Subject: [PATCH] namespaces: introduce sys_hijack (v4)
Posted by serue on Tue, 09 Oct 2007 20:09:28 GMT

View Forum Message <> Reply to Message

>From 945fe66259cd0cfdc2fe846287b7821e329a558¢c Mon Sep 17 00:00:00 2001
From: sergeh@us.ibm.com <hallyn@kernel.(none)>

Date: Tue, 9 Oct 2007 08:30:30 -0700

Subject: [PATCH] namespaces: introduce sys_hijack (v4)

Move most of do_fork() into a new do_fork_task() which acts on
a new argument, task, rather than on current. do_fork() becomes
a call to do_fork_task(current, ...).

Introduce sys_hijack (for x86 only so far). Itis like clone, but

in place of a stack pointer (which is assumed null) it accepts a
pid. The process identified by that pid is the one which is
actually cloned. Some state - include the file table, the signals
and sighand (and hence tty), and the ->parent are taken from the
calling process.

The effect is a sort of namespace enter. The following program
uses sys_hijack to 'enter' all namespaces of the specified pid.
For instance in one terminal, do

mount -t cgroup -ons /cgroup
hostname

gemu
ns_exec -u /bin/sh

hostname serge

echo $$
1073
cat /proc/$$/cgroup
ns:/node_1073

In another terminal then do

hostname
gemu
cat /proc/$$/cgroup
ns:/
hijack 1073
hosthame
serge
cat /proc/$$/cgroup
ns:/node_1073

sys_hijack is arch-dependent and is only implemented for i386 so far.

Page 1 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=204
https://new-forum.openvz.org/index.php?t=rview&th=4182&goto=21485#msg_21485
https://new-forum.openvz.org/index.php?t=post&reply_to=21485
https://new-forum.openvz.org/index.php

Changelog:

Aug 23: send a stop signal to the hijacked process
(like ptrace does).

Oct 09: Update for 2.6.23-rc8-mm2 (mainly pidns)
Don't take task_lock under rcu_read_lock
Send hijacked process to cgroup_fork() as
the first argument.
Removed some unneeded task_locks.

int do_clone_task(void)

{
execl("/bin/sh", "/bin/sh", NULL);

}

int main(int argc, char *argv([])
{

int pid;

int ret;

int status;

if (argc < 2)
return 1;
pid = atoi(argv[1]);

ret = syscall(327, SIGCHLD, pid, NULL, NULL);

if (ret==0) {

return do_clone_task();

} else if (ret < 0) {

perror('sys_hijack");

} else {

printf("waiting on cloned process %d\n", ret);

while (waitpid(ret, &status, WCLONE) != ret);
printf("cloned process %d exited with %d\n", ret, status);

}

return ret;

Signed-off-by: Serge Hallyn <serue@us.ibm.com>

arch/i386/kernel/process.c | 58 ++++++++++++++ttt bttt b+
arch/i386/kernel/syscall_table.S| 1+

Page 2 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

arch/s390/kernel/process.c | 12 +++++-

include/asm-i386/unistd.h | 3 +-

include/linux/cgroup.h | 5 ++-

include/linux/pid.h | 2+

include/linux/ptrace.h | 1+

include/linux/sched.h | 2+

include/linux/syscalls.h | 1+

kernel/cgroup.c | 8 ++--

kernel/fork.c | 69 ++++++++++++++++++++++HH+ -
kernel/pid.c | 5 ++-

kernel/ptrace.c | 7 ++++

13 files changed, 141 insertions(+), 33 deletions(-)

diff --git a/arch/i386/kernel/process.c b/arch/i386/kernel/process.c
index bfcdOle..01f4d16 100644
--- alarch/i386/kernel/process.c
+++ b/arch/i386/kernel/process.c
@@ -455,8 +455,15 @@ int copy_thread(int nr, unsigned long clone_flags, unsigned long esp,
unsigned long unused,
struct task_struct * p, struct pt_regs * regs)
{
+ return copy_a_thread(current, nr, clone_flags, esp, unused,
+ p, regs);
+}
+
+int copy_a_thread(struct task_struct *tsk, int nr, unsigned long clone_flags,
+ unsigned long esp, unsigned long unused,
+ struct task_struct * p, struct pt_regs * regs)
gl
struct pt_regs * childregs;
- struct task_struct *tsk;
int err;

childregs = task_pt_regs(p);
@@ -471,7 +478,6 @@ int copy_thread(int nr, unsigned long clone_flags, unsigned long esp,

savesegment(gs,p->thread.gs);

- tsk = current;
if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
IO_BITMAP_BYTES, GFP_KERNEL);
@@ -783,6 +789,54 @@ asmlinkage int sys_clone(struct pt_regs regs)
return do_fork(clone_flags, newsp, ®s, 0, parent_tidptr, child_tidptr);

}

+asmlinkage int sys_hijack(struct pt_regs regs)

H

Page 3 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ unsigned long clone_flags;

+int __user *parent_tidptr, *child_tidptr;
+ pid_t pid;

+ struct task_struct *task;

+ int ret = -EINVAL,

+

+ clone_flags = regs.ebx,;

+ pid = regs.ecx;

+ parent_tidptr = (int __user *)regs.edx;
+ child_tidptr = (int _user *)regs.edi;

+

+ rcu_read_lock();

+ task = find_task by vpid(pid);

+ if (task)

+ get_task_struct(task);

+ rcu_read_unlock();

+

+if (task) {

+ task_lock(task);

+ put_task_struct(task);

+}

+

+ if (task) {

+ if (ptrace_may_attach_locked(task)) {
+ ret = -EPERM,;

goto out_put_task;

}

if (task->ptrace) {

ret = -EBUSY;

goto out_put_task;

}
force_sig_specific(SIGSTOP, task);

task _unlock(task);

ret = do_fork_task(task, clone_flags, regs.esp, ®s, 0,
parent_tidptr, child_tidptr);

wake_up_process(task);

task = NULL;

}

+out_put_task:
+ if (task)
+ task_unlock(task);
+ return ret;
+}
+
/~k
* This is trivial, and on the face of it looks like it

+
+
+
+
+
+
+
+
+
=+
+
+
+
+
+

Page 4 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

* could equally well be done in user mode.
diff --git a/arch/i386/kernel/syscall_table.S b/arch/i386/kernel/syscall_table.S
index dfée41e..495930c 100644
--- alarch/i386/kernel/syscall_table.S
+++ b/arch/i386/kernel/syscall_table.S
@@ -326,3 +326,4 @@ ENTRY(sys_call_table)

Jong sys_fallocate

Jong sys_revokeat /* 325 */

Jong sys_frevoke
+ .long sys_hijack
diff --git a/arch/s390/kernel/process.c b/arch/s390/kernel/process.c
index 70c5737..f256e7a 100644
--- alarch/s390/kernel/process.c
+++ b/arch/s390/kernel/process.c
@@ -223,6 +223,14 @@ int copy_thread(int nr, unsigned long clone_flags, unsigned long
new_stackp,

unsigned long unused,

struct task_struct * p, struct pt_regs * regs)
{

+ return copy_a_thread(current, nr, clone_flags, new_stackp, unused,
+ P, regs);
+}
+
+int copy_a_thread(struct task_struct *task, int nr, unsigned long clone_flags,
+ unsigned long new_stackp, unsigned long unused,
+ struct task_struct * p, struct pt_regs * regs)
gl
struct fake_frame
{
struct stack frame sf;
@@ -251,8 +259,8 @@ int copy_thread(int nr, unsigned long clone_flags, unsigned long
new_stackp,
* save fprs to current->thread.fp_regs to merge them with
* the emulated registers and then copy the result to the child.
*/
- save_fp_regs(¤t->thread.fp_regs);
- memcpy(&p->thread.fp_regs, ¤t->thread.fp_regs,
+ save_fp_regs(&task->thread.fp_regs);
+ memcpy(&p->thread.fp_regs, &task->thread.fp_regs,
sizeof(s390 fp_regs));
p->thread.user_seg = __ pa((unsigned long) p->mm->pgd) | _SEGMENT_TABLE;
[* Set a new TLS ? */
diff --git a/include/asm-i386/unistd.h b/include/asm-i386/unistd.h
index 006¢c1b3..fe6eeb4 100644
--- a/include/asm-i386/unistd.h
+++ b/include/asm-i386/unistd.h
@@ -332,10 +332,11 @@
#define __ NR_fallocate 324

Page 5 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

#define _ NR_revokeat 325
#define _ NR_frevoke 326
+#define _ NR_hijack 327

#ifdef KERNEL__

-#define NR_syscalls 327
+#define NR_syscalls 328

#define _ ARCH_WANT _IPC_PARSE_VERSION

#define _ ARCH_WANT_OLD_READDIR

diff --git a/include/linux/cgroup.h b/include/linux/cgroup.h

index 8747932..cb6d335 100644

--- al/include/linux/cgroup.h

+++ b/include/linux/cgroup.h

@@ -26,7 +26,7 @@ extern int cgroup_init(void);

extern void cgroup_init_smp(void);

extern void cgroup_lock(void);

extern void cgroup_unlock(void);

-extern void cgroup_fork(struct task_struct *p);

