tree" indeed.
> >

>

> Thanks Dmitry for tracking this down.

My analysis was flawed (hmm... me was under control of Belgium beer :-)
The task in not on the runqueue (p->on_rg == 0) at the moment when
put_prev_task_fair() and set_curr_task fair() get its turn in
sched_move_task()... so dequeue/enqueue_entity() are not triggered,
that's good.

so back to the square #0.

> Thanks,
>
> -- Steve

Best regards,
Dmitry Adamushko

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: Re: Hang with fair cgroup scheduler (reproducer is attached.)
Posted by Dhaval Giani on Sat, 15 Dec 2007 10:50:36 GMT

View Forum Message <> Reply to Message

On Sat, Dec 15, 2007 at 11:22:08AM +0100, Dmitry Adamushko wrote:
> On 14/12/2007, Steven Rostedt <rostedt@goodmis.org> wrote:

> >

> > On Fri, 14 Dec 2007, Dmitry Adamushko wrote:

> >

>>>

> > > argh... it's a consequence of the 'current is not kept within the tree" indeed.
>>>

Page 23 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1843
https://new-forum.openvz.org/index.php?t=rview&th=4980&goto=25135#msg_25135
https://new-forum.openvz.org/index.php?t=post&reply_to=25135
https://new-forum.openvz.org/index.php?t=usrinfo&id=1528
https://new-forum.openvz.org/index.php?t=rview&th=4980&goto=25136#msg_25136
https://new-forum.openvz.org/index.php?t=post&reply_to=25136
https://new-forum.openvz.org/index.php

> >
> > Thanks Dmitry for tracking this down.

>

> My analysis was flawed (hmm... me was under control of Belgium beer :-)
>

> The task in not on the runqueue (p->on_rg == 0) at the moment when

> put_prev_task fair() and set_curr_task_fair() get its turn in

> sched_move_task()... so dequeue/enqueue_entity() are not triggered,

> that's good.

>

Again, | am probably missing something, but if on_rq == 0, then how is
set_curr_task_fair() getting called?

regards,
Dhaval

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: Re: Hang with fair cgroup scheduler (reproducer is attached.)
Posted by Dmitry Adamushko on Sat, 15 Dec 2007 11:15:16 GMT

View Forum Message <> Reply to Message

On 15/12/2007, Dhaval Giani <dhaval@linux.vnet.ibm.com> wrote:

> On Sat, Dec 15, 2007 at 11:22:08AM +0100, Dmitry Adamushko wrote:

> > 0On 14/12/2007, Steven Rostedt <rostedt@goodmis.org> wrote:

>>>

> > > On Fri, 14 Dec 2007, Dmitry Adamushko wrote:

>>>

>>>>

>> > > argh... it's a consequence of the 'current is not kept within the tree" indeed.
>>>>

>>>

> > > Thanks Dmitry for tracking this down.

> >

> > My analysis was flawed (hmm... me was under control of Belgium beer :-)
> >

> > The task in not on the runqueue (p->on_rq == 0) at the moment when

> > put_prev_task fair() and set_curr_task_fair() get its turn in

> > sched_move_task()... so dequeue/enqueue_entity() are not triggered,

> > that's good.

> >

>

> Again, | am probably missing something, but if on_rq == 0, then how is

Page 24 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1843
https://new-forum.openvz.org/index.php?t=rview&th=4980&goto=25137#msg_25137
https://new-forum.openvz.org/index.php?t=post&reply_to=25137
https://new-forum.openvz.org/index.php

> set_curr_task_fair() getting called?

>
running = task_running(rq, tsk);
on_rq = tsk->se.on_rq;
/l'let's say on_rq == 1, i.e. the task is on the runqueue

if (on_rq) {
dequeue_task(rq, tsk, 0);

/I now tsk->se.on_rg becomes 0

if (unlikely(running))
tsk->sched_class->put_prev_task(rg, tsk);

I/l put_prev_task() --> put_prev_entity() checks for 'tsk->se.on_rq' to
determine whether __enqueue_entity() must be done ---> and it's 0 in
our case.

[it can be non-zero for the following path : schedule() -->
put_prev_task(..., prev) when deactivate task(..., prev) was not
previously called in schedule(), i.e. 'prev' was preempted]

tsk->se.on_rq will become 1 only after enqueue_task(). As a result,
tsk->se.on_rq is still 0 when set_curr_task() is executed.

does it make sense now?

