Subject: [PATCH 1/2] Container-init must be immune to unwanted signals
Posted by Sukadev Bhattiprolu on Sat, 27 Oct 2007 19:07:29 GMT

View Forum Message <> Reply to Message

Note: this patch applies on top of Eric's patch:

http://lkml.org/lkml/2007/10/26/440

From: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Subject: [PATCH 1/2] Container-init must be immune to unwanted signals

Container-init process must appear like a normal process to its sibling
in the parent namespace and should be killable (or not) in the usual way.

But it must be immune to any unwanted signals from within its own namespace.

At the time of sending the signal, check if receiver is container-init
and if signal is an unwanted one. If its unwanted signal, ignore the
signal right away.

Note:

A limitation with this patch is that if the signal is blocked by the
container-init at the time of the check, we cannot ignore the signal
because the container-init may install a handler for the signal before
unblocking it.

But if the container-init unblocks the signal without installing the
handler, the unwanted signal will still be delivered to the container-
init. If the unwanted signal is fatal (i.e default action is to
terminate), we end up terminating the container-init and hence the
container.

We have not been able to find a clean-way to address this blocked
signal issue in the kernel. It appears easier to let the container-
init decide what it wants to do with signals i.e have it _explicitly
ignore or handle all fatal signals.

The next patch in this set prints a warning the first time a
container-init process fork()s without ignoring or handling a fatal
signal.

Signed-off-by: Sukadev Bhattiprolu <sukadev@us.ibm.com>
include/linux/pid_namespace.h | 6 +++++-

kernel/pid.c | 9 ++++++++-

kernel/signal.c | 5 ++++-

Page 1 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=620
https://new-forum.openvz.org/index.php?t=rview&th=4372&goto=22420#msg_22420
https://new-forum.openvz.org/index.php?t=post&reply_to=22420
https://new-forum.openvz.org/index.php

3 files changed, 17 insertions(+), 3 deletions(-)

Index: 2.6.23-mm1/kernel/signal.c

--- 2.6.23-mm1.orig/kernel/signal.c 2007-10-27 10:08:36.000000000 -0700
+++ 2.6.23-mm1/kernel/signal.c 2007-10-27 10:08:36.000000000 -0700
@@ -45,7 +45,10 @@ static int sig_init_ignore(struct task_s

/I Currently this check is a bit racy with exec(),
/ we can _simplify_ de_thread and close the race.

- if (likely(lis_global_init(tsk->group_leader)))

+ if (likely('is_container_init(tsk->group_leader)))

+ return O;

+

+ if (task_in_descendant_pid_ns(tsk) && !in_interrupt())
return O;

return 1,
Index: 2.6.23-mm1/kernel/pid.c

--- 2.6.23-mm1.orig/kernel/pid.c 2007-10-27 10:08:36.000000000 -0700
+++ 2.6.23-mm1l/kernel/pid.c 2007-10-27 10:34:59.000000000 -0700
@@ -445,7 +445,7 @@ int pid_ns_equal(struct task_struct *tsk

static int pid_in_pid_ns(struct pid *pid, struct pid_namespace *ns)

{

- return pid && (ns->level <= pid->level) &&

+ return pid && ns && (ns->level <= pid->level) &&
pid->numbers[ns->level].ns == ns;

}

@@ -454,6 +454,13 @@ int task_in_pid_ns(struct task_struct *t
return pid_in_pid_ns(task _pid(task), ns);
}

+int task_in_descendant_pid_ns(struct task_struct *tsk)
gl
+ struct pid_namespace *ns = task_active_pid_ns(current);
+
+ return task_in_pid_ns(tsk, ns) && !pid_ns_equal(tsk);
+}
+
pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
{
struct upid *upid;
Index: 2.6.23-mm1/include/linux/pid_namespace.h

--- 2.6.23-mm1.orig/include/linux/pid_namespace.h 2007-10-27 10:08:36.000000000 -0700