+extern void cgroup_fork(struct task_struct *parent, struct task_struct *p);
extern void cgroup_fork_callbacks(struct task_struct *p);

extern void cgroup_post_fork(struct task_struct *p);

extern void cgroup_exit(struct task_struct *p, int run_callbacks);
@@ -309,7 +309,8 @@ void cgroup_iter_end(struct cgroup *cont, struct cgroup_iter *it);
static inline int cgroup_init_early(void) { return 0O; }

static inline int cgroup_linit(void) { return O; }

static inline void cgroup_init_smp(void) {}

-static inline void cgroup_fork(struct task_struct *p) {}

+static inline void cgroup_fork(struct task_struct *parent,

+ struct task_struct *p) {}

static inline void cgroup_fork_callbacks(struct task_struct *p) {}
static inline void cgroup_post_fork(struct task_struct *p) {}
static inline void cgroup_exit(struct task_struct *p, int callbacks) {}
diff --git a/include/linux/pid.h b/include/linux/pid.h

index €29a900..145dce7 100644

--- al/include/linux/pid.h

+++ b/include/linux/pid.h

@@ -119,7 +119,7 @@ extern struct pid *find_pid(int nr);
extern struct pid *find_get_pid(int nr);

extern struct pid *find_ge_pid(int nr, struct pid_namespace *);

-extern struct pid *alloc_pid(struct pid_namespace *ns);

+extern struct pid *alloc_pid(struct task_struct *task);

extern void FASTCALL(free_pid(struct pid *pid));

extern void zap_pid_ns_processes(struct pid_namespace *pid_ns);

diff --git a/include/linux/ptrace.h b/include/linux/ptrace.h

Page 6 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

index ae8146a..727a4a9 100644

--- al/include/linux/ptrace.h

+++ b/include/linux/ptrace.h

@@ -97,6 +97,7 @@ extern void __ ptrace_link(struct task_struct *child,
extern void __ ptrace_unlink(struct task_struct *child);

extern void ptrace_untrace(struct task_struct *child);

extern int ptrace_may_attach(struct task_struct *task);

+extern int ptrace_may_attach_locked(struct task_struct *task);

static inline void ptrace_link(struct task_struct *child,
struct task_struct *new_parent)
diff --git a/include/linux/sched.h b/include/linux/sched.h
index 4f21afl..d85c3cf 100644
--- al/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -1630,6 +1630,7 @@ extern struct mm_struct *get_task_mm(struct task_struct *task);
extern void mm_release(struct task_struct *, struct mm_struct *);

extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *,
struct pt_regs *);

+extern int copy_a_thread(struct task_struct *, int, unsigned long, unsigned long, unsigned long,
struct task_struct *, struct pt_regs *);

extern void flush_thread(void);

extern void exit_thread(void);

@@ -1645,6 +1646,7 @@ extern int allow_signal(int);
extern int disallow_signal(int);

extern int do_execve(char *, char __user * __user *, char __user * _user *, struct pt_regs *);
+extern long do_fork_task(struct task_struct *task, unsigned long, unsigned long, struct pt_regs *,
unsigned long, int __user *, int __user *);

extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *,
int_user *);

struct task_struct *fork_idle(int);

diff --git a/include/linux/syscalls.h b/include/linux/syscalls.h

index f696874..5bc7384 100644

--- al/include/linux/syscalls.h

+++ b/include/linux/syscalls.h

@@ -616,5 +616,6 @@ int kernel_execve(const char *filename, char *const argv([], char *const

envpl]);

asmlinkage long sys_revokeat(int dfd, const char __user *filename);
asmlinkage long sys_frevoke(unsigned int fd);
+asmlinkage long sys_hijack(unsigned long flags, pid_t pid, int __user *ptid, int __user *ctid);

#endif
diff --git a/kernel/cgroup.c b/kernel/cgroup.c

Page 7 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

index 1e8aa53..e587896 100644
--- a/kernel/cgroup.c
+++ b/kernel/cgroup.c
@@ -2460,12 +2460,12 @@ static struct file_operations proc_cgroupstats_operations = {
* At the point that cgroup_fork() is called, 'current’ is the parent
* task, and the passed argument 'child' points to the child task.
*/
-void cgroup_fork(struct task_struct *child)
+void cgroup_fork(struct task_struct *parent, struct task_struct *child)
{
- task_lock(current);
- child->cgroups = current->cgroups;
+ task_lock(parent);
+ child->cgroups = parent->cgroups;
get_css_set(child->cgroups);
- task_unlock(current);
+ task_unlock(parent);
INIT_LIST_HEAD(&child->cg_list);
}

diff --git a/kernel/fork.c b/kernel/fork.c

index f85731a..ac73f3e 100644

--- alkernel/fork.c

+++ b/kernel/fork.c

@@ -621,13 +621,14 @@ struct fs_struct *copy_fs_struct(struct fs_struct *old)

EXPORT_SYMBOL_GPL(copy_fs_struct);

-static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
+static inline int copy_fs(unsigned long clone_flags,
+ struct task_struct * src, struct task_struct * tsk)
{
if (clone_flags & CLONE_FS) {
- atomic_inc(¤t->fs->count);
+ atomic_inc(&src->fs->count);

return O;

}
-tsk->fs = copy_fs_struct(current->fs);
+tsk->fs = copy_fs_struct(src->fs);

if (1tsk->fs)

return -ENOMEM;

return O;

@@ -973,7 +974,8 @@ static inline void rt_mutex_init_task(struct task_struct *p)
* parts of the process environment (as per the clone
* flags). The actual kick-off is left to the caller.
*/

-static struct task_struct *copy_process(unsigned long clone_flags,

+static struct task_struct *copy_process(struct task_struct *task,

Page 8 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ unsigned long clone_flags,
unsigned long stack_start,
struct pt_regs *regs,
unsigned long stack_size,
@@ -1007,15 +1009,17 @@ static struct task_struct *copy_process(unsigned long clone_flags,
goto fork_out;

retval = -ENOMEM;
- p = dup_task_struct(current);
+ p = dup_task_struct(task);

if (!p)

goto fork_out;

rt_mutex_init_task(p);

#ifdef CONFIG_TRACE_IRQFLAGS
- DEBUG_LOCKS_ WARN_ON(!p->hardirgs_enabled);
- DEBUG_LOCKS_ WARN_ON(!p->softirgs_enabled);
+ if (task == current) {
+ DEBUG_LOCKS_WARN_ON(!p->hardirgs_enabled);
+ DEBUG_LOCKS_WARN_ON(!p->softirgs_enabled);
+}
#endif
retval = -EAGAIN;
if (atomic_read(&p->user->processes) >=
@@ -1084,7 +1088,7 @@ static struct task_struct *copy_process(unsigned long clone_flags,
#endif
p->io_context = NULL;
p->audit_context = NULL,;
- cgroup_fork(p);
+ cgroup_fork(task, p);
#ifdef CONFIG_NUMA
p->mempolicy = mpol_copy(p->mempolicy);
if (IS_ERR(p->mempolicy)) {
@@ -1132,7 +1136,7 @@ static struct task_struct *copy_process(unsigned long clone_flags,
goto bad_fork_cleanup_audit;
if ((retval = copy_files(clone_flags, p)))
goto bad_fork_cleanup_semundo;
- if ((retval = copy_fs(clone_flags, p)))
+ if ((retval = copy_fs(clone_flags, task, p)))
goto bad_fork_cleanup _files;
if ((retval = copy_sighand(clone_flags, p)))
goto bad_fork_cleanup _fs;
@@ -1144,13 +1148,13 @@ static struct task_struct *copy_process(unsigned long clone_flags,
goto bad_fork_cleanup_mm;
if ((retval = copy_namespaces(clone_flags, p)))
goto bad_fork_cleanup_keys;
- retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);

Page 9 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ retval = copy_a_thread(task, 0, clone_flags, stack_start, stack_size, p, regs);
if (retval)
goto bad_fork_cleanup_namespaces;

if (pid !'= &init_struct_pid) {
retval = -ENOMEM,;
- pid = alloc_pid(task_active_pid_ns(p));
+ pid = alloc_pid(task);
if (!pid)
goto bad_fork_cleanup_namespaces;

@@ -1164,7 +1168,7 @@ static struct task_struct *copy_process(unsigned long clone_flags,
p->pid = pid_nr(pid);
p->tgid = p->pid;
if (clone_flags & CLONE_THREAD)

- p->tgid = current->tgid;

+ p->tgid = task->tgid;

p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
/*
@@ -1380,7 +1384,7 @@ struct task_struct * __ cpuinit fork_idle(int cpu)
struct task_struct *task;
struct pt_regs regs;

- task = copy_process(CLONE_VM, 0, idle_regs(®s), 0, NULL,
+ task = copy_process(current, CLONE_VM, 0, idle_regs(®s), 0, NULL,
&init_struct_pid);
if (IIS_ERR(task))
init_idle(task, cpu);
@@ -1405,12 +1409,12 @@ static inline int fork_traceflag (unsigned clone_flags)
}

/*
- * Ok, this is the main fork-routine.