> -
> regards,

> Dhaval
>

Best regards,
Dmitry Adamushko

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: Re: Hang with fair cgroup scheduler (reproducer is attached.)

Page 25 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Posted by Dmitry Adamushko on Sat, 15 Dec 2007 23:44:55 GMT

View Forum Message <> Reply to Message

On 15/12/2007, Dmitry Adamushko <dmitry.adamushko@gmail.com> wrote:
>

> My analysis was flawed (hmm... me was under control of Belgium beer :-)
>

ok, I've got another one (just in case... well, this late hour to be
blamed now :-/)

according to Dhaval, we have a crash on ia64 (it's also the arch for
the original report) and it's not reproducible on an otherwise similar
(wrt. # of cpus) x86.

(1) The difference that comes first in mind is that ia64 makes use of
__ ARCH_WANT_UNLOCKED_CTXSW

dimm@earth:~/storage/kernel/linux-2.6$ grep -rn
__ARCH_WANT_UNLOCKED_CTXSW include/
include/linux/sched.h:947:#ifdef _ ARCH_WANT_UNLOCKED_CTXSW
include/asm-mips/system.h:216:#define __ ARCH_WANT_UNLOCKED_CTXSW
include/asm-ia64/system.h:259:#define _ ARCH_WANT_UNLOCKED_CTXSW
(2) now, in this case (and for SMP)

task_running() effectively becomes { return p->oncpu; }

(3) consider a case of the context switch between prev --> next on CPU #0

'next' has preempted 'preVv'

(4) context_swicth() :
next->oncpu becomes '1' as the result of:

[1] context_switch() --> prepare_task switch() --> prepare_lock_switch(next) -->
next->oncpu = 1

prev->oncpu becomes '0' as the result of:
[2] context_switch() --> finish_task_switch() -->

finish_lock _switch(prev) --> prev->oncpu = 0

[1] takes place at the very _beginning_ of context_switch() _and_ one

Page 26 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1843
https://new-forum.openvz.org/index.php?t=rview&th=4980&goto=25150#msg_25150
https://new-forum.openvz.org/index.php?t=post&reply_to=25150
https://new-forum.openvz.org/index.php

more thing is that rg->lock gets unlocked.

[2] takes place at the very _end_ of context_switch()

Now recall what's task_running() in our case (it's "return task->oncpu")
As a result, between [1] and [2] we have 2 tasks on a single CPU for
which task_running() will return '1" and their runqueue is _unlocked._.

(5) now consider sched_move_task() running on another CPU #1.

due to 'UNLOCKED_CTXSW!' it can successfully lock the rq of CPU #0

let's say it's called for 'prev' task (the one being scheduled out on
CPU #0 at this very moment)

as we remember, task_running() returns '1' for it (CPU #0 haven't
reached yet point [2] as described in (4) above)

'prev' is currently on the runqueue (prev->se.on_rq == 1) and within the tree.
what happens is as follows:

- dequeue_task() removes it from the tree ;
- put_prev_task() makes cfs_rg->curr = NULL ;

se == prev.se here... so e.g. __enqueue_entity() is not called for 'prev’
- set_curr_task() --> set_curr_task_fair()
and here things become interesting.

static void set_curr_task_fair(struct rg *rq)

{
struct sched_entity *se = &rg->curr->se;
for_each_sched_entity(se)
set_next_entity(cfs_rqg_of(se), se);
}

so 'se' actually belongs to the 'next' on CPU #0

next->on_rq == 1 (obviously, as dequeue_task() in sched_move_task()
was done for 'prev'!)

and now, set_next_entity() does __dequeue_entity() for 'next' which is
not within the tree !!!

Page 27 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

(it's the real 'current’ on CPU #0)
that's why the reported oops:

> [<a0000001002e0480>] rb_erase+0x300/0x7e0

> [<a000000100076290>] _ dequeue_entity+0x70/0xa0

> [<a000000100076300>] set_next_entity+0x40/0xa0

> [<a0000001000763a0>] set_curr_task_fair+0x40/0xa0

> [<a000000100078d90>] sched_move_task+0x2d0/0x340
> [<a000000100078e20>] cpu_cgroup_attach+0x20/0x40

or maybe there is also a possibility of the rb-tree being corrupted as
a result and having a crash somewhere later (the original report had
another backtrace)

hum... does this analysis make sense to somebody else now?

