Subject: [PATCH] Simplify memory controller and resource counter /O
Posted by Paul Menage on Wed, 26 Sep 2007 04:17:19 GMT

View Forum Message <> Reply to Message

Simplify the memory controller and resource counter I/O routines

This patch strips out some I/O boilerplate from resource counters and
the memory controller. It also adds locking to the resource counter
reads and writes, and forbids writes to the root memory cgroup's limit
file.

One arguable drawback to this patch is that the use of memparse() is
lost in the cleanup. Having said that, given the existing of shell
arithmetic, it's not clear to me that typing

echo $[2<<30] > memory.limit
is especially harder than
echo 2G > memory.limit

Signed-off-by: Paul Menage <menage@google.com>

include/linux/res_counter.n | 13 +----

kernel/res_counter.c | 64 +++++---mmommmm -
mm/memcontrol.c | 103 ++++++++++-mmmmmmmmmm oo
3 files changed, 43 insertions(+), 137 deletions(-)

Index: container-2.6.23-rc8-mmZl/include/linux/res_counter.h

--- container-2.6.23-rc8-mml.orig/include/linux/res_counter.h
+++ container-2.6.23-rc8-mm1l/include/linux/res_counter.h
@@ -46,17 +46,12 @@ struct res_counter {

*

* @counter: the counter in question
* @member: the field to work with (see RES_xxx below)
-* @buf: the buffer to opeate on,...
- * @nbytes: its size...
-* @pos: and the offset.
+* @val: the value passed by the user (for write)
*/

-ssize_tres_counter_read(struct res_counter *counter, int member,
- const char __user *buf, size_t nbytes, loff_t *pos,

- int (*read_strategy)(unsigned long long val, char *s));
-ssize_tres_counter_write(struct res_counter *counter, int member,
- const char __user *buf, size_t nbytes, loff_t *pos,

Page 1 of 19 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=4055&goto=20775#msg_20775
https://new-forum.openvz.org/index.php?t=post&reply_to=20775
https://new-forum.openvz.org/index.php

- int (*write_strategy)(char *buf, unsigned long long *val));

+unsigned long long res_counter_read(struct res_counter *counter, int member);
+int res_counter_write(struct res_counter *counter, int member,

+ unsigned long long val);

/*
* the field descriptors. one for each member of res_counter
Index: container-2.6.23-rc8-mm2l/kernel/res_counter.c

--- container-2.6.23-rc8-mm1l.orig/kernel/res_counter.c

+++ container-2.6.23-rc8-mml/kernel/res_counter.c

@@ -75,58 +75,22 @@ res_counter_member(struct res_counter *c
return NULL;

}

-ssize_tres_counter_read(struct res_counter *counter, int member,
- const char __user *userbuf, size_t nbytes, loff t *pos,

- int (*read_strategy)(unsigned long long val, char *st_buf))
+unsigned long long res_counter_read(struct res_counter *counter, int member)
{

- unsigned long long *val;

- char buf[64], *s;

- S = buf;

- val = res_counter_member(counter, member);

- if (read_strategy)

- s +=read_strategy(*val, S);

- else

- s += sprintf(s, "%llu\n”, *val);

- return simple_read_from_buffer((void __user *)userbuf, nbytes,
- pos, buf, s - buf);

+ unsigned long long val;

+ unsigned long flags;

+ spin_lock_irgsave(&counter->lock, flags);

+ val = *res_counter_member(counter, member);

+ spin_unlock_irgrestore(&counter->lock, flags);

+ return val;

}

-Ssize_t res_counter_write(struct res_counter *counter, int member,
- const char __user *userbuf, size_t nbytes, loff t *pos,

- int (*write_strategy)(char *st_buf, unsigned long long *val))

+int res_counter_write(struct res_counter *counter, int member,

+ unsigned long long val)

{.