*

- * |t copies the process, and if successful kick-starts
- * it and waits for it to finish using the VM if required.
+ * if called with task!=current, then caller must ensure that
+* 1. it has a reference to task
+* 2. current must have ptrace permission to task
*/
-long do_fork(unsigned long clone_flags,
+long do_fork_task(struct task_struct *task,
+ unsigned long clone_flags,
unsigned long stack_start,
struct pt_regs *regs,
unsigned long stack_size,
@@ -1421,13 +1425,23 @@ long do_fork(unsigned long clone_flags,

Page 10 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

int trace = 0;
long nr;

+ if (task != current) {
+ /* sanity checks */
+ /* we only want to allow hijacking the simplest cases */
+ if (clone_flags & CLONE_SYSVSEM)
+ return -EINVAL,;
+ if (current->ptrace)
+ return -EPERM;
+ if (task->ptrace)
+ return -EINVAL,;
+}
if (unlikely(current->ptrace)) {
trace = fork_traceflag (clone_flags);
if (trace)
clone_flags |= CLONE_PTRACE;
}

- p = copy_process(clone_flags, stack_start, regs, stack_size,
+ p = copy_process(task, clone_flags, stack_start, regs, stack_size,
child_tidptr, NULL);
/*
* Do this prior waking up the new thread - the thread pointer
@@ -1489,6 +1503,23 @@ long do_fork(unsigned long clone_flags,
return nr;

}

+/*

+ * Ok, this is the main fork-routine.

+ *

+ * It copies the process, and if successful kick-starts
+ * it and waits for it to finish using the VM if required.
+ */

+long do_fork(unsigned long clone_flags,

+ unsigned long stack_start,
+ struct pt_regs *regs,

+ unsigned long stack_size,
+ int__user *parent_tidptr,
+ int __user *child_tidptr)

gl

+ return do_fork _task(current, clone_flags, stack_start,
+ regs, stack_size, parent_tidptr, child_tidptr);

+}

+

#ifndef ARCH_MIN_MMSTRUCT_ALIGN

#define ARCH_MIN_MMSTRUCT_ALIGN 0

#endif

Page 11 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

diff --git a/kernel/pid.c b/kernel/pid.c

index d7388d7..b887a6a 100644

--- a/kernel/pid.c

+++ b/kernel/pid.c

@@ -238,14 +238,15 @ @ fastcall void free_pid(struct pid *pid)
call_rcu(&pid->rcu, delayed_put_pid);

}

-struct pid *alloc_pid(struct pid_namespace *ns)
+struct pid *alloc_pid(struct task_struct *srctsk)
{

struct pid *pid;

enum pid_type type;

inti, nr;
- struct pid_namespace *tmp;
+ struct pid_namespace *tmp, *ns;

struct upid *upid;

+ ns = task_active_pid_ns(srctsk);
pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
if (Ipid)
goto out;
diff --git a/kernel/ptrace.c b/kernel/ptrace.c
index 7c76f2f..c65c9fe 100644
--- alkernel/ptrace.c
+++ b/kernel/ptrace.c
@@ -159,6 +159,13 @@ int ptrace_may_attach(struct task_struct *task)
return lerr;

}

+int ptrace_may_attach_locked(struct task_struct *task)
gl

+int err;

+ err = may_attach(task);

+ return lerr,

+}

+

int ptrace_attach(struct task_struct *task)

{

int retval;

151

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 12 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Subject: Re: [PATCH] namespaces: introduce sys_hijack (v4)
Posted by Cedric Le Goater on Wed, 10 Oct 2007 17:06:23 GMT

View Forum Message <> Reply to Message

Serge E. Hallyn wrote:

>>From 945fe66259cd0cfdc2fe846287b7821e329a558c Mon Sep 17 00:00:00 2001
> From: sergeh@us.ibm.com <hallyn@kernel.(none)>

> Date: Tue, 9 Oct 2007 08:30:30 -0700

> Subject: [PATCH] namespaces: introduce sys_hijack (v4)

>

> Move most of do_fork() into a new do_fork_task() which acts on
> a new argument, task, rather than on current. do_fork() becomes
> a call to do_fork_task(current, ...).

>

> Introduce sys_hijack (for x86 only so far). Itis like clone, but

> in place of a stack pointer (which is assumed null) it accepts a

> pid. The process identified by that pid is the one which is

> actually cloned. Some state - include the file table, the signals

> and sighand (and hence tty), and the ->parent are taken from the
> calling process.

hmm, I'm wondering how this is going to work for a process which
would have unshared its device (pts) namespace. How are we going
to link the pts living in different namespaces if the stdios of the
hijacked process is using them ? like in the case of a shell, which

is certainly something we would like to hijacked.

it looks like a challenge for me. maybe I'm wrong.
C.

> The effect is a sort of namespace enter. The following program
> uses sys_hijack to 'enter' all namespaces of the specified pid.

> For instance in one terminal, do

>

> mount -t cgroup -ons /cgroup
> hostname

> gemu

> ns_exec -u /bin/sh

> hostname serge

> echo $$

> 1073

> cat /proc/$$/cgroup
> ns:/node 1073

Is there a reason to have the 'node_' prefix ? couldn't we just
use $pid ?

> |n another terminal then do

Page 13 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=205
https://new-forum.openvz.org/index.php?t=rview&th=4182&goto=21538#msg_21538
https://new-forum.openvz.org/index.php?t=post&reply_to=21538
https://new-forum.openvz.org/index.php

>

> hostname

> gemu

> cat /proc/$$/cgroup
> ns:/

> hijack 1073

> hostname

> serge

> cat /proc/$$/cgroup
> ns:/node 1073
>
>

sys_hijack is arch-dependent and is only implemented for i386 so far.
and worked on my gemu.
Thanks !

C.

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] namespaces: introduce sys_hijack (v4)
Posted by serue on Wed, 10 Oct 2007 18:32:34 GMT

View Forum Message <> Reply to Message

Quoting Cedric Le Goater (clg@fr.ibm.com):

> Serge E. Hallyn wrote:

> >>From 945fe66259cd0cfdc2fe846287b7821e329a558c Mon Sep 17 00:00:00 2001
> > From: sergeh@us.ibm.com <hallyn@kernel.(none)>

> > Date: Tue, 9 Oct 2007 08:30:30 -0700

> > Subject: [PATCH] namespaces: introduce sys_hijack (v4)

> >

> > Move most of do_fork() into a new do_fork_task() which acts on

> > a new argument, task, rather than on current. do_fork() becomes
> > g call to do_fork_task(current, ...).

> >

> > Introduce sys_hijack (for x86 only so far). Itis like clone, but

> > n place of a stack pointer (which is assumed null) it accepts a

> > pid. The process identified by that pid is the one which is

> > actually cloned. Some state - include the file table, the signals

> > and sighand (and hence tty), and the ->parent are taken from the
> > calling process.

>

> hmm, I'm wondering how this is going to work for a process which

> would have unshared its device (pts) namespace. How are we going

Page 14 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=204
https://new-forum.openvz.org/index.php?t=rview&th=4182&goto=21545#msg_21545
https://new-forum.openvz.org/index.php?t=post&reply_to=21545
https://new-forum.openvz.org/index.php

> to link the pts living in different namespaces if the stdios of the

> hijacked process is using them ? like in the case of a shell, which
> is certainly something we would like to hijacked.

>

> it looks like a challenge for me. maybe I'm wrong.

Might be a problem, but tough to address that until we actually
have a dev ns or devpts ns and established semantics.

Note the filestruct comes from current, not the hijack target, so
presumably we can work around the tty issue in any case by
keeping an open file across the hijack?

For instance, use the attached modified version of hijack.c
which puts a writeable fd for /tmp/helloworld in fd 5, then
does hijack, then from the resulting shell do

echo ab >&5
So we should easily be able to work around it.
Or am i missing something?

> > The effect is a sort of namespace enter. The following program
> > uses sys_hijack to 'enter' all namespaces of the specified pid.
> > For instance in one terminal, do

> >

> > mount -t cgroup -ons /cgroup

> > hostname

>> gemu

> > ns_exec -u /bin/sh

>> hostname serge

> > echo $$

> > 1073

>> cat /proc/$$/cgroup

>> ns:/node_1073

>

> |s there a reason to have the 'node_' prefix ? couldn't we just

> use $pid ?

Good question. It's just how the ns-cgroup does it... If you want to
send in a patch to change that, I'll ack it.

> > |n another terminal then do

> >
> > hostname
>> gemu

> > cat /proc/$$/cgroup

Page 15 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>> ns:/

> > hijack 1073

>> hostname

>> serge

>> cat /proc/$$/cgroup
>> ns:/node_1073

> >

> > sys hijack is arch-dependent and is only implemented for i386 so far.
>

> and worked on my gemu.
>

> Thanks !

Cool. Thanks for testing.

-serge

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

File Attachnents

1) duphijack.c, downl oaded 313 tines

Subject: Re: [PATCH] namespaces: introduce sys_hijack (v4)
Posted by serue on Thu, 11 Oct 2007 22:15:34 GMT

View Forum Message <> Reply to Message

Quoting Serge E. Hallyn (serue@us.ibm.com):

> >From 945fe66259cd0cfdc2fe846287b7821e329a558¢c Mon Sep 17 00:00:00 2001
> From: sergeh@us.ibm.com <hallyn@kernel.(none)>

> Date: Tue, 9 Oct 2007 08:30:30 -0700

> Subject: [PATCH] namespaces: introduce sys_hijack (v4)

>

> Move most of do_fork() into a new do_fork_task() which acts on
> a new argument, task, rather than on current. do_fork() becomes
> a call to do_fork_task(current, ...).