Best regards,
Dmitry Adamushko

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: Re: Hang with fair cgroup scheduler (reproducer is attached.)
Posted by Dmitry Adamushko on Sun, 16 Dec 2007 00:00:07 GMT

View Forum Message <> Reply to Message

Dhaval,

so following the analysis in the previous mail... here is a test
patch. Could you please give it a try?

TIA,

(enclosed non white-space broken version)

--- alkernel/sched.c
+++ b/kernel/sched.c
@@ -7360,7 +7360,7 @@ void sched_move_task(struct task_struct *tsk)

update_rqg_clock(rq);

running = task_running(rq, tsk);

Page 28 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1843
https://new-forum.openvz.org/index.php?t=rview&th=4980&goto=25151#msg_25151
https://new-forum.openvz.org/index.php?t=post&reply_to=25151
https://new-forum.openvz.org/index.php

+ running = (rg->curr == tsk);
on_rqg = tsk->se.on_rq;

if (on_rq) {

Best regards,
Dmitry Adamushko

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

File Attachnments

1) 01-set _task cfs_rqg. patch, downl oaded 299 tines

Subject: Re: Re: Hang with fair cgroup scheduler (reproducer is attached.)
Posted by Dhaval Giani on Sun, 16 Dec 2007 04:28:21 GMT

View Forum Message <> Reply to Message

On Sun, Dec 16, 2007 at 01:00:07AM +0100, Dmitry Adamushko wrote:
> Dhaval,
>

> so following the analysis in the previous mail... here is a test

> patch. Could you please give it a try?
>

Yep, it works!
Tested-by: Dhaval Giani <dhaval@linux.vnet.ibm.com>

thanks,

regards,
Dhaval

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: Re: Hang with fair cgroup scheduler (reproducer is attached.)
Posted by Ingo Molnar on Sun, 16 Dec 2007 08:55:59 GMT

View Forum Message <> Reply to Message

Page 29 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=getfile&id=470
https://new-forum.openvz.org/index.php?t=usrinfo&id=1528
https://new-forum.openvz.org/index.php?t=rview&th=4980&goto=25157#msg_25157
https://new-forum.openvz.org/index.php?t=post&reply_to=25157
https://new-forum.openvz.org/index.php?t=usrinfo&id=122
https://new-forum.openvz.org/index.php?t=rview&th=4980&goto=25158#msg_25158
https://new-forum.openvz.org/index.php?t=post&reply_to=25158
https://new-forum.openvz.org/index.php

* Dmitry Adamushko <dmitry.adamushko@gmail.com> wrote:

> --- a/kernel/sched.c

> +++ b/kernel/sched.c

> @@ -7360,7 +7360,7 @@ void sched_move_task(struct task _struct *tsk)
>

> update_rqg_clock(rq);

>
> - running = task_running(rq, tsk);
>+ running = (rg->curr == tsk);

> on_rq = tsk->se.on_rq;

thanks, i've queued this up (pending more testing).

Btw., you should be able to force the ia64 scheduling by adding this to
the very top of include/linux/sched.h:

#define __ ARCH_WANT_UNLOCKED_CTXSW
#define__ ARCH_WANT_INTERRUPTS_ON_CTXSW

Ingo

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: Re: Hang with fair cgroup scheduler (reproducer is attached.)
Posted by Dmitry Adamushko on Sun, 16 Dec 2007 10:06:22 GMT

View Forum Message <> Reply to Message

On 16/12/2007, Ingo Molnar <mingo@elte.hu> wrote:

>

> * Dmitry Adamushko <dmitry.adamushko@gmail.com> wrote:

>

> > --- a/kernel/sched.c

> > +++ b/kernel/sched.c

>> @@ -7360,7 +7360,7 @@ void sched_move_task(struct task_struct *tsk)
> >

> > update_rqg_clock(rq);

> >

>> - running = task_running(rq, tsk);
> >+ running = (rg->curr == tsk);

> > on_rqg = tsk->se.on_rq;

>

> thanks, i've queued this up (pending more testing).

btw., sched_setscheduler() and rt_mutex_setprio() are also affected

Page 30 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1843
https://new-forum.openvz.org/index.php?t=rview&th=4980&goto=25159#msg_25159
https://new-forum.openvz.org/index.php?t=post&reply_to=25159
https://new-forum.openvz.org/index.php

(in general, anything that may call put_prev_task/set_curr_task()
relying task_running()).

