Subject: Re: LSM and Containers
Posted by serue on Thu, 25 Oct 2007 01:44:13 GMT

View Forum Message <> Reply to Message

Quoting Peter Dolding (oiaohm@gmail.com):

> On 10/25/07, Crispin Cowan <crispin@crispincowan.com> wrote:

> > Peter Dolding wrote:

> > > The other thing you have not though of and is critical. If LSM is the
> > > same LSM across all containers. What happens if that is breached and
> > > tripped to disable. You only want to loss one container to a breach
> > > not the whole box and dice in one hit. Its also the reason why my

> > > design does not have a direct link between controllers. No cascade
> > > threw system to take box and dice.

>>>

> > Sorry, but | totally disagree.

> >

> > If you obtain enough privilege to disable the LSM in one container, you
> > also obtain enough privilege to disable *other* LSMs that might be

> > gperating in different containers. This is a limitation of the

> > Containers feature, not of LSM.

> >

> That is not a Container feature. If you have enough privilege does

> not mean you can. Root user in a Container does not mean you can play
> with other containers applications. There is a security split at the

> container edge when doing Virtual Servers what by using one LSM you
> are disregarding.

>

> Simple point if one LSM is disabled in a container it can only get the

> max rights of that Container. So cannot see the other LSM's on the

> system bellow it. Reason also why in my model its the same layout if

> there is 1 or 1000 stacked so attack cannot tell how deep they are in

> and if there is anything to be gained by digging. You have to break

You're sometimes hard to parse, but here are a few basic facts within
which to constrain our discussions:

1. LSMs are a part of the kernel. The entire kernel is in the
same trusted computing base

2. containers all run on the same kernel

3. whether an Ism is compromised, or a tty driver, or anything
else which is in the TCB, all containers are compromised

4. it is very explicitly NOT a goal to hide from a container
the fact that it is in a container. So your ‘cannot tell how
deep they are' is not a goal.

If you want to be able to 'plug’ Isms in per container, by all means
feel free to write a proof of concept. It is kind of a cool idea. But
be clear about what you'll gain: You allow the container admin to

Page 1 of 5 ---- Generated from OpenVZ Forum


https://new-forum.openvz.org/index.php?t=usrinfo&id=204
https://new-forum.openvz.org/index.php?t=rview&th=4346&goto=22315#msg_22315
https://new-forum.openvz.org/index.php?t=post&reply_to=22315
https://new-forum.openvz.org/index.php

contrain data access within his container in the way he chooses using

the model with which he is comfortable. It does nothing to protect one
container from another, does nothing to protect against kernel exploits,
and absolutely does nothing to protect a container from the 'host'.

Also please keep in mind that the container security framework is not

only not yet complete, it's pretty much not started. My own idea for

how to best do it are outlined in emails which are in the containers

list archive. But in terms of LSM they follow the idea Crispin

outlines, namely that the LSMs support containers themselves. And, in

a proces in a container started without CAP_NS_OVERRIDE (which does not
yet exist :) in its capability bounding set will only be able to access

files in another container as DAC user 'other’ (i.e if perms are 754, it

will get read access, if 750, then none), even if it has
CAP_DAC_OVERRIDE. (unless it gets an authorization key for the owning
user in the target namespace, but *that's* probably *years* off)

-serge

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: LSM and Containers
Posted by Peter Dolding on Thu, 25 Oct 2007 04:31:11 GMT

View Forum Message <> Reply to Message

> You're sometimes hard to parse, but here are a few basic facts within

> which to constrain our discussions:

>

1. LSMs are a part of the kernel. The entire kernel is in the
same trusted computing base

2. containers all run on the same kernel

3. whether an Ism is compromised, or a tty driver, or anything
else which is in the TCB, all containers are compromised

4. itis very explicitly NOT a goal to hide from a container
the fact that it is in a container. So your '‘cannot tell how
deep they are' is not a goal.

You are missing what | am saying.

VVVVYVYVYVYV

| am breaking the LSM in two. Kernel level comprise that is out of my hands.

If you wished in mine the controller could be user space run outside
kernel does not have to stay in the TCB. Since its not having any

direct control on the approval or rejection of access. Its only

gueried when needed like when a process breaches the rules applied to
it or when processes start or changing security. So breaching it

Page 2 of 5 ---- Generated from OpenVZ Forum


https://new-forum.openvz.org/index.php?t=usrinfo&id=2041
https://new-forum.openvz.org/index.php?t=rview&th=4346&goto=22784#msg_22784
https://new-forum.openvz.org/index.php?t=post&reply_to=22784
https://new-forum.openvz.org/index.php

turning it off and so on. This is to reduce the risk of someone
trying to customize a LSM can cause a security flaw of hell
level(Inside kernel space).