>

> Introduce sys_hijack (for x86 only so far). It is like clone, but

> in place of a stack pointer (which is assumed null) it accepts a

> pid. The process identified by that pid is the one which is

> actually cloned. Some state - include the file table, the signals

> and sighand (and hence tty), and the ->parent are taken from the
> calling process.

>

> The effect is a sort of namespace enter. The following program

Page 16 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=getfile&id=427
https://new-forum.openvz.org/index.php?t=usrinfo&id=204
https://new-forum.openvz.org/index.php?t=rview&th=4182&goto=21602#msg_21602
https://new-forum.openvz.org/index.php?t=post&reply_to=21602
https://new-forum.openvz.org/index.php

> uses sys_hijack to 'enter' all namespaces of the specified pid.
> For instance in one terminal, do
>
mount -t cgroup -ons /cgroup
hostname
gemu
ns_exec -u /bin/sh
hostname serge
echo $$
1073
cat /proc/$$/cgroup
ns:/node_1073

In another terminal then do

>
>

>

>

>

>

>

>

>

>

>

>

> hostname

> gemu

> cat /proc/$$/cgroup
> ns:/

> hijack 1073

> hostname

> serge

> cat /proc/$$/cgroup
> ns:/node_1073
>
>
>
>
>
>
>
>
>
>
>

sys_hijack is arch-dependent and is only implemented for i386 so far.

Changelog:

Aug 23: send a stop signal to the hijacked process
(like ptrace does).

Oct 09: Update for 2.6.23-rc8-mm2 (mainly pidns)
Don't take task_lock under rcu_read_lock

Send hijacked process to cgroup_fork() as

the first argument.
Removed some unneeded task_locks.

Thanks to Cedric for finding an oops when using pid namespaces. The
following patch fixes the problem.

In addition, to hijack a process in another pid namespace, the
hijack.c test program needs to be updated to do waitpid as
while(waitpid(-1, &status, WALL) !=-1)

as shown below:

hijack.c

Page 17 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

int do_clone_task(void)

{
execl("/bin/sh", "/bin/sh", NULL);

}

int main(int argc, char *argv([])
{

int pid;

int ret;

int status;

if (argc < 2)
return 1,
pid = atoi(argv[1]);

ret = syscall(327, SIGCHLD, pid, NULL, NULL);

if (ret==0){

return do_clone_task();

}elseif (ret < 0){

perror("sys_hijack");

} else {

printf("waiting on cloned process %d\n", ret);
while(waitpid(-1, &status, _ WALL) !=-1)

printf("cloned process %d exited with %d\n", ret, status);

}

return ret;

>From f1d9621e8325471e3ccde7f5fc2ed5a7be582524 Mon Sep 17 00:00:00 2001
From: sergeh@us.ibm.com <hallyn@kernel.(none)>

Date: Thu, 11 Oct 2007 14:26:05 -0700

Subject: [PATCH 2/2] hijack: pidns bugfix

My change to alloc_pid was bogus and introduced a pidns bug. Fix.

Signed-off-by: sergeh@us.ibm.com <hallyn@kernel.(none)>
include/linux/pid.h | 2 +-

kernel/fork.c | 2 +-

kernel/pid.c | 5 ++---

3 files changed, 4 insertions(+), 5 deletions(-)

Page 18 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

diff --git a/include/linux/pid.h b/include/linux/pid.h

index 145dce7..e29a900 100644

--- al/include/linux/pid.h

+++ b/include/linux/pid.h

@@ -119,7 +119,7 @@ extern struct pid *find_pid(int nr);
extern struct pid *find_get_pid(int nr);

extern struct pid *find_ge_pid(int nr, struct pid_namespace *);

-extern struct pid *alloc_pid(struct task_struct *task);

+extern struct pid *alloc_pid(struct pid_namespace *ns);

extern void FASTCALL(free_pid(struct pid *pid));

extern void zap_pid_ns_processes(struct pid_namespace *pid_ns);

diff --git a/kernel/fork.c b/kernel/fork.c

index ac73f3e..c1d4672 100644

--- a/kernel/fork.c

+++ b/kernel/fork.c

@@ -1154,7 +1154,7 @@ static struct task_struct *copy_process(struct task_struct *task,

if (pid '= &init_struct_pid) {
retval = -ENOMEM,;
- pid = alloc_pid(task);
+ pid = alloc_pid(task_active_pid_ns(p));
if (!pid)
goto bad_fork _cleanup_namespaces;

diff --git a/kernel/pid.c b/kernel/pid.c

index b887a6a..d7388d7 100644

--- a/kernel/pid.c

+++ b/kernel/pid.c

@@ -238,15 +238,14 @@ fastcall void free_pid(struct pid *pid)
call_rcu(&pid->rcu, delayed_put_pid);

}

-struct pid *alloc_pid(struct task_struct *srctsk)
+struct pid *alloc_pid(struct pid_namespace *ns)
{

struct pid *pid;

enum pid_type type;

inti, nr;
- struct pid_namespace *tmp, *ns;
+ struct pid_namespace *tmp;

struct upid *upid;

- ns = task_active_pid_ns(srctsk);
pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
if ('pid)
goto out;

Page 19 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

151

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] namespaces: introduce sys_hijack (v4)
Posted by Cedric Le Goater on Fri, 12 Oct 2007 09:30:33 GMT

View Forum Message <> Reply to Message

Serge E. Hallyn wrote:

> Quoting Serge E. Hallyn (serue@us.ibm.com):

>> >From 945fe66259cd0cfdc2fe846287b7821e329a558¢c Mon Sep 17 00:00:00 2001
>> From: sergeh@us.ibm.com <hallyn@kernel.(none)>

>> Date: Tue, 9 Oct 2007 08:30:30 -0700

>> Subject: [PATCH] namespaces: introduce sys_hijack (v4)

>>

>> Move most of do_fork() into a new do_fork_task() which acts on
>> a new argument, task, rather than on current. do_fork() becomes
>> g call to do_fork_task(current, ...).

>>

>> Introduce sys_hijack (for x86 only so far). Itis like clone, but

>> jn place of a stack pointer (which is assumed null) it accepts a
>> pid. The process identified by that pid is the one which is

>> actually cloned. Some state - include the file table, the signals
>> and sighand (and hence tty), and the ->parent are taken from the
>> calling process.

>>

>> The effect is a sort of namespace enter. The following program
>> uses sys_hijack to 'enter' all namespaces of the specified pid.

>> For instance in one terminal, do

>>

>> mount -t cgroup -ons /cgroup

>> hostname

>> gemu

>> ns_exec -u /bin/sh

>> hostname serge

>> echo $$

>> 1073

>> cat /proc/$$/cgroup

>> ns:/node_ 1073

>>

>> In another terminal then do
>>

>> hostname

Page 20 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=205
https://new-forum.openvz.org/index.php?t=rview&th=4182&goto=21616#msg_21616
https://new-forum.openvz.org/index.php?t=post&reply_to=21616
https://new-forum.openvz.org/index.php

>> gemu

>> cat /proc/$$/cgroup
>> ns:/

>> hijack 1073

>> hostname

>> serge

>> cat /proc/$$/cgroup
>> ns:/node_ 1073
>>

>> sys_hijack is arch-dependent and is only implemented for i386 so far.
>>

>> Changelog:

>> Aug 23: send a stop signal to the hijacked process

>> (like ptrace does).

>> QOct 09: Update for 2.6.23-rc8-mm2 (mainly pidns)

>> Don't take task_lock under rcu_read_lock

>> Send hijacked process to cgroup_fork() as

>> the first argument.

>> Removed some unneeded task_locks.

>

> Thanks to Cedric for finding an oops when using pid namespaces. The
> following patch fixes the problem.

it works fine now.
Thanks !

C.

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] namespaces: introduce sys_hijack (v4)
Posted by Cedric Le Goater on Tue, 16 Oct 2007 08:51:04 GMT

View Forum Message <> Reply to Message

>> hmm, I'm wondering how this is going to work for a process which
>> would have unshared its device (pts) namespace. How are we going
>> to link the pts living in different namespaces if the stdios of the

>> hijacked process is using them ? like in the case of a shell, which

>> js certainly something we would like to hijacked.

>>

>> it looks like a challenge for me. maybe I'm wrong.

>

> Might be a problem, but tough to address that until we actually

> have a dev ns or devpts ns and established semantics.

Page 21 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=205
https://new-forum.openvz.org/index.php?t=rview&th=4182&goto=21781#msg_21781
https://new-forum.openvz.org/index.php?t=post&reply_to=21781
https://new-forum.openvz.org/index.php

>
> Note the filestruct comes from current, not the hijack target, so
> presumably we can work around the tty issue in any case by
> keeping an open file across the hijack?

>

> For instance, use the attached modified version of hijack.c

> which puts a writeable fd for /tmp/helloworld in fd 5, then

> does hijack, then from the resulting shell do

>

> echo ab >&5

>

> So we should easily be able to work around it.

yes. it should.
> Or am i missing something?

| guess we need to work a little more on the pts/device namespace
to see how it interacts.

>>> The effect is a sort of namespace enter. The following program
>>> uses sys_hijack to 'enter' all namespaces of the specified pid.
>>> For instance in one terminal, do

>>>

>>> mount -t cgroup -ons /cgroup

>>> hostname

>>> gemu

>>> ns_exec -u /bin/sh

>>> hostname serge

>>> echo $$

>>> 1073

>>> cat /proc/$$/cgroup

>>> ns:/node 1073

>> |s there a reason to have the 'node_' prefix ? couldn't we just

>> use $pid ?