Page 2 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+++ 2.6.23-mm1l/include/linux/pid_namespace.h 2007-10-27 10:32:27.000000000 -0700
@@ -47,7 +47,10 @@ static inline void put_pid_ns(struct pid

static inline struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
{

- return tsk->nsproxy->pid_ns;

+ if (tsk->nsproxy)

+ return tsk->nsproxy->pid_ns;

+

+ return NULL;

}

static inline struct task_struct *task_child_reaper(struct task_struct *tsk)
@@ -58,5 +61,6 @@ static inline struct task_struct *task ¢

extern int pid_ns_equal(struct task_struct *tsk);
extern int task_in_pid_ns(struct task_struct *tsk, struct pid_namespace *ns);
+extern int task_in_descendant_pid_ns(struct task_struct *tsk);

#endif /* _LINUX_PID_NS_H */

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH 1/2] Container-init must be immune to unwanted signals
Posted by ebiederm on Mon, 29 Oct 2007 20:17:51 GMT

View Forum Message <> Reply to Message

sukadev@us.ibm.com writes:

> Note: this patch applies on top of Eric's patch:

>

> http://lkml.org/lkml/2007/10/26/440

>

e

>

> From: Sukadev Bhattiprolu <sukadev@us.ibm.com>

> Subject: [PATCH 1/2] Container-init must be immune to unwanted signals
>

> Container-init process must appear like a normal process to its sibling

> in the parent namespace and should be killable (or not) in the usual way.
>

> But it must be immune to any unwanted signals from within its own namespace.
>

> At the time of sending the signal, check if receiver is container-init

> and if signal is an unwanted one. If its unwanted signal, ignore the

Page 3 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=220
https://new-forum.openvz.org/index.php?t=rview&th=4372&goto=22487#msg_22487
https://new-forum.openvz.org/index.php?t=post&reply_to=22487
https://new-forum.openvz.org/index.php

> signal right away.

>

> Note:

> A limitation with this patch is that if the signal is blocked by the

> container-init at the time of the check, we cannot ignore the signal
> because the container-init may install a handler for the signal before
> unblocking it.

>

> But if the container-init unblocks the signal without installing the

> handler, the unwanted signal will still be delivered to the container-
> init. If the unwanted signal is fatal (i.e default action is to

> terminate), we end up terminating the container-init and hence the
> container.

>

> We have not been able to find a clean-way to address this blocked
> signal issue in the kernel. It appears easier to let the container-

> init decide what it wants to do with signals i.e have it _explicitly

> ignore or handle all fatal signals.

>

> The next patch in this set prints a warning the first time a

> container-init process fork()s without ignoring or handling a fatal

> signal.

>

> Signed-off-by: Sukadev Bhattiprolu <sukadev@us.ibm.com>

-

> include/linux/pid_namespace.h | 6 +++++-

> kernel/pid.c | 9 ++++++++-

> kernel/signal.c | 5 ++++-

> 3files changed, 17 insertions(+), 3 deletions(-)

>

> Index: 2.6.23-mm1/kernel/signal.c

> S s s s s s s s s e s s ——

> --- 2.6.23-mm1.orig/kernel/signal.c 2007-10-27 10:08:36.000000000 -0700
> +++ 2.6.23-mm1l/kernel/signal.c 2007-10-27 10:08:36.000000000 -0700
> @@ -45,7 +45,10 @@ static int sig_init_ignore(struct task_s

>

> [/ Currently this check is a bit racy with exec(),

> [/ we can _simplify _de_thread and close the race.

> - if (likely(lis_global_init(tsk->group_leader)))

> + if (likely(lis_container_init(tsk->group_leader)))

>+ return O;

>+

> + if (task_in_descendant_pid_ns(tsk) && lin_interrupt())

> return O;

>

> return 1;

Ok. This is where we are handling the pid namespace case.