Will see, maybe we may come up with smth better than just replacing
task_running() with (rg->curr == tsk) there.

> Btw., you should be able to force the ia64 scheduling by adding this to
> the very top of include/linux/sched.h:
>

> #define __ ARCH_WANT_UNLOCKED_CTXSW
> #define __ ARCH_WANT_INTERRUPTS_ON_CTXSW

Yeah, with both we even get ARM behavior. Can be a good test indeed.

> Ingo

Best regards,
Dmitry Adamushko

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: Re: Hang with fair cgroup scheduler (reproducer is attached.)
Posted by Dmitry Adamushko on Sun, 16 Dec 2007 13:01:17 GMT

View Forum Message <> Reply to Message

Ingo,

what about the following patch instead?

maybe task_is_current() would be a better name though.

Steven,

| guess, there is some analogue of UNLOCKED_CTXSW on -rt

(to reduce contention for rg->lock).

So there can be a race schedule() vs. rt_mutex_setprio() or sched_setscheduler()

for some paths that might explain crashes you have been observing?

| haven't analyzed this case for -rt, so I'm just throwing in the idea in case it can be useful.

Page 31 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1843
https://new-forum.openvz.org/index.php?t=rview&th=4980&goto=25165#msg_25165
https://new-forum.openvz.org/index.php?t=post&reply_to=25165
https://new-forum.openvz.org/index.php

From: Dmitry Adamushko <dmitry.adamushko@gmail.com>
sched: introduce task_current()

Some services (e.g. sched_setscheduler(), rt_mutex_setprio() and sched_move_task())
must handle a given task differently in case it's the 'rg->curr’ task on its run-queue.

The task_running() interface is not suitable for determining such tasks

for platforms with one of the following options:

#define _ ARCH_WANT_UNLOCKED CTXSW
#define _ ARCH_WANT_INTERRUPTS_ON_CTXSW

Due to the fact that it makes use of 'p->oncpu == 1' as a criterion but
such a task is not necessarily 'rg->curr'.

The detailed explanation is available here:
https://lists.linux-foundation.org/pipermail/containers/2007-December/009262.html

Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com>

diff --git a/kernel/sched.c b/kernel/sched.c

index dc6fb24..15d088b 100644

--- a/lkernel/sched.c

+++ b/kernel/sched.c

@@ -619,10 +619,15 @@ EXPORT_SYMBOL_GPL(cpu_clock);
define finish_arch_switch(prev) do { } while (0)

#endif

+static inline int task_current(struct rq *rq, struct task_struct *p)
gl

+ return rg->curr == p;

+}

+

#ifndef _ ARCH_WANT_UNLOCKED_CTXSW

static inline int task_running(struct rq *rq, struct task_struct *p)

{
- return rg->curr == p;
+ return task_current(rq, p);

}

static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
@@ -651,7 +656,7 @@ static inline int task_running(struct rq *rq, struct task_struct *p)

Page 32 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

#ifdef CONFIG_SMP
return p->oncpu;

#else

- return rg->curr == p;

+ return task_current(rq, p);
#endif

}

@@ -3340,7 +3345,7 @@ unsigned long long task_sched_runtime(struct task_struct *p)

rq = task_rq_lock(p, &flags);
ns = p->se.sum_exec_runtime;
- if (rg->curr == p) {
+ if (task_current(rq, p)) {
update_rg_clock(rq);
delta_exec = rg->clock - p->se.exec_start;
if ((s64)delta_exec > 0)
@@ -4033,7 +4038,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio)

oldprio = p->prio;
on_rq = p->se.on_rq;
- running = task_running(rq, p);
+ running = task_current(rq, p);
if (on_rq) {
dequeue_task(rq, p, 0);
if (running)
@@ -4334,7 +4339,7 @@ recheck:
}
update_rg_clock(rq);
on_rg = p->se.on_rq;
- running = task_running(rq, p);
+ running = task_current(rq, p);
if (on_rq) {
deactivate_task(rq, p, 0);
if (running)
@@ -7360,7 +7365,7 @@ void sched_move_task(struct task_struct *tsk)

update_rqg_clock(rq);
- running = task_running(rq, tsk);
+ running = task_current(rq, tsk);

on_rq = tsk->se.on_rq;

if (on_rq) {

Page 33 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: Re: Hang with fair cgroup scheduler (reproducer is attached.)
Posted by Steven Rostedt on Sun, 16 Dec 2007 15:32:54 GMT