>

> Good question. It's just how the ns-cgroup does it... If you want to
> send in a patch to change that, I'll ack it.

just below.

| gave a quick look to the ns subsystem and didn't see how the node_$pid
was destroyed. do we have to do a rmdir ?

Thanks,

Page 22 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Signed-off-by: Cedric Le Goater <clg@fr.ibom.com>
kernel/cgroup.c| 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)

Index: 2.6.23-mm1/kernel/cgroup.c

--- 2.6.23-mm1.orig/kernel/cgroup.c

+++ 2.6.23-mm2l/kernel/cgroup.c

@@ -2604,7 +2604,7 @@ int cgroup_clone(struct task_struct *tsk
cg = tsk->cgroups;
parent = task_cgroup(tsk, subsys->subsys _id);

- snprintf(hodename, MAX_CGROUP_TYPE_NAMELEN, "node_%d", tsk->pid);
+ snprintf(hodename, MAX_CGROUP_TYPE_NAMELEN, "%d", tsk->pid);

/* Pin the hierarchy */
atomic_inc(&parent->root->sb->s_active);

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] namespaces: introduce sys_hijack (v4)
Posted by Paul Menage on Tue, 16 Oct 2007 09:09:44 GMT

View Forum Message <> Reply to Message

One thought on this - could we make the API have a "which" parameter
that indicates the type of thing being acted upon? E.g., like
sys_setpriority(), which can specify the target as a process, a pgrp

or a user.

Right now the target would just be a process, but I'd really like the
ability to be able to specify an fd on a cgroup directory to indicate

that | want the child to inherit from that cgroup's namespaces. That
way you wouldn't need to keep a child process alive in the namespace
just to act as a hijack target.

Paul

On 10/9/07, Serge E. Hallyn <serue@us.ibm.com> wrote:

> >From 945fe66259cd0cfdc2fe846287b7821e329a558¢c Mon Sep 17 00:00:00 2001
> From: sergeh@us.ibm.com <hallyn@kernel.(none)>

> Date: Tue, 9 Oct 2007 08:30:30 -0700

> Subject: [PATCH] namespaces: introduce sys_hijack (v4)

Page 23 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=4182&goto=21782#msg_21782
https://new-forum.openvz.org/index.php?t=post&reply_to=21782
https://new-forum.openvz.org/index.php

>
> Move most of do_fork() into a new do_fork_task() which acts on
> a new argument, task, rather than on current. do_fork() becomes
> a call to do_fork_task(current, ...).
>
> Introduce sys_hijack (for x86 only so far). Itis like clone, but
> in place of a stack pointer (which is assumed null) it accepts a
> pid. The process identified by that pid is the one which is
> actually cloned. Some state - include the file table, the signals
> and sighand (and hence tty), and the ->parent are taken from the
> calling process.
>
> The effect is a sort of namespace enter. The following program
> uses sys_hijack to ‘enter’ all namespaces of the specified pid.
> For instance in one terminal, do
>
mount -t cgroup -ons /cgroup
hostname

gemu
ns_exec -u /bin/sh

hostname serge

echo 3

1073
cat /proc/$$/cgroup
ns:/node_1073

In another terminal then do

hostname
gemu
cat /proc/$$/cgroup
ns:/
hijack 1073
hostname
serge
cat /proc/$$/cgroup
ns:/node_1073

Changelog:

Aug 23: send a stop signal to the hijacked process
(like ptrace does).

Oct 09: Update for 2.6.23-rc8-mm2 (mainly pidns)
Don't take task_lock under rcu_read_lock
Send hijacked process to cgroup_fork() as
the first argument.
Removed some unneeded task_locks.

VVVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYVYV

Page 24 of 43 ---- Cenerated from OpenVZ Forum

sys_hijack is arch-dependent and is only implemented for i386 so far.

https://new-forum.openvz.org/index.php

> e e
> hijack.c
> Sl s
>
> int do_clone_task(void)
>{
> execl("/bin/sh", "/bin/sh", NULL);
>}
>
> int main(int argc, char *argv(])
>{
> int pid;

int ret;

int status;

if (argc < 2)

return 1,

pid = atoi(argv[1]);
ret = syscall(327, SIGCHLD, pid, NULL, NULL);

if (ret==0){
return do_clone_task();
}else if (ret < 0) {
perror("sys_hijack");
} else {
printf("waiting on cloned process %d\n", ret);
while (waitpid(ret, &status, _ WCLONE) != ret);
printf("cloned process %d exited with %d\n", ret, status);

VVVVVVVVVVVVVVVVYVYVYVYVYV

}
return ret;
}
> S s s s s e e e s s
>
> Signed-off-by: Serge Hallyn <serue@us.ibm.com>
>
> arch/i386/kernel/process.c | 58 ++++++++++++++ttt bbb+
> arch/i386/kernel/syscall_table.S| 1+
> arch/s390/kernel/process.c | 12 +++++-
> include/asm-i386/unistd.h | 3+
> include/linux/cgroup.h | 5 ++-
> include/linux/pid.h | 2+
> include/linux/ptrace.h | 1+
> include/linux/sched.h | 2+
> include/linux/syscalls.h | 1+
> kernel/cgroup.c | 8 ++--

Page 25 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> kernel/fork.c | 69 ++++++++++++++ttttttttt bt
> kernel/pid.c | 5 ++-

> kernel/ptrace.c | 7 ++++

>

13 files changed, 141 insertions(+), 33 deletions(-)

>

> diff --git a/arch/i386/kernel/process.c b/arch/i386/kernel/process.c

> index bfcdOle..01f4d16 100644

> --- a/arch/i386/kernel/process.c

> +++ b/arch/i386/kernel/process.c

> @@ -455,8 +455,15 @@ int copy_thread(int nr, unsigned long clone_flags, unsigned long esp,

> unsigned long unused,

> struct task_struct * p, struct pt_regs * regs)

> {

>+ return copy_a_thread(current, nr, clone_flags, esp, unused,
>+ p, regs);

> +}

>+

> +int copy_a_thread(struct task_struct *tsk, int nr, unsigned long clone_flags,
>+ unsigned long esp, unsigned long unused,
>+ struct task_struct * p, struct pt_regs * regs)

> +{

> struct pt_regs * childregs;
> - struct task_struct *tsk;

> int err;

>

> childregs = task_pt_regs(p);
>@@ -471,7 +478,6 @@ int copy_thread(int nr, unsigned long clone_flags, unsigned long esp,
>

savesegment(gs,p->thread.gs);

>
>
> - tsk = current;

> if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {

> p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,

> IO_BITMAP_BYTES, GFP_KERNEL);

> @@ -783,6 +789,54 @@ asmlinkage int sys_clone(struct pt_regs regs)

> return do_fork(clone_flags, newsp, ®s, 0, parent_tidptr, child_tidptr);
>}

>

> +asmlinkage int sys_hijack(struct pt_regs regs)

> +{

>+ unsigned long clone_flags;

>+ int__user *parent_tidptr, *child_tidptr;

>+ pid_t pid,;

>+ struct task_struct *task;

>+ int ret = -EINVAL;

>+

>+ clone_flags = regs.ebx;

>+ pid = regs.ecx;

Page 26 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>+ parent_tidptr = (int _user *)regs.edx;
>+ child_tidptr = (int __user *)regs.edi;
>+

> + rcu_read_lock();

>+ task = find_task_by vpid(pid);

>+ if (task)

>+ get_task_struct(task);

>+ rcu_read_unlock();

>+

>+ if (task) {

>+ task_lock(task);

>+ put_task_struct(task);

>+ }

>+

>+ if (task) {

>+ if (Iptrace_may_attach_locked(task)) {
>+ ret = -EPERM,;

>+ goto out_put_task;

>+ }

>+ if (task->ptrace) {

>+ ret = -EBUSY;

> + goto out_put_task;

>+ }

>+ force_sig_specific(SIGSTOP, task);
>+

>+ task_unlock(task);

>+ ret = do_fork_task(task, clone_flags, regs.esp, ®s, 0O,
>+ parent_tidptr, child_tidptr);
>+ wake_up_process(task);

>+ task = NULL;

>+ }

>+

> +out_put_task:

>+ if (task)

>+ task_unlock(task);

>+ return ret;

> +}

>+

> [*

> *This is trivial, and on the face of it looks like it

> * could equally well be done in user mode.

