
Subject: [PATCH 1/4] proc: fix NULL ->i_fop oops
Posted by Alexey Dobriyan on Fri, 16 Nov 2007 15:06:51 GMT
View Forum Message <> Reply to Message

proc_kill_inodes() can clear ->i_fop in the middle of vfs_readdir resulting in
NULL dereference during "file->f_op->readdir(file, buf, filler)".

The solution is to remove proc_kill_inodes() completely:
a) we don't have tricky modules implementing their tricky readdir hooks which
 could keeping this revoke from hell.
b) In a situation when module is gone but PDE still alive, standard readdir
 will return only "." and "..", because pde->next was cleared by
 remove_proc_entry().
c) the race proc_kill_inode() destined to prevent is not completely fixed, just
 race window made smaller, because vfs_readdir() is run without sb_lock held and
 without file_list_lock held. Effectively, ->i_fop is cleared at random moment,
 which can't fix properly anything.

BUG: unable to handle kernel NULL pointer dereference at virtual address 00000018
printing eip: c1061205 *pdpt = 0000000005b22001 *pde = 0000000000000000
Oops: 0000 [#1] PREEMPT SMP
Modules linked in: foo af_packet ipv6 cpufreq_ondemand loop serio_raw sr_mod k8temp cdrom
hwmon amd_rng
Pid: 2033, comm: find Not tainted (2.6.24-rc1-b1d08ac064268d0ae2281e98bf5e82627e0f0c56
#2)
EIP: 0060:[<c1061205>] EFLAGS: 00010246 CPU: 0
EIP is at vfs_readdir+0x47/0x74
EAX: c6b6a780 EBX: 00000000 ECX: c1061040 EDX: c5decf94
ESI: c6b6a780 EDI: fffffffe EBP: c9797c54 ESP: c5decf78
 DS: 007b ES: 007b FS: 00d8 GS: 0033 SS: 0068
Process find (pid: 2033, ti=c5dec000 task=c64bba90 task.ti=c5dec000)
Stack: c5decf94 c1061040 fffffff7 0805ffbc 00000000 c6b6a780 c1061295 0805ffbc
 00000000 00000400 00000000 00000004 0805ffbc 4588eff4 c5dec000 c10026ba
 00000004 0805ffbc 00000400 0805ffbc 4588eff4 bfdc6c70 000000dc 0000007b
Call Trace:
 [<c1061040>] filldir64+0x0/0xc5
 [<c1061295>] sys_getdents64+0x63/0xa5
 [<c10026ba>] sysenter_past_esp+0x5f/0x85
 =======================
Code: 49 83 78 18 00 74 43 8d 6b 74 bf fe ff ff ff 89 e8 e8 b8 c0 12 00 f6 83 2c 01 00 00 10 75 22
8b 5e 10 8b 4c 24 04 89 f0 8b 14 24 <ff> 53 18 f6 46 1a 04 89 c7 75 0b 8b 56 0c 8b 46 08 e8 c8
66 00
EIP: [<c1061205>] vfs_readdir+0x47/0x74 SS:ESP 0068:c5decf78

Signed-off-by: Alexey Dobriyan <adobriyan@sw.ru>

 fs/proc/generic.c | 37 -------------------------------------

Page 1 of 8 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=683
https://new-forum.openvz.org/index.php?t=rview&th=4604&goto=23429#msg_23429
https://new-forum.openvz.org/index.php?t=post&reply_to=23429
https://new-forum.openvz.org/index.php

 fs/proc/internal.h | 2 --
 fs/proc/root.c | 2 +-
 3 files changed, 1 insertion(+), 40 deletions(-)

--- a/fs/proc/generic.c
+++ b/fs/proc/generic.c
@@ -544,41 +544,6 @@ static int proc_register(struct proc_dir_entry * dir, struct proc_dir_entry *
dp
 	return 0;
 }