View Forum Message <> Reply to Message

On Sun, 16 Dec 2007, Dmitry Adamushko wrote:

> Steven,

>

> | guess, there is some analogue of UNLOCKED_CTXSW on -rt

> (to reduce contention for rg->lock).

> So there can be a race schedule() vs. rt_mutex_setprio() or sched_setscheduler()
> for some paths that might explain crashes you have been observing?

>

> | haven't analyzed this case for -rt, so I'm just throwing in the idea in case it can be useful.
Dmitry,

Thanks! I've been watching this thread on the sidelines with keen

interest. | ran hackbench with my logging over the weekend, and after some
30 hours of running, it finally crashed and gave me a dump of a lot of
interactions in the put_prev_enitity and pick_next_task. I'll analyze this
more on Monday.

-- Steve

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: Re: Hang with fair cgroup scheduler (reproducer is attached.)
Posted by Steven Rostedt on Sun, 16 Dec 2007 23:17:04 GMT

View Forum Message <> Reply to Message

On Sun, 16 Dec 2007, Dmitry Adamushko wrote:

> Steven,

>

> | guess, there is some analogue of UNLOCKED_CTXSW on -rt

> (to reduce contention for rg->lock).

> So there can be a race schedule() vs. rt_mutex_setprio() or sched_setscheduler()
> for some paths that might explain crashes you have been observing?

Page 34 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=2184
https://new-forum.openvz.org/index.php?t=rview&th=4980&goto=25180#msg_25180
https://new-forum.openvz.org/index.php?t=post&reply_to=25180
https://new-forum.openvz.org/index.php?t=usrinfo&id=2184
https://new-forum.openvz.org/index.php?t=rview&th=4980&goto=25182#msg_25182
https://new-forum.openvz.org/index.php?t=post&reply_to=25182
https://new-forum.openvz.org/index.php

>
> | haven't analyzed this case for -rt, so I'm just throwing in the idea in case it can be useful.

| haven't fully analyzed this either, but will look much deeper tomorrow.
| wanted to show you this first just to see if you can easily spot what
went wrong.

| used my logdev logging device
http://rostedt.nomelinux.com/logdev

The patch that | used to add the logging is here:
http://rostedt.hnomelinux.com/rt-bug/debug-logdev.patch

To understand this. Ifcnprint(...) is just like printk, but it will print
output the following format:

[<timestamp>] cpu:<cpu#> (<current-comm>:<current-pid>) <function>:<line#> <printk-fmt>
The tags of Imark() is just

[<timestamp>] cpu:<cpu#> (<current-comm>:<current-pid>) <function>:<line#>

On context switches, we get

>>>> |IN LOGDEV SWITCH <<<< cpu: <cpu#>
CPU=<cpu#> [<timestamp>] <prev>:<prev-pid>(<prios>:<task-state>) -->>
<next>:<next-pid>(<prios>)

The full dmesg with logdump and error backtrace is here:
http://rostedt.hnomelinux.com/rt-bug/rt-bug.log

Here's a little snippet of where things went wrong.

[94359.652019] cpu:3 (hackbench:1658) pick _next_task fair:1036 nr_running=1
[94359.652020] cpu:3 (hackbench:1658) pick next_entity:625 se=ffff810009020800
[94359.652021] cpu:0 (hackbench:1473) put_prev_entity:631

[94359.652022] cpu:3 (hackbench:1658) pick next_entity:625 se=ffff81003906b5a8
[94359.652022] cpu:2 (softirg-timer/2:32) put_prev_task rt:283

[94359.652023] cpu:0 (hackbench:1473) put_prev_entity:631

>>>> IN LOGDEV SWITCH <<<< cpu:3

CPU=3 [94359.652023] hackbench:1658(120:120:120:D) -->> hackbench:1586(120:120:120)
>>>> IN LOGDEV SWITCH <<<< cpu:2