> diff --git a/arch/i386/kernel/syscall_table.S b/arch/i386/kernel/syscall_table.S
> index df6e41e..495930c 100644

> --- a/arch/i386/kernel/syscall_table.S

> +++ b/arch/i386/kernel/syscall_table.S

> @@ -326,3 +326,4 @@ ENTRY(sys_call_table)

> Jong sys_fallocate

> Jong sys_revokeat [* 325 */

Page 27 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> Jong sys_frevoke

>+ Jong sys_hijack

> diff --git a/arch/s390/kernel/process.c b/arch/s390/kernel/process.c

> index 70c5737..f256e7a 100644

> --- alarch/s390/kernel/process.c

> +++ b/arch/s390/kernel/process.c

> @@ -223,6 +223,14 @@ int copy_thread(int nr, unsigned long clone_flags, unsigned long

new_stackp,

> unsigned long unused,

> struct task_struct * p, struct pt_regs * regs)

> {

>+ return copy_a_thread(current, nr, clone_flags, new_stackp, unused,
>+ p, regs);

> +}

>+

> +int copy_a_thread(struct task_struct *task, int nr, unsigned long clone_flags,
>+ unsigned long new_stackp, unsigned long unused,

>+ struct task_struct * p, struct pt_regs * regs)

> +{

> struct fake_frame

> {

> struct stack frame sf;

> @@ -251,8 +259,8 @@ int copy_thread(int nr, unsigned long clone_flags, unsigned long
new_stackp,

> * save fprs to current->thread.fp_regs to merge them with

> * the emulated registers and then copy the result to the child.
> */

> - save_fp_regs(¤t->thread.fp_regs);

> - memcpy(&p->thread.fp_regs, ¤t->thread.fp_regs,

>+ save_fp_regs(&task->thread.fp_regs);

>+ memcpy(&p->thread.fp_regs, &task->thread.fp_regs,

> sizeof(s390_fp_regs));

> p->thread.user_seg = __ pa((unsigned long) p->mm->pgd) | SEGMENT_TABLE;
> [* Setanew TLS ? */

> diff --git a/include/asm-i386/unistd.h b/include/asm-i386/unistd.h
> index 006c1b3..fe6eeb4 100644

> --- a/include/asm-i386/unistd.h

> +++ b/include/asm-i386/unistd.h

> @@ -332,10 +332,11 @@

> #define __ NR_fallocate 324

> #define _ NR_revokeat 325
> #define _ NR_frevoke 326
> +#define __NR_hijack 327

>

> #ifdef KERNEL__

>

> -#define NR_syscalls 327
> +#define NR_syscalls 328

Page 28 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>
> #define __ ARCH_WANT_IPC_PARSE_VERSION

> #define __ ARCH_WANT_OLD_READDIR

> diff --git a/include/linux/cgroup.h b/include/linux/cgroup.h

> index 8747932..cb6d335 100644

> --- a/include/linux/cgroup.h

> +++ b/include/linux/cgroup.h

> @@ -26,7 +26,7 @@ extern int cgroup_init(void);

> extern void cgroup_init_smp(void);

> extern void cgroup_lock(void);

> extern void cgroup_unlock(void);

> -extern void cgroup_fork(struct task_struct *p);

> +extern void cgroup_fork(struct task_struct *parent, struct task_struct *p);
> extern void cgroup_fork_callbacks(struct task_struct *p);

> extern void cgroup_post_fork(struct task_struct *p);

> extern void cgroup_exit(struct task_struct *p, int run_callbacks);

> @@ -309,7 +309,8 @@ void cgroup_iter_end(struct cgroup *cont, struct cgroup_iter *it);
> static inline int cgroup_init_early(void) { return 0; }

> static inline int cgroup_init(void) { return 0; }

> static inline void cgroup_init_smp(void) {}

> -static inline void cgroup_fork(struct task_struct *p) {}

> +static inline void cgroup_fork(struct task_struct *parent,

> + struct task_struct *p) {}

> static inline void cgroup_fork_callbacks(struct task_struct *p) {}

> static inline void cgroup_post_fork(struct task_struct *p) {}

> static inline void cgroup_exit(struct task_struct *p, int callbacks) {}
> diff --git a/include/linux/pid.h b/include/linux/pid.h

> index €29a900..145dce7 100644

> --- a/include/linux/pid.h

> +++ b/include/linux/pid.h

> @@ -119,7 +119,7 @@ extern struct pid *find_pid(int nr);

> extern struct pid *find_get_pid(int nr);

> extern struct pid *find_ge_pid(int nr, struct pid_namespace *);

>

> -extern struct pid *alloc_pid(struct pid_namespace *ns);

> +extern struct pid *alloc_pid(struct task_struct *task);

> extern void FASTCALL(free_pid(struct pid *pid));

> extern void zap_pid_ns_processes(struct pid_namespace *pid_ns);
>

> diff --git a/include/linux/ptrace.h b/include/linux/ptrace.h

> index ae8146a..727a4a9 100644

> --- a/include/linux/ptrace.h

> +++ b/include/linux/ptrace.h

> @@ -97,6 +97,7 @@ extern void ___ptrace_link(struct task_struct *child,
> extern void __ ptrace_unlink(struct task_struct *child);

> extern void ptrace_untrace(struct task_struct *child);

> extern int ptrace_may_attach(struct task_struct *task);

> +extern int ptrace_may_attach_locked(struct task_struct *task);

Page 29 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>
> static inline void ptrace_link(struct task_struct *child,

> struct task_struct *new_parent)

> diff --git a/include/linux/sched.h b/include/linux/sched.h

> index 4f21afl..d85c3cf 100644

> --- a/include/linux/sched.h

> +++ b/include/linux/sched.h

> @@ -1630,6 +1630,7 @@ extern struct mm_struct *get_task_mm(struct task_struct *task);

> extern void mm_release(struct task_struct *, struct mm_struct *);

>

> extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *,
struct pt_regs *);

> +extern int copy_a_thread(struct task_struct *, int, unsigned long, unsigned long, unsigned
long, struct task_struct *, struct pt_regs *);

> extern void flush_thread(void);

> extern void exit_thread(void);

>

> @@ -1645,6 +1646,7 @@ extern int allow_signal(int);

> extern int disallow_signal(int);

>

> extern int do_execve(char *, char __user* __user * char __user* __user *, struct pt_regs *);
> +extern long do_fork task(struct task_struct *task, unsigned long, unsigned long, struct pt_regs
*, unsigned long, int __user *, int _user *);

> extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int _user *,

int_user *);
> struct task_struct *fork_idle(int);
>

> diff --git a/include/linux/syscalls.h b/include/linux/syscalls.h

> index f696874..5bc7384 100644

> --- a/include/linux/syscalls.h

> +++ b/include/linux/syscalls.h

> @@ -616,5 +616,6 @@ int kernel_execve(const char *filename, char *const argv[], char *const

envpll);
>

> asmlinkage long sys_revokeat(int dfd, const char __user *filename);

> asmlinkage long sys_frevoke(unsigned int fd);

> +asmlinkage long sys_hijack(unsigned long flags, pid_t pid, int __user *ptid, int __user *ctid);
>

> #endif

> diff --git a/kernel/cgroup.c b/kernel/cgroup.c

> index 1e8aa53..e587896 100644

> --- a/kernel/cgroup.c

> +++ b/kernel/cgroup.c

> @@ -2460,12 +2460,12 @@ static struct file_operations proc_cgroupstats_operations = {
> * At the point that cgroup_fork() is called, ‘current' is the parent

> *task, and the passed argument ‘child’ points to the child task.

> *

> -void cgroup_fork(struct task_struct *child)

Page 30 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> +void cgroup_fork(struct task_struct *parent, struct task_struct *child)

> {
> - task_lock(current);
> - child->cgroups = current->cgroups;

> + task _lock(parent);
>+ child->cgroups = parent->cgroups;

> get_css_set(child->cgroups);

> - task_unlock(current);

>+ task_unlock(parent);

> INIT_LIST_HEAD(&child->cg_list);
>}

>

> diff --git a/kernel/fork.c b/kernel/fork.c

> index f85731a..ac73f3e 100644

> --- a/kernel/fork.c

> +++ b/kernel/fork.c

> @@ -621,13 +621,14 @@ struct fs_struct *copy_fs_struct(struct fs_struct *old)
>

> EXPORT_SYMBOL_GPL(copy_fs_struct);

>

> -static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)

> +static inline int copy_fs(unsigned long clone_flags,

>+ struct task_struct * src, struct task_struct * tsk)
>{

> if (clone_flags & CLONE_FS) {

> - atomic_inc(¤t->fs->count);
>+ atomic_inc(&src->fs->count);

> return O;

> }

> - tsk->fs = copy_fs_struct(current->fs);
>+ tsk->fs = copy_fs_struct(src->fs);

> if (Itsk->fs)

> return -ENOMEM;

> return O;

> @@ -973,7 +974,8 @@ static inline void rt_mutex_init_task(struct task_struct *p)
> * parts of the process environment (as per the clone

> *flags). The actual kick-off is left to the caller.