-/*
- * Kill an inode that got unregistered..
- */
-static void proc_kill_inodes(struct proc_dir_entry *de)
-{
-	struct list_head *p;
-	struct super_block *sb;
-
-	/*
-	 * Actually it's a partial revoke().
-	 */
-	spin_lock(&sb_lock);
-	list_for_each_entry(sb, &proc_fs_type.fs_supers, s_instances) {
-		file_list_lock();
-		list_for_each(p, &sb->s_files) {
-			struct file *filp = list_entry(p, struct file,
-							f_u.fu_list);
-			struct dentry *dentry = filp->f_path.dentry;
-			struct inode *inode;
-			const struct file_operations *fops;
-
-			if (dentry->d_op != &proc_dentry_operations)
-				continue;
-			inode = dentry->d_inode;
-			if (PDE(inode) != de)
-				continue;
-			fops = filp->f_op;
-			filp->f_op = NULL;
-			fops_put(fops);
-		}
-		file_list_unlock();
-	}
-	spin_unlock(&sb_lock);
-}
-
 static struct proc_dir_entry *proc_create(struct proc_dir_entry **parent,
 					 const char *name,

Page 2 of 8 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 					 mode_t mode,
@@ -753,8 +718,6 @@ void remove_proc_entry(const char *name, struct proc_dir_entry *parent)
 continue_removing:
 		if (S_ISDIR(de->mode))
 			parent->nlink--;
-		if (!S_ISREG(de->mode))
-			proc_kill_inodes(de);
 		de->nlink = 0;
 		WARN_ON(de->subdir);
 		if (!atomic_read(&de->count))
--- a/fs/proc/internal.h
+++ b/fs/proc/internal.h
@@ -78,5 +78,3 @@ static inline int proc_fd(struct inode *inode)
 {
 	return PROC_I(inode)->fd;
 }
-
-extern struct file_system_type proc_fs_type;
--- a/fs/proc/root.c
+++ b/fs/proc/root.c
@@ -98,7 +98,7 @@ static void proc_kill_sb(struct super_block *sb)
 	put_pid_ns(ns);
 }

-struct file_system_type proc_fs_type = {
+static struct file_system_type proc_fs_type = {
 	.name		= "proc",
 	.get_sb		= proc_get_sb,
 	.kill_sb	= proc_kill_sb,

Subject: Re: [PATCH 1/4] proc: fix NULL ->i_fop oops
Posted by Christoph Hellwig on Mon, 19 Nov 2007 12:51:39 GMT
View Forum Message <> Reply to Message

On Fri, Nov 16, 2007 at 06:06:51PM +0300, Alexey Dobriyan wrote:
> proc_kill_inodes() can clear ->i_fop in the middle of vfs_readdir resulting in
> NULL dereference during "file->f_op->readdir(file, buf, filler)".
>
> The solution is to remove proc_kill_inodes() completely:
> a) we don't have tricky modules implementing their tricky readdir hooks which
> could keeping this revoke from hell.
> b) In a situation when module is gone but PDE still alive, standard readdir
> will return only "." and "..", because pde->next was cleared by
> remove_proc_entry().
> c) the race proc_kill_inode() destined to prevent is not completely fixed, just
> race window made smaller, because vfs_readdir() is run without sb_lock held and
> without file_list_lock held. Effectively, ->i_fop is cleared at random moment,

Page 3 of 8 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=355
https://new-forum.openvz.org/index.php?t=rview&th=4604&goto=23515#msg_23515
https://new-forum.openvz.org/index.php?t=post&reply_to=23515
https://new-forum.openvz.org/index.php

> which can't fix properly anything.

Nice, getting rid of this is a very good step formwards. Unfortunately
we have another copy of this junk in
security/selinux/selinuxfs.c:sel_remove_entries() which would need the
same treatment.