CPU=2 [94359.652024] softirg-timer/2:32(49:115:49:D) -->> softirg-rcu/2:39(49:115:49)
>>>> |IN LOGDEV SWITCH <<<< cpu:0

CPU=0 [94359.652025] hackbench:1473(120:120:120:R) -->> hackbench:1591(49:120:120)
[94359.652029] cpu:3 (hackbench:1586) put_prev_entity:631

[94359.652030] cpu:2 (softirg-rcu/2:39) move_tasks:2472

Page 35 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

[94359.652030] cpu:3 (hackbench:1586) put_prev_entity:631

[94359.652032] cpu:3 (hackbench:1586) pick next_task fair:1036 nr_running=1
[94359.652033] cpu:3 (hackbench:1586) pick next_entity:625 se=ffff810009020800
[94359.652034] cpu:3 (hackbench:1586) pick next_entity:625 se=ffff810014c7abl18
[94359.652034] cpu:2 (softirg-rcu/2:39) put_prev_task rt:283

>>>> IN LOGDEV SWITCH <<<< cpu:3

CPU=3 [94359.652035] hackbench:1586(120:120:120:T) -->> hackbench:1623(120:120:120)
[94359.652036] cpu:2 (softirg-rcu/2:39) pick_next_task_fair:1036 nr_running=1
[94359.652038] cpu:2 (softirg-rcu/2:39) pick_next_entity:625 se=0000000000000000

| see that softirg-rcu on cpu 2 started doing a move_tasks, when it got to
the state where nr_running returned 1 and the se from pick_next_entity was
NULL.

This was the run on 2.6.24-rc5-rt1.

I'll look deeper into this on Monday, but if something jumps out at you,
please let me know.

Thanks,

-- Steve

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: Hang with fair cgroup scheduler (reproducer is attached.)
Posted by KAMEZAWA Hiroyuki on Mon, 17 Dec 2007 01:12:45 GMT

View Forum Message <> Reply to Message

On Sun, 16 Dec 2007 09:58:21 +0530
Dhaval Giani <dhaval@linux.vnet.ibm.com> wrote:

> On Sun, Dec 16, 2007 at 01:00:07AM +0100, Dmitry Adamushko wrote:
> > Dhaval,

> >

> > s0 following the analysis in the previous mail... here is a test

> > patch. Could you please give it a try?

> >

>

> Yep, it works!

>

> Tested-by: Dhaval Giani <dhaval@Iinux.vnet.ibm.com>
>

Page 36 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=777
https://new-forum.openvz.org/index.php?t=rview&th=4980&goto=25183#msg_25183
https://new-forum.openvz.org/index.php?t=post&reply_to=25183
https://new-forum.openvz.org/index.php

Works for me, too !

Thanks,
-Kame

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: Re: Hang with fair cgroup scheduler (reproducer is attached.)
Posted by Dmitry Adamushko on Mon, 17 Dec 2007 10:23:08 GMT

View Forum Message <> Reply to Message

On 17/12/2007, Steven Rostedt <rostedt@goodmis.org> wrote:

>

> Here's a little snippet of where things went wrong.

>

> [94359.652019] cpu:3 (hackbench:1658) pick_next_task_fair:1036 nr_running=1

> [94359.652020] cpu:3 (hackbench:1658) pick_next_entity:625 se=ffff810009020800
>[94359.652021] cpu:0 (hackbench:1473) put_prev_entity:631

> [94359.652022] cpu:3 (hackbench:1658) pick_next_entity:625 se=ffff81003906b5a8

> [94359.652022] cpu:2 (softirg-timer/2:32) put_prev_task_rt:283

> [94359.652023] cpu:0 (hackbench:1473) put_prev_entity:631

>>>>> [N LOGDEV SWITCH <<<< cpu:3

> CPU=3 [94359.652023] hackbench:1658(120:120:120:D) -->> hackbench:1586(120:120:120)
> >>>> I[N LOGDEV SWITCH <<<< cpu:2

> CPU=2 [94359.652024] softirg-timer/2:32(49:115:49:D) -->> softirg-rcu/2:39(49:115:49)
> >>>> I[N LOGDEV SWITCH <<<< cpu:0

