
Subject: [PATCH][XFRM] Fix potential race vs xfrm_state(only)_find and
xfrm_hash_resize.
Posted by Pavel Emelianov on Thu, 13 Dec 2007 10:56:14 GMT
View Forum Message <> Reply to Message

The _find calls calculate the hash value using the
xfrm_state_hmask, without the xfrm_state_lock. But the
value of this mask can change in the _resize call under
the state_lock, so we risk to fail in finding the desired
entry in hash.

I think, that the hash value is better to calculate
under the state lock.

Signed-off-by: Pavel Emelyanov <xemul@openvz.org>

diff --git a/net/xfrm/xfrm_state.c b/net/xfrm/xfrm_state.c
index 1af522b..1face71 100644
--- a/net/xfrm/xfrm_state.c
+++ b/net/xfrm/xfrm_state.c
@@ -759,7 +759,7 @@ xfrm_state_find(xfrm_address_t *daddr, xfrm_address_t *saddr,
 		struct xfrm_policy *pol, int *err,
 		unsigned short family)
 {
-	unsigned int h = xfrm_dst_hash(daddr, saddr, tmpl->reqid, family);
+	unsigned int h;
 	struct hlist_node *entry;
 	struct xfrm_state *x, *x0;
 	int acquire_in_progress = 0;
@@ -767,6 +767,7 @@ xfrm_state_find(xfrm_address_t *daddr, xfrm_address_t *saddr,
 	struct xfrm_state *best = NULL;

 	spin_lock_bh(&xfrm_state_lock);
+	h = xfrm_dst_hash(daddr, saddr, tmpl->reqid, family);
 	hlist_for_each_entry(x, entry, xfrm_state_bydst+h, bydst) {
 		if (x->props.family == family &&
 		 x->props.reqid == tmpl->reqid &&
@@ -868,11 +869,12 @@ struct xfrm_state *
 xfrm_stateonly_find(xfrm_address_t *daddr, xfrm_address_t *saddr,
 		 unsigned short family, u8 mode, u8 proto, u32 reqid)
 {
-	unsigned int h = xfrm_dst_hash(daddr, saddr, reqid, family);
+	unsigned int h;
 	struct xfrm_state *rx = NULL, *x = NULL;
 	struct hlist_node *entry;

Page 1 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=725
https://new-forum.openvz.org/index.php?t=rview&th=4972&goto=25029#msg_25029
https://new-forum.openvz.org/index.php?t=post&reply_to=25029
https://new-forum.openvz.org/index.php

 	spin_lock(&xfrm_state_lock);
+	h = xfrm_dst_hash(daddr, saddr, reqid, family);
 	hlist_for_each_entry(x, entry, xfrm_state_bydst+h, bydst) {
 		if (x->props.family == family &&
 		 x->props.reqid == reqid &&

Subject: Re: [PATCH][XFRM] Fix potential race vs xfrm_state(only)_find and
xfrm_hash_resize.
Posted by davem on Fri, 14 Dec 2007 19:39:51 GMT
View Forum Message <> Reply to Message

From: Pavel Emelyanov <xemul@openvz.org>
Date: Thu, 13 Dec 2007 13:56:14 +0300

> The _find calls calculate the hash value using the
> xfrm_state_hmask, without the xfrm_state_lock. But the
> value of this mask can change in the _resize call under
> the state_lock, so we risk to fail in finding the desired
> entry in hash.
>
> I think, that the hash value is better to calculate
> under the state lock.
>
> Signed-off-by: Pavel Emelyanov <xemul@openvz.org>

Thanks for the bug fix.

I know why I coded it this way, I wanted to give GCC more
room to schedule the loads away from the uses in the hash
calculation.

Once you cram it after the spin lock acquire, it can't load unrelated
values earlier to soften the load/use cost on cache misses.

Of course it's invalid because the hash mask can change as you
noticed.

I wish there was a way to conditionally clobber memory, then we could
tell GCC exactly what memory objects are protected by the lock and
thus help in situations like this so much.

Page 2 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=259
https://new-forum.openvz.org/index.php?t=rview&th=4972&goto=25122#msg_25122
https://new-forum.openvz.org/index.php?t=post&reply_to=25122
https://new-forum.openvz.org/index.php