Subject: Re: [PATCH 1/4] proc: fix NULL ->i_fop oops
Posted by Stephen Smalley on Tue, 20 Nov 2007 15:05:05 GMT
View Forum Message <> Reply to Message

On Mon, 2007-11-19 at 12:51 +0000, Christoph Hellwig wrote:
> On Fri, Nov 16, 2007 at 06:06:51PM +0300, Alexey Dobriyan wrote:
> > proc_kill_inodes() can clear ->i_fop in the middle of vfs_readdir resulting in
> > NULL dereference during "file->f_op->readdir(file, buf, filler)".
> >
> > The solution is to remove proc_kill_inodes() completely:
> > a) we don't have tricky modules implementing their tricky readdir hooks which
> > could keeping this revoke from hell.
> > b) In a situation when module is gone but PDE still alive, standard readdir
> > will return only "." and "..", because pde->next was cleared by
> > remove_proc_entry().
> > c) the race proc_kill_inode() destined to prevent is not completely fixed, just
> > race window made smaller, because vfs_readdir() is run without sb_lock held and
> > without file_list_lock held. Effectively, ->i_fop is cleared at random moment,
> > which can't fix properly anything.
>
> Nice, getting rid of this is a very good step formwards. Unfortunately
> we have another copy of this junk in
> security/selinux/selinuxfs.c:sel_remove_entries() which would need the
> same treatment.

Can't just be dropped completely for selinux - we need a way to drop
obsolete entries from the prior policy when we load a new policy.

Is the only real problem here the clearing of f_op? If so, we can
likely remove that from sel_remove_entries() without harm, and fix the
checks for it to use something more reliable.

--
Stephen Smalley
National Security Agency

Subject: Re: [PATCH 1/4] proc: fix NULL ->i_fop oops
Posted by Christoph Hellwig on Tue, 20 Nov 2007 15:17:31 GMT

Page 4 of 8 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=2110
https://new-forum.openvz.org/index.php?t=rview&th=4604&goto=23879#msg_23879
https://new-forum.openvz.org/index.php?t=post&reply_to=23879
https://new-forum.openvz.org/index.php?t=usrinfo&id=355
https://new-forum.openvz.org/index.php

View Forum Message <> Reply to Message

On Tue, Nov 20, 2007 at 10:05:05AM -0500, Stephen Smalley wrote:
> > Nice, getting rid of this is a very good step formwards. Unfortunately
> > we have another copy of this junk in
> > security/selinux/selinuxfs.c:sel_remove_entries() which would need the
> > same treatment.
>
> Can't just be dropped completely for selinux - we need a way to drop
> obsolete entries from the prior policy when we load a new policy.
>
> Is the only real problem here the clearing of f_op? If so, we can
> likely remove that from sel_remove_entries() without harm, and fix the
> checks for it to use something more reliable.

f_op removal is the biggest issue. It can't really work and this is the
last instance. But in general having some half-backed attempts at revoke
is never a good idea.

Subject: Re: [PATCH 1/4] proc: fix NULL ->i_fop oops
Posted by Stephen Smalley on Tue, 20 Nov 2007 15:22:37 GMT
View Forum Message <> Reply to Message

On Tue, 2007-11-20 at 15:17 +0000, Christoph Hellwig wrote:
> On Tue, Nov 20, 2007 at 10:05:05AM -0500, Stephen Smalley wrote:
> > > Nice, getting rid of this is a very good step formwards. Unfortunately
> > > we have another copy of this junk in
> > > security/selinux/selinuxfs.c:sel_remove_entries() which would need the
> > > same treatment.
> >
> > Can't just be dropped completely for selinux - we need a way to drop
> > obsolete entries from the prior policy when we load a new policy.
> >
> > Is the only real problem here the clearing of f_op? If so, we can
> > likely remove that from sel_remove_entries() without harm, and fix the
> > checks for it to use something more reliable.
>
> f_op removal is the biggest issue. It can't really work and this is the
> last instance. But in general having some half-backed attempts at revoke
> is never a good idea.

Yes, we're not trying to revoke per se, but just re-populate a set of
directories that represent elements of policy state on a policy
reload. /selinux/booleans is one example - a directory with one entry
per policy boolean defined by the policy. Old directory tree gets torn
down on each policy reload and replaced.