Page 4 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

This begins to feel correct.

What is the in_interrupt() check for? That looks bogus on
the face of it.

| would suggest setting the signal handlers in flush_signal_handlers
to SIG_IGN but that looks like the children of /sbin/init would
the a different set of signals by default.

Eric

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH 1/2] Container-init must be immune to unwanted signals
Posted by Sukadev Bhattiprolu on Wed, 31 Oct 2007 01:43:20 GMT

View Forum Message <> Reply to Message

Eric W. Biederman [ebiederm@xmission.com] wrote:

| sukadev@us.ibm.com writes:

|

| > Note: this patch applies on top of Eric's patch:

| >

| > http://lkml.org/lkml/2007/10/26/440

| >

| > ---

| >

| > From: Sukadev Bhattiprolu <sukadev@us.ibm.com>

| > Subject: [PATCH 1/2] Container-init must be immune to unwanted signals
| >

| > Container-init process must appear like a normal process to its sibling

| > in the parent namespace and should be killable (or not) in the usual way.
| >

| > But it must be immune to any unwanted signals from within its own namespace.
| >

| > At the time of sending the signal, check if receiver is container-init

| > and if signal is an unwanted one. If its unwanted signal, ignore the

| > signal right away.

| >

| > Note:

| > A limitation with this patch is that if the signal is blocked by the

| > container-init at the time of the check, we cannot ignore the signal

| > because the container-init may install a handler for the signal before

| > unblocking it.

| >

| > But if the container-init unblocks the signal without installing the

Page 5 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=620
https://new-forum.openvz.org/index.php?t=rview&th=4372&goto=22573#msg_22573
https://new-forum.openvz.org/index.php?t=post&reply_to=22573
https://new-forum.openvz.org/index.php

handler, the unwanted signal will still be delivered to the container-
init. If the unwanted signal is fatal (i.e default action is to
terminate), we end up terminating the container-init and hence the
container.

>
>
>
>
>
> We have not been able to find a clean-way to address this blocked
| > signal issue in the kernel. It appears easier to let the container-
> init decide what it wants to do with signals i.e have it _explicitly
> ignore or handle all fatal signals.
>
>
>
>
>

The next patch in this set prints a warning the first time a
container-init process fork()s without ignoring or handling a fatal
signal.

| > Signed-off-by: Sukadev Bhattiprolu <sukadev@us.ibm.com>

| >
| > include/linux/pid_namespace.h | 6 +++++-

| > kernel/pid.c | 9 ++++++++-

| > kernel/signal.c | 5 ++++-

| > 3 files changed, 17 insertions(+), 3 deletions(-)

| >

| > Index: 2.6.23-mm1/kernel/signal.c

| > s e s e

| > --- 2.6.23-mm1.orig/kernel/signal.c 2007-10-27 10:08:36.000000000 -0700
| > +++ 2.6.23-mm1/kernel/signal.c 2007-10-27 10:08:36.000000000 -0700
| > @@ -45,7 +45,10 @@ static int sig_init_ignore(struct task_s

| >

| > // Currently this check is a bit racy with exec(),

| > //'we can _simplify_ de_thread and close the race.

| > -if (likely(!is_global_init(tsk->group_leader)))

| > +if (likely(lis_container_init(tsk->group_leader)))

| >+ return O;

| >+

| > +if (task_in_descendant_pid_ns(tsk) && !in_interrupt())

| > return O;

| >

| > return 1;

I

| Ok. This is where we are handling the pid namespace case.

| This begins to feel correct.

I

| What is the in_interrupt() check for? That looks bogus on

| the face of it.

It was for the send_sigio() case and trying to prevent that signal
from going to /sbin/init.

| I would suggest setting the signal handlers in flush_signal_handlers

Page 6 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

| to SIG_IGN but that looks like the children of /sbin/init would
| the a different set of signals by default.

I
| Eric

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 7 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