> %

> -static struct task_struct *copy_process(unsigned long clone_flags,

> +static struct task_struct *copy_process(struct task_struct *task,

>+ unsigned long clone_flags,

> unsigned long stack_start,

> struct pt_regs *regs,

> unsigned long stack_size,

> @@ -1007,15 +1009,17 @@ static struct task_struct *copy_process(unsigned long clone_flags,
> goto fork_out;

>

> retval = -ENOMEM;

Page 31 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> - p = dup_task_struct(current);
>+ p = dup_task_struct(task);

> if (Ip)

> goto fork_out;

>

> rt_mutex_init_task(p);

>

> #ifdef CONFIG_TRACE_IRQFLAGS

> - DEBUG_LOCKS_WARN_ON(!p->hardirgs_enabled);
> - DEBUG_LOCKS_WARN_ON(!p->softirgs_enabled);
>+ if (task == current) {

>+ DEBUG_LOCKS_WARN_ON(!p->hardirgs_enabled);
>+ DEBUG_LOCKS_WARN_ON(!p->softirgs_enabled);
>+ }

> #endif

> retval = -EAGAIN;

> if (atomic_read(&p->user->processes) >=

> @@ -1084,7 +1088,7 @@ static struct task_struct *copy_process(unsigned long clone_flags,
> #endif

> p->io_context = NULL;

> p->audit_context = NULL,;

> - cgroup_fork(p);

> + cgroup_fork(task, p);

> #ifdef CONFIG_NUMA

> p->mempolicy = mpol_copy(p->mempolicy);

> if IS_ERR(p->mempolicy)) {

> @@ -1132,7 +1136,7 @@ static struct task_struct *copy_process(unsigned long clone_flags,

> goto bad_fork_cleanup_audit;

> if ((retval = copy_files(clone_flags, p)))

> goto bad_fork_cleanup_semundo;

> - if ((retval = copy_fs(clone_flags, p)))

>+ if ((retval = copy_fs(clone_flags, task, p)))

> goto bad_fork_cleanup_files;

> if ((retval = copy_sighand(clone_flags, p)))

> goto bad_fork_cleanup_fs;

> @@ -1144,13 +1148,13 @@ static struct task_struct *copy_process(unsigned long clone_flags,
> goto bad_fork_cleanup_mm;

> if ((retval = copy_namespaces(clone_flags, p)))

> goto bad_fork_cleanup_keys;

> - retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
>+ retval = copy_a_thread(task, O, clone_flags, stack_start, stack_size, p, regs);
> if (retval)

> goto bad_fork cleanup_namespaces;

>

> if (pid != &init_struct_pid) {

> retval = -ENOMEM;

> - pid = alloc_pid(task_active_pid_ns(p));

>+ pid = alloc_pid(task);

Page 32 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> if (Ipid)

> goto bad_fork_cleanup_namespaces;

>

> @@ -1164,7 +1168,7 @@ static struct task_struct *copy_process(unsigned long clone_flags,
> p->pid = pid_nr(pid);

> p->tgid = p->pid;

> if (clone_flags & CLONE_THREAD)

> - p->tgid = current->tgid;
>+ p->tgid = task->tgid;
>

> p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
> /*

> @@ -1380,7 +1384,7 @@ struct task_struct * __ cpuinit fork_idle(int cpu)

> struct task_struct *task;

> struct pt_regs regs;

>

> - task = copy_process(CLONE_VM, 0, idle_regs(®s), 0, NULL,

>+ task = copy_process(current, CLONE_VM, 0, idle_regs(®s), 0, NULL,

> &init_struct_pid);

> if (IIS_ERR(task))

> init_idle(task, cpu);

> @@ -1405,12 +1409,12 @@ static inline int fork_traceflag (unsigned clone_flags)
>}

>

> [*

> - * Ok, this is the main fork-routine.

> - *

> - * |t copies the process, and if successful kick-starts

> - * jt and waits for it to finish using the VM if required.

> + * if called with task!=current, then caller must ensure that
>+* 1.1t has a reference to task

>+ * 2. current must have ptrace permission to task

> %

> -long do_fork(unsigned long clone_flags,

> +long do_fork_task(struct task_struct *task,

>+ unsigned long clone_flags,

> unsigned long stack_start,

> struct pt_regs *regs,

> unsigned long stack_size,

> @@ -1421,13 +1425,23 @@ long do_fork(unsigned long clone_flags,
> int trace = 0;

> long nr;

>

>+ if (task != current) {

>+ [* sanity checks */

>+ /* we only want to allow hijacking the simplest cases */
>+ if (clone_flags & CLONE_SYSVSEM)

>+ return -EINVAL;

Page 33 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>+ if (current->ptrace)

>+ return -EPERM;
>+ if (task->ptrace)

>+ return -EINVAL;
>+ }

> if (unlikely(current->ptrace)) {

trace = fork_traceflag (clone_flags);
if (trace)
clone_flags |= CLONE_PTRACE;
}

p = copy_process(clone_flags, stack_start, regs, stack_size,
p = copy_process(task, clone_flags, stack_start, regs, stack_size,
child_tidptr, NULL);
/*
* Do this prior waking up the new thread - the thread pointer
@@ -1489,6 +1503,23 @@ long do_fork(unsigned long clone_flags,
return nr;
}
>

> +f*

>+ * QKk, this is the main fork-routine.

>+ *

> + * |t copies the process, and if successful kick-starts
> + * it and waits for it to finish using the VM if required.

VVVVVVVYVVYVYVYVYV
+I

>+ %/

> +long do_fork(unsigned long clone_flags,

>+ unsigned long stack_start,

>+ struct pt_regs *regs,

>+ unsigned long stack_size,

>+ int__user *parent_tidptr,

>+ int__user *child_tidptr)

> +{

>+ return do_fork_task(current, clone_flags, stack_start,
>+ regs, stack_size, parent_tidptr, child_tidptr);
> +}

>+

> #ifndef ARCH_MIN_MMSTRUCT_ALIGN

> #define ARCH_MIN_MMSTRUCT_ALIGN 0

> #endif

> diff --git a/kernel/pid.c b/kernel/pid.c

> index d7388d7..b887a6a 100644

> --- a/kernel/pid.c

> +++ b/kernel/pid.c

> @@ -238,14 +238,15 @@ fastcall void free_pid(struct pid *pid)
> call_rcu(&pid->rcu, delayed_put_pid);

>}

>

Page 34 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> -struct pid *alloc_pid(struct pid_namespace *ns)

> +struct pid *alloc_pid(struct task_struct *srctsk)

>

> struct pid *pid;

> enum pid_type type;

> inti, nr;

> - struct pid_namespace *tmp;

>+ struct pid_namespace *tmp, *ns;

> struct upid *upid;

>

>+ ns = task_active_pid_ns(srctsk);

> pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
> if (!pid)

> goto out;

> diff --git a/kernel/ptrace.c b/kernel/ptrace.c

> index 7c76f2f..c65c9fe 100644

> --- a/kernel/ptrace.c

> +++ b/kernel/ptrace.c

> @@ -159,6 +159,13 @@ int ptrace_may_attach(struct task_struct *task)
> return lerr,;

>}

>

> +int ptrace_may_attach_locked(struct task_struct *task)
> +{

>+ int err;

>+ err = may_attach(task);

>+ return lerr;

> +}

>+

> int ptrace_attach(struct task_struct *task)
>{

> int retval;

> -

>15.1

>

>

> Containers mailing list

> Containers@lists.linux-foundation.org

> https://lists.linux-foundation.org/mailman/listinfo/containers
>

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] namespaces: introduce sys_hijack (v4)

Page 35 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Posted by serue on Tue, 16 Oct 2007 14:31:52 GMT

View Forum Message <> Reply to Message

Quoting Cedric Le Goater (clg@fr.ibm.com):

>

> >> hmm, I'm wondering how this is going to work for a process which
> >> would have unshared its device (pts) namespace. How are we going
> >> to link the pts living in different namespaces if the stdios of the

> >> hijacked process is using them ? like in the case of a shell, which
> >> is certainly something we would like to hijacked.

> >>

> >> it looks like a challenge for me. maybe I'm wrong.

> >

> > Might be a problem, but tough to address that until we actually

> > have a dev ns or devpts ns and established semantics.

> >

> > Note the filestruct comes from current, not the hijack target, so

> > presumably we can work around the tty issue in any case by

> > keeping an open file across the hijack?

> >

> > For instance, use the attached modified version of hijack.c

> > which puts a writeable fd for /tmp/helloworld in fd 5, then

> > does hijack, then from the resulting shell do

> >

> > echo ab >&5

> >

> > So we should easily be able to work around it.
>

> yes. it should.

>

> > Or am i missing something?

>

> | guess we need to work a little more on the pts/device namespace
> to see how it interacts.

>

> >>> The effect is a sort of namespace enter. The following program
> >>> uses sys_hijack to 'enter’ all namespaces of the specified pid.
> >>> For instance in one terminal, do

> >>>

> >>> mount -t cgroup -ons /cgroup

> >>> hostname

> >>> qemu

> >>> ns_exec -u /bin/sh

>>>> hostname serge

> >>> echo $$

> >>> 1073

> >>> cat/proc/$$/cgroup

>>>> ns:/node_1073

> >> |s there a reason to have the 'node_' prefix ? couldn't we just

Page 36 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=204
https://new-forum.openvz.org/index.php?t=rview&th=4182&goto=21819#msg_21819
https://new-forum.openvz.org/index.php?t=post&reply_to=21819
https://new-forum.openvz.org/index.php

> >> use $pid ?

> >

> > Good question. It's just how the ns-cgroup does it... If you want to
> > send in a patch to change that, I'll ack it.

>

> just below.

>

> | gave a quick look to the ns subsystem and didn't see how the node_$pid
> was destroyed. do we have to do a rmdir ?

>

> Thanks,

>

>

> C.

>

> Signed-off-by: Cedric Le Goater <clg@fr.ibom.com>

Thanks.