Page 5 of 8 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=rview&th=4604&goto=23584#msg_23584
https://new-forum.openvz.org/index.php?t=post&reply_to=23584
https://new-forum.openvz.org/index.php?t=usrinfo&id=2110
https://new-forum.openvz.org/index.php?t=rview&th=4604&goto=23880#msg_23880
https://new-forum.openvz.org/index.php?t=post&reply_to=23880
https://new-forum.openvz.org/index.php

--
Stephen Smalley
National Security Agency

Subject: [patch 1/1] selinux: do not clear f_op when removing entries
Posted by Stephen Smalley on Wed, 21 Nov 2007 14:01:36 GMT
View Forum Message <> Reply to Message

On Tue, 2007-11-20 at 15:17 +0000, Christoph Hellwig wrote:
> On Tue, Nov 20, 2007 at 10:05:05AM -0500, Stephen Smalley wrote:
> > > Nice, getting rid of this is a very good step formwards. Unfortunately
> > > we have another copy of this junk in
> > > security/selinux/selinuxfs.c:sel_remove_entries() which would need the
> > > same treatment.
> >
> > Can't just be dropped completely for selinux - we need a way to drop
> > obsolete entries from the prior policy when we load a new policy.
> >
> > Is the only real problem here the clearing of f_op? If so, we can
> > likely remove that from sel_remove_entries() without harm, and fix the
> > checks for it to use something more reliable.
>
> f_op removal is the biggest issue. It can't really work and this is the
> last instance. But in general having some half-backed attempts at revoke
> is never a good idea.

Do not clear f_op when removing entries since it isn't safe to do.

Signed-off-by: Stephen Smalley <sds@tycho.nsa.gov>

 security/selinux/selinuxfs.c | 28 +---------------------------
 1 file changed, 1 insertion(+), 27 deletions(-)

diff --git a/security/selinux/selinuxfs.c b/security/selinux/selinuxfs.c
index f5f3e6d..ac6fe99 100644
--- a/security/selinux/selinuxfs.c
+++ b/security/selinux/selinuxfs.c
@@ -838,10 +838,6 @@ static ssize_t sel_read_bool(struct file *filep, char __user *buf,

 	ret = -EFAULT;

-	/* check to see if this file has been deleted */
-	if (!filep->f_op)
-		goto out;
-

Page 6 of 8 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=2110
https://new-forum.openvz.org/index.php?t=rview&th=4604&goto=23881#msg_23881
https://new-forum.openvz.org/index.php?t=post&reply_to=23881
https://new-forum.openvz.org/index.php

 	if (count > PAGE_SIZE) {
 		ret = -EINVAL;
 		goto out;
@@ -882,10 +878,6 @@ static ssize_t sel_write_bool(struct file *filep, const char __user *buf,
 	if (length)
 		goto out;

-	/* check to see if this file has been deleted */
-	if (!filep->f_op)
-		goto out;
-
 	if (count >= PAGE_SIZE) {
 		length = -ENOMEM;
 		goto out;
@@ -940,10 +932,6 @@ static ssize_t sel_commit_bools_write(struct file *filep,
 	if (length)
 		goto out;

-	/* check to see if this file has been deleted */
-	if (!filep->f_op)
-		goto out;
-
 	if (count >= PAGE_SIZE) {
 		length = -ENOMEM;
 		goto out;
@@ -982,11 +970,9 @@ static const struct file_operations sel_commit_bools_ops = {
 	.write = sel_commit_bools_write,
 };

-/* partial revoke() from fs/proc/generic.c proc_kill_inodes */
 static void sel_remove_entries(struct dentry *de)
 {
-	struct list_head *p, *node;
-	struct super_block *sb = de->d_sb;
+	struct list_head *node;

 	spin_lock(&dcache_lock);
 	node = de->d_subdirs.next;
@@ -1006,18 +992,6 @@ static void sel_remove_entries(struct dentry *de)
 	}

 	spin_unlock(&dcache_lock);
-
-	file_list_lock();
-	list_for_each(p, &sb->s_files) {
-		struct file * filp = list_entry(p, struct file, f_u.fu_list);
-		struct dentry * dentry = filp->f_path.dentry;
-

Page 7 of 8 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-		if (dentry->d_parent != de) {
-			continue;
-		}
-		filp->f_op = NULL;
-	}
-	file_list_unlock();
 }

 #define BOOL_DIR_NAME "booleans"

--
Stephen Smalley
National Security Agency

Page 8 of 8 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