With Intel's and Amd new memory table splitting yes the controller

could be put away from the main kernel in time with the rest of the
container only data. Yes less bits trusted. This includes when

sending the container between machines the controller with it current
state could be sent with it. If the interface to controller is

standard of course. Ok apparmor and selinux will cope with your
system but some of the more complex state based need to transfer state
as well this should be in the controller bit of a LSM and not mixed up
with the state of the overall machine either.

Over all this is making it simpler to do advanced container things
like sending between servers.

The permission enforcement parts stay the same no matter the
controller in use. Breaching the enforcement parts still remain a
problem. Allows running many controllers unlike LSM's where they can
fight and on way around that cleanly. Just like LSM two controllers
controlling the same space would still fight so guess how many each
container take 1. Since a different controller has to be give its

own zone. So people cannot complain about not being able to run there
preferred controller if they want a different one they have to give it

a different zone. Yes this is getting on top of a lot of long term

problems of people wanting a or b LSM. Stuff it have both and be

happy.

Its also removing the single overall kill switch. And replacing them
with a per container kill switches. So someone does what will
normally turn X controller off and it does. Yet still the outside
security is applied to everything run in the container. Security is
lowed but not off.

The controllers don't need to keep track of how deep they are. They
just don't need to know. From there point of view the world ends from
there startup security settings. Only time the controller would have
to be give notice is if those outside security settings were changed
so it could update the programs under it to the way it wanted. Even
that the security settings if they were lower would have just been
brute forced applied. Basically its have you done containers running
containers is you model Serge E. Hallyn. This avoids have to much
around with flags for the next container in. Only thing in mine are
you doing is changing the path back to the controller from the
security enforcing modules. Enforcing modules process not doing
permissions were told to allow | report that to x secuirty container
that reports it to contoller. Note the security container only hands

Page 3 of 5 ---- Generated from OpenVZ Forum


https://new-forum.openvz.org/index.php

out what its allowed nothing more the controller is not trusted. No
processing to work out what security files it should be using since
the controller only knows the files it should be using.

Yes there is overhead in my system. But were able the system is
avoiding traveling in a perfectly functioning system controller could

be only being bothered when new processors were being created the rest
of the time the enforcement modules just do there job as they were
configured.

Traveling down a tree of stacked LSM is going to cause massive lag. le
knowing that something is below you. Not knowing reduces travel and
time to resolve. And allows security to be controlled over the

complete container from one spot. The problem with running many LSM
again having to tweek them all to get it locked down on container. le
enabling some disabling others so simple to loss track and have big
problems. No problem here the secuirty model is applied to the
container and if you want to lock its outside down you just do and the
controller inside has to cope. Yes it will be possible to take too

much away from a security container. Ok this security container

should not have access to that device slam not a question. With
running many LSM the question what one does that container own to so |
do turn that device off and not have another LSM turn it back on.

Besides having selinux and apparmor installed side by side is going to
lag the system due to overlapping hooks. This what | am avoiding.
The enforcement modules are only hooked in once no reason at all to
overlap them. This overlapping is what makes running many LSM
problematic.

The outside security on a container will stay on even if the host LSM
is turned off in the design | am look at. It was set when the

container started and would have to be directly updated. The outside
security defined to a container would be everything selinux could do
to a program and then some. Just like selinux opt in.

Over lapping | am handling differently in this design. The outside
security set on the container covers overlaps. Far more flex able
option. Using directory filtering and other options are on the table

as well as far more complex cap options. My design depends on the
common protective modules. Not the bit that says this is Mac or Role
based or State or so on.

Basically apparmor and selinux would be sitting on the same engine
that everyone can use to build solid controllers. If you want a new
enforcement feature you would add it for everyone. Since altering the
controller would be toothless only can tweak what already exists since
you can never be sure its even in kernel space no direct tweaking no

Page 4 of 5 ---- Generated from OpenVZ Forum


https://new-forum.openvz.org/index.php

hooking no bad stuff with controllers.

There is a security advantage from the design change even for people
not using containers or LSM. Everything in system can apply LSM
style restrictions lower than what it has to what it wants to run even

if a controller is present or not. The controller is to provide the
security model in use. With the enforcement system you could almost
do any security model with user space code. The difference being not
catching process starts to apply security to them. This is useful for
programs running untrusted content web browers that java program
running from web does not need all the access | am cut it back.
Application level security something LSM overlook and it not wise to
use different interfaces for it.

Yes these are major changes in design. Yes they will force clear
designs and more sharing so everyone can take advantage of
advancements. As well should kill off lots of problems of poor

guality LSM's and LSM limitations. Basically my design and LSM cannot
live side by side effectively.

Peter Dolding

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 5 of 5 ---- Generated from OpenVZ Forum


https://new-forum.openvz.org/index.php