> CPU=0 [94359.652025] hackbench:1473(120:120:120:R) -->> hackbench:1591(49:120:120)
> [94359.652029] cpu:3 (hackbench:1586) put_prev_entity:631

> [94359.652030] cpu:2 (softirg-rcu/2:39) move_tasks:2472

> [94359.652030] cpu:3 (hackbench:1586) put_prev_entity:631

> [94359.652032] cpu:3 (hackbench:1586) pick_next_task_fair:1036 nr_running=1

> [94359.652033] cpu:3 (hackbench:1586) pick _next_entity:625 se=ffff810009020800

> [94359.652034] cpu:3 (hackbench:1586) pick_next_entity:625 se=ffff810014c7ab18

> [94359.652034] cpu:2 (softirg-rcu/2:39) put_prev_task_rt:283

> >>>> I[N LOGDEV SWITCH <<<< cpu:3

> CPU=3 [94359.652035] hackbench:1586(120:120:120:T) -->> hackbench:1623(120:120:120)
> [94359.652036] cpu:2 (softirg-rcu/2:39) pick_next_task fair:1036 nr_running=1

> [94359.652038] cpu:2 (softirg-rcu/2:39) pick_next_entity:625 se=0000000000000000

>

> | see that softirg-rcu on cpu 2 started doing a move_tasks, when it got to

> the state where nr_running returned 1 and the se from pick_next_entity was

> NULL.

move_task() is likely to be run from schedule() --> idle_balance() ,

Page 37 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1843
https://new-forum.openvz.org/index.php?t=rview&th=4980&goto=25188#msg_25188
https://new-forum.openvz.org/index.php?t=post&reply_to=25188
https://new-forum.openvz.org/index.php

for our case it means that 'softirg-rcu’ (which is a RT task) went to
sleep and it was the last task on this CPU (rg->nr_running == 0 -->
idle_balance() was triggered).

It may be related, maybe not. One 'abnormal’ thing (at least, it
occurs only once in this log. Should be checked wheather it happens
when the system works fine) is that a few iterations before the oops
happens we observe the following pattern:

CPU=2 [94359.651930] hackbench:1932(120:120:120:T) -->>
hackbench:1591(120:120:120)

CPU=2 [94359.651980] hackbench:1591(49:120:120:T) -->> swapper:0(140:120:140)

swapper (idle) --> softirg-timer (RT)

softirg-timer (RT) --> softirg-rcu (RT)

softirg-rcu(RT) --> picks up se == 0 for SCHED_NORMAL upon scheduling
out ---> OOPS

‘hackbench' was of SCHED _NORMAL upon scheduling _in_, and it's of RT
type (prio: 49 and schedule() --> put_prev_task_rt()) upon scheduling
out.

Unless you run some modified version of 'hackbench’, it doesn't chenge
scheduling classes... so maybe a lifted prio is a consequence of the
resource contention with some RT task ?

This 'hackbench’ was the last SCHED NORMAL task to run on this CPU...
so however this NORMAL -> RT transition happened, it might leave a
sched_fair's runqueue corrupted...

(Will try to look more when time allows).

>
> Thanks,
>
> -- Steve

Best regards,
Dmitry Adamushko

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 38 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Subject: Re: Hang with fair cgroup scheduler (reproducer is attached.)
Posted by Ingo Molnar on Mon, 17 Dec 2007 14:45:09 GMT

View Forum Message <> Reply to Message

* KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> wrote:

> > > so following the analysis in the previous mail... here is a test
> > > patch. Could you please give it a try?

>>>

> >

> > Yep, it works!

> >

> > Tested-by: Dhaval Giani <dhaval@linux.vnet.ibm.com>

> >

> Works for me, too !!

thanks guys, I'll push Dmitry's fix out with the next scheduler git
push.

Ingo

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: Re: Hang with fair cgroup scheduler (reproducer is attached.)
Posted by Steven Rostedt on Mon, 17 Dec 2007 17:58:21 GMT

View Forum Message <> Reply to Message

On Mon, 17 Dec 2007, Dmitry Adamushko wrote:

>

> |t may be related, maybe not. One 'abnormal’ thing (at least, it

> occurs only once in this log. Should be checked wheather it happens

> when the system works fine) is that a few iterations before the oops

> happens we observe the following pattern:

>

> CPU=2 [94359.651930] hackbench:1932(120:120:120:T) -->>

> hackbench:1591(120:120:120)

>

> CPU=2 [94359.651980] hackbench:1591(49:120:120:T) -->> swapper:0(140:120:140)

Note: the 'T' should be a 'D' because my logdev didn't add the change that
-rt does (adding a 'M' state).