Acked-by: Serge Hallyn <serue@us.ibm.com>

-

> kernel/cgroup.c| 2 +-

> 1 file changed, 1 insertion(+), 1 deletion(-)
>

> Index: 2.6.23-mm1l/kernel/cgroup.c

> --- 2.6.23-mm1.orig/kernel/cgroup.c
> +++ 2.6.23-mm1l/kernel/cgroup.c
> @@ -2604,7 +2604,7 @@ int cgroup_clone(struct task_struct *tsk

> cg = tsk->cgroups;
> parent = task_cgroup(tsk, subsys->subsys _id);
>

> - snprintf(nodename, MAX_CGROUP_TYPE_NAMELEN, "node_%d", tsk->pid);
>+ snprintf(hodename, MAX_CGROUP_TYPE_NAMELEN, "%d", tsk->pid);

>

> [* Pin the hierarchy */

> atomic_inc(&parent->root->sb->s_active);

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] namespaces: introduce sys_hijack (v4)
Posted by serue on Tue, 16 Oct 2007 14:37:44 GMT

View Forum Message <> Reply to Message

Page 37 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=204
https://new-forum.openvz.org/index.php?t=rview&th=4182&goto=21821#msg_21821
https://new-forum.openvz.org/index.php?t=post&reply_to=21821
https://new-forum.openvz.org/index.php

Quoting Paul Menage (menage@google.com):

> One thought on this - could we make the API have a "which" parameter
> that indicates the type of thing being acted upon? E.g., like

> sys_setpriority(), which can specify the target as a process, a pgrp

> or a user.

>

> Right now the target would just be a process, but I'd really like the

> ability to be able to specify an fd on a cgroup directory to indicate

> that | want the child to inherit from that cgroup's namespaces. That

> way you wouldn't need to keep a child process alive in the namespace
> just to act as a hijack target.

Good idea. | would in fact originally have taken a cgroup instead of a
pid, but wasn't sure how best to identify the cgroup. Originally | was
more worried about pid exiting/wraparound, but then decided that with a
real container the container_init can't go away until the container goes
away anyway.

Anyway, | can go ahead and add 'int which' to the parameter list now,
and leave the details of how to specify a cgroup for later. That way at
least the api won't fundamentally change again.

Good idea, thanks.

-serge

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] namespaces: introduce sys_hijack (v4)
Posted by Paul Menage on Tue, 16 Oct 2007 16:32:16 GMT

View Forum Message <> Reply to Message

On 10/16/07, Serge E. Hallyn <serue@us.ibm.com> wrote:

> pid, but wasn't sure how best to identify the cgroup. Originally | was

> more worried about pid exiting/wraparound, but then decided that with a
> real container the container_init can't go away until the container goes
> away anyway.

For those "real containers" that have init. Not everything is going to
need that level of virtualization, particularly if you're primarily
interested in isolation.

>

> Anyway, | can go ahead and add 'int which' to the parameter list now,
> and leave the details of how to specify a cgroup for later. That way at

Page 38 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=4182&goto=21829#msg_21829
https://new-forum.openvz.org/index.php?t=post&reply_to=21829
https://new-forum.openvz.org/index.php

> least the api won't fundamentally change again.
Great, thanks.

Paul

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] namespaces: introduce sys_hijack (v4)
Posted by serue on Tue, 16 Oct 2007 18:57:37 GMT

View Forum Message <> Reply to Message

Quoting Paul Menage (menage@google.com):

> On 10/16/07, Serge E. Hallyn <serue@us.ibm.com> wrote:

> > pid, but wasn't sure how best to identify the cgroup. Originally | was

> > more worried about pid exiting/wraparound, but then decided that with a
> > real container the container_init can't go away until the container goes
> > away anyway.

>

> For those "real containers” that have init. Not everything is going to

> need that level of virtualization, particularly if you're primarily

> interested in isolation.

Currently every pid namespace's pid==1 must stick around as long as the
pid namespace does. If you kill the pid==1, all processes in the
container are killed.

> > Anyway, | can go ahead and add 'int which' to the parameter list now,
> > and leave the details of how to specify a cgroup for later. That way at
> > |east the api won't fundamentally change again.

>

> Great, thanks.

Since the goal here is to get the API right, do you know how we expect
to send the cgroup in? A string?

Currently my prototype is

+asmlinkage long sys_hijack(unsigned long flags, int which, pid_t pid,
+ const char __user *cgroup);

But that doesn't seem quite right. At that point we just ditch ‘'which'’
and use cgroups if it's not NULL, use pid otherwise...

Thoughts?

Page 39 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=204
https://new-forum.openvz.org/index.php?t=rview&th=4182&goto=21835#msg_21835
https://new-forum.openvz.org/index.php?t=post&reply_to=21835
https://new-forum.openvz.org/index.php

thanks,
-serge

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] namespaces: introduce sys_hijack (v4)
Posted by Paul Menage on Tue, 16 Oct 2007 19:03:17 GMT

View Forum Message <> Reply to Message

On 10/16/07, Serge E. Hallyn <serue@us.ibm.com> wrote:

>

> Currently every pid namespace's pid==1 must stick around as long as the
> pid namespace does. If you kill the pid==1, all processes in the

> container are killed.

What about people who aren't using pid namespaces?

>

> > > Anyway, | can go ahead and add 'int which' to the parameter list now,
> > > and leave the details of how to specify a cgroup for later. That way at
> > > |east the api won't fundamentally change again.

> >

> > Great, thanks.

>

> Since the goal here is to get the API right, do you know how we expect

> to send the cgroup in? A string?

My thought was to use an fd on an open cgroup directory - that can be
trivially translated into a cgroup.

Paul

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] namespaces: introduce sys_hijack (v4)
Posted by serue on Tue, 16 Oct 2007 19:12:00 GMT

View Forum Message <> Reply to Message

Quoting Paul Menage (menage@google.com):
> On 10/16/07, Serge E. Hallyn <serue@us.ibm.com> wrote:

Page 40 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=4182&goto=21836#msg_21836
https://new-forum.openvz.org/index.php?t=post&reply_to=21836
https://new-forum.openvz.org/index.php?t=usrinfo&id=204
https://new-forum.openvz.org/index.php?t=rview&th=4182&goto=21837#msg_21837
https://new-forum.openvz.org/index.php?t=post&reply_to=21837
https://new-forum.openvz.org/index.php

> >
> > Currently every pid namespace's pid==1 must stick around as long as the
> > pid namespace does. If you kill the pid==1, all processes in the

> > container are killed.

>

> What about people who aren't using pid hamespaces?

Not really isolated? :)

> >>> Anyway, | can go ahead and add 'int which' to the parameter list now,
> > > > and leave the details of how to specify a cgroup for later. That way at
> > > > |east the api won't fundamentally change again.

>>>

> > > Great, thanks.

> >

> > Since the goal here is to get the API right, do you know how we expect

> > to send the cgroup in? A string?

>

> My thought was to use an fd on an open cgroup directory - that can be

> trivially translated into a cgroup.

Oh good, so | can just pass in a single arg id, so

asmlinkage long sys_hijack(unsigned long clone_flags, int which,
unsigned long id);

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] namespaces: introduce sys_hijack (v4)
Posted by Paul Menage on Tue, 16 Oct 2007 19:29:36 GMT

View Forum Message <> Reply to Message

On 10/16/07, Serge E. Hallyn <serue@us.ibm.com> wrote:
>

> Oh good, so | can just pass in a single arg id, so

>

> asmlinkage long sys_hijack(unsigned long clone_flags, int which,
> unsigned long id);

>

Sounds good.

Page 41 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=4182&goto=21838#msg_21838
https://new-forum.openvz.org/index.php?t=post&reply_to=21838
https://new-forum.openvz.org/index.php

Paul

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] namespaces: introduce sys_hijack (v4)
Posted by Paul Menage on Tue, 16 Oct 2007 19:32:05 GMT

View Forum Message <> Reply to Message

On 10/16/07, Serge E. Hallyn <serue@us.ibm.com> wrote:
>

> Oh good, so | can just pass in a single arg id, so

>
> asmlinkage long sys_hijack(unsigned long clone_flags, int which,
> unsigned long id);

>

Sounds good.

Paul

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] namespaces: introduce sys_hijack (v4)
Posted by Cedric Le Goater on Tue, 16 Oct 2007 21:28:22 GMT

View Forum Message <> Reply to Message

> asmlinkage long sys_hijack(unsigned long clone_flags, int which,
> unsigned long id);

| expect to get more explanation of the arguments in the patch
you are going to send :)

'which' is used as a switch for 'id" : pid or fd on a open cgroup
directory. right ?

Thanks,

C.

Containers mailing list
Containers@lists.linux-foundation.org

Page 42 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=4182&goto=21839#msg_21839
https://new-forum.openvz.org/index.php?t=post&reply_to=21839
https://new-forum.openvz.org/index.php?t=usrinfo&id=205
https://new-forum.openvz.org/index.php?t=rview&th=4182&goto=21842#msg_21842
https://new-forum.openvz.org/index.php?t=post&reply_to=21842
https://new-forum.openvz.org/index.php

https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] namespaces: introduce sys_hijack (v4)
Posted by serue on Tue, 16 Oct 2007 21:32:00 GMT

View Forum Message <> Reply to Message

Quoting Cedric Le Goater (clg@fr.ibm.com):
>

> > asmlinkage long sys_hijack(unsigned long clone_flags, int which,
> > unsigned long id);
>

> | expect to get more explanation of the arguments in the patch
> you are going to send :)
There'll have to be a man page at some point (ugh).

> 'which' is used as a switch for 'id' : pid or fd on a open cgroup
> directory. right ?

Yup.

-serge

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 43 of 43 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=204
https://new-forum.openvz.org/index.php?t=rview&th=4182&goto=21843#msg_21843
https://new-forum.openvz.org/index.php?t=post&reply_to=21843
https://new-forum.openvz.org/index.php