- Int ret;

- char *buf, *end,

- unsigned long long tmp, *val,

Page 2 of 19 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

- buf = kmalloc(nbytes + 1, GFP_KERNEL);
- ret = -ENOMEM,;

- if (buf == NULL)

- goto out;

- buf[nbytes] = "\0';

-ret = -EFAULT,;

- if (copy_from_user(buf, userbuf, nbytes))
- goto out_free;

- ret = -EINVAL;

- if (write_strategy) {

- if (write_strategy(buf, &tmp)) {

- goto out_free;

-}

- }else {

- tmp = simple_strtoull(buf, &end, 10);

- if (*end '="\0")

- goto out_free;

-}

- val = res_counter_member(counter, member);
- *val = tmp;

- ret = nbytes;

-out_free:

- kfree(buf);

-0out:

- return ret;

+ unsigned long flags;

+ spin_lock_irgsave(&counter->lock, flags);

+ *res_counter_member(counter, member) = val;
+ spin_unlock_irgrestore(&counter->lock, flags);
+ return O;

}

Index: container-2.6.23-rc8-mml/mm/memcontrol.c

--- container-2.6.23-rc8-mm2l.orig/mm/memcontrol.c

+++ container-2.6.23-rc8-mml/mm/memcontrol.c

@@ -437,112 +437,59 @@ void mem_cgroup_uncharge(struct page_cgr
}

}

-int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
-{

- *tmp = memparse(buf, &buf);

- if (*buf 1="0")

Page 3 of 19 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

- return -EINVAL,;
iy
- * Round up the value to the closest page size
- %
- *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
- return O;
-}
-static ssize_t mem_cgroup_read(struct cgroup *cont,
- struct cftype *cft, struct file *file,
- char __user *userbuf, size_t nbytes, loff_t *ppos)
+static unsigned long long mem_cgroup_read(struct cgroup *cont,
+ struct cftype *cft)
{
return res_counter_read(&mem_cgroup_from_cont(cont)->res,
- cft->private, userbuf, nbytes, ppos,
- NULL);
+ cft->private);

}

-static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
- struct file *file, const char __user *userbuf,
- size_t nbytes, loff_t *ppos)
+static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
+ unsigned long long val)
{
+ /* Don't allow the limit to be set for the root cgroup */
+ if (lcont->parent)
+ return -EINVAL;
return res_counter_write(&mem_cgroup_from_cont(cont)->res,
- cft->private, userbuf, nbytes, ppos,
- mem_cgroup_write_strategy);
+ cft->private, PAGE_ALIGN(val));

}

-static ssize_t mem_control_type_write(struct cgroup *cont,
- struct cftype *cft, struct file *file,

- const char __user *userbuf,

- size_t nbytes, loff _t *pos)

{

- int ret;

- char *buf, *end,

- unsigned long tmp;

- struct mem_cgroup *mem;

- mem = mem_cgroup_from_cont(cont);

- buf = kmalloc(nbytes + 1, GFP_KERNEL);

Page 4 of 19 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-ret = -ENOMEM;
- if (buf == NULL)
- goto out;

- buf[nbytes] = 0;

- ret = -EFAULT;

- if (copy_from_user(buf, userbuf, nbytes))

- goto out_free;

- ret = -EINVAL;

- tmp = simple_strtoul(buf, &end, 10);

- if (*end 1="\0")

- goto out_free;

- if (tmp <= MEM_CGROUP_TYPE_UNSPEC || tmp >= MEM_CGROUP_TYPE_MAX)
- goto out_free;

- mem->control_type = tmp;

- ret = nbytes;

-out_free:

- kfree(buf);

-out:

- return ret;

+static int mem_control_type_write(struct cgroup *cont, struct cftype *cft,
+ u64val)

+

+if (val <= MEM_CGROUP_TYPE_UNSPEC || val >= MEM_CGROUP_TYPE_MAX)
+ return -EINVAL;

+ mem_cgroup_from_cont(cont)->control_type = val,

+ return O;

}

-static ssize_t mem_control_type_read(struct cgroup *cont,
- struct cftype *cft,

- struct file *file, char __user *userbuf,

- size_t nbytes, loff_t *ppos)

+static u64 mem_control_type_read(struct cgroup *cont,

+ struct cftype *cft)

{

- unsigned long val;

- char buf[64], *s;

- struct mem_cgroup *mem;

- mem = mem_cgroup_from_cont(cont);

- S = buf;

- val = mem->control_type;

- s += sprintf(s, "%lu\n”, val);

- return simple_read_from_buffer((void __user *)userbuf, nbytes,

Page 5 of 19 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

- ppos, buf, s - buf);
+ return mem_cgroup_from_cont(cont)->control_type;