Thanks for noticing. The -rt patch has more priority inheritance
situations than vanilla kernel (sleeping spinlocks or semaphors, and even

Page 39 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=122
https://new-forum.openvz.org/index.php?t=rview&th=4980&goto=25202#msg_25202
https://new-forum.openvz.org/index.php?t=post&reply_to=25202
https://new-forum.openvz.org/index.php?t=usrinfo&id=2184
https://new-forum.openvz.org/index.php?t=rview&th=4980&goto=25207#msg_25207
https://new-forum.openvz.org/index.php?t=post&reply_to=25207
https://new-forum.openvz.org/index.php

the Preempt RCU Boost logic).

>

> swapper (idle) --> softirg-timer (RT)

> softirg-timer (RT) --> softirg-rcu (RT)

> softirg-rcu(RT) --> picks up se == 0 for SCHED_NORMAL upon scheduling
> out ---> OOPS

>

> 'hackbench' was of SCHED _NORMAL upon scheduling _in_, and it's of RT
> type (prio: 49 and schedule() --> put_prev_task_rt()) upon scheduling

> _out_.

>

> Unless you run some modified version of ‘hackbench’, it doesn't chenge

> scheduling classes... so maybe a lifted prio is a consequence of the

> resource contention with some RT task ?

Yes. Which means it could be an spinlock, mutex, semaphore or RCU read
lock. But since it is in the TASK_UNINTERRUPTIBLE state, I'm willing to
bet this is a mutex (or converted spinlock).

>
> This ‘hackbench' was the last SCHED NORMAL task to run on this CPU...
> so however this NORMAL -> RT transition happened, it might leave a

> sched_fair's runqueue corrupted...

Could very well have. The Pl uses task_setprio (aka. rt_mutex_setprio) to
raise the priority. I'll start looking there.

>
> (Will try to look more when time allows).

Thanks, I'll probably spend the rest of the day on this.

-- Steve

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: Re: Hang with fair cgroup scheduler (reproducer is attached.)
Posted by Dmitry Adamushko on Mon, 17 Dec 2007 22:52:37 GMT

View Forum Message <> Reply to Message

[trimmed the cc' list]

On 17/12/2007, Steven Rostedt <rostedt@goodmis.org> wrote:

Page 40 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1843
https://new-forum.openvz.org/index.php?t=rview&th=4980&goto=25211#msg_25211
https://new-forum.openvz.org/index.php?t=post&reply_to=25211
https://new-forum.openvz.org/index.php

>
> On Mon, 17 Dec 2007, Dmitry Adamushko wrote:

>

> >

> > |t may be related, maybe not. One 'abnormal’ thing (at least, it

> > occurs only once in this log. Should be checked wheather it happens

> > when the system works fine) is that a few iterations before the oops

> > happens we observe the following pattern:

> >

> > CPU=2 [94359.651930] hackbench:1932(120:120:120:T) -->>

> > hackbench:1591(120:120:120)

> >

> > CPU=2 [94359.651980] hackbench:1591(49:120:120:T) -->> swapper:0(140:120:140)
>

> Thanks for noticing. The -rt patch has more priority inheritance

> sijtuations than vanilla kernel (sleeping spinlocks or semaphors, and even

> the Preempt RCU Boost logic).

One more thing is that we don't actually see a point where that
‘hackbench' gets its priority lifted.

It was scheduled in as a NORMAL task and scheduled out as a RT one.
i.e. the task got its prio elevated while it was running... a
contention with the task on another CPU?

anyway, i.e. this task must have 'p->se.on_rq == 1' and I'd expect to
see "switched_to_rt" message somewhere in between... hmm?
(check_class_changed() shoud have been called in task_setprio()).

btw., we do see one 'switched_from_rt --> switched_to_fair' case for
another 'hackbench’' on CPU #0... according to traces, this one might
get a prio lifted while sleeping (it got scheduled in as a RT task).

>

> -- Steve
>

Best regards,
Dmitry Adamushko

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 41 of 41 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