}

static struct cftype mem_cgroup_files[] = {
{
.name = "usage_in_bytes",
.private = RES_USAGE,
- .read = mem_cgroup_read,
+ .read_uint = mem_cgroup_read,
2
{
.name = "limit_in_bytes",
.private = RES_LIMIT,
- .write = mem_cgroup_write,
- .read = mem_cgroup_read,
+ .write_uint = mem_cgroup_write,
+ .read_uint = mem_cgroup_read,
h
{

.name = "failcnt",
.private = RES_FAILCNT,
- .read = mem_cgroup_read,
+ .read_uint = mem_cgroup_read,
2
{

.name = "control_type",
- .write = mem_control_type_write,
- .read = mem_control_type_read,
+ .write_uint = mem_control_type_write,
+ .read_uint = mem_control_type_read,
2
%

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] Simplify memory controller and resource counter 1/O
Posted by Paul Menage on Fri, 05 Oct 2007 00:55:32 GMT

View Forum Message <> Reply to Message

Hi Balbir,

Any thoughts on this patch?

Page 6 of 19 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=4055&goto=21314#msg_21314
https://new-forum.openvz.org/index.php?t=post&reply_to=21314
https://new-forum.openvz.org/index.php

Cheers,
Paul

On 9/25/07, Paul Menage <menage@google.com> wrote:

> Simplify the memory controller and resource counter 1/O routines

>

> This patch strips out some 1/O boilerplate from resource counters and
> the memory controller. It also adds locking to the resource counter

> reads and writes, and forbids writes to the root memory cgroup's limit
> file.

>

> One arguable drawback to this patch is that the use of memparse() is
> lost in the cleanup. Having said that, given the existing of shell

> arithmetic, it's not clear to me that typing

z echo $[2<<30] > memory.limit

z is especially harder than

z echo 2G > memory.limit

z Signed-off-by: Paul Menage <menage@google.com>
-

> include/linux/res_counter.h | 13 +----

> kernel/res_counter.c | 64 +++++---mmmmmmmee -

> mm/memcontrol.c | 103 ++++++++++-mmmmmmmmmm oo
> 3files changed, 43 insertions(+), 137 deletions(-)
>
>

Index: container-2.6.23-rc8-mmZl/include/linux/res_counter.h

> --- container-2.6.23-rc8-mml.orig/include/linux/res_counter.h
> +++ container-2.6.23-rc8-mm1l/include/linux/res_counter.h

> @@ -46,17 +46,12 @@ struct res_counter {

> *

> * @counter: the counter in question

> * @member: the field to work with (see RES_xxx below)

> -* @buf: the buffer to opeate on,...

> - * @nbytes: its size...

>-*@pos: and the offset.

>+ * @val: the value passed by the user (for write)

> %

>

> -ssize_t res_counter_read(struct res_counter *counter, int member,
> - const char __user *buf, size_t nbytes, loff_t *pos,

> - int (*read_strategy)(unsigned long long val, char *s));

> -ssize_t res_counter_write(struct res_counter *counter, int member,

Page 7 of 19 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> - const char __user *buf, size_t nbytes, loff t *pos,

> - int (*write_strategy)(char *buf, unsigned long long *val));

> +unsigned long long res_counter_read(struct res_counter *counter, int member);
> +int res_counter_write(struct res_counter *counter, int member,

>+ unsigned long long val);
>

> [*
> *the field descriptors. one for each member of res_counter
> Index: container-2.6.23-rc8-mml/kernel/res_counter.c

> --- container-2.6.23-rc8-mm1.orig/kernel/res_counter.c

> +++ container-2.6.23-rc8-mm1l/kernel/res_counter.c

> @@ -75,58 +75,22 @@ res_counter_member(struct res_counter *c
> return NULL;

>}
>

> -ssize_t res_counter_read(struct res_counter *counter, int member,

> - const char __user *userbuf, size_t nbytes, loff t *pos,

> - int (*read_strategy)(unsigned long long val, char *st_buf))

> +unsigned long long res_counter_read(struct res_counter *counter, int member)
>

> - unsigned long long *val;

> - char buf[64], *s;

> -

> - S = buf;

> - val = res_counter_member(counter, member);

> - if (read_strategy)

> - s +=read_strategy(*val, s);

> - else

> - s += sprintf(s, "%llu\n", *val);

> - return simple_read_from_buffer((void __user *)userbuf, nbytes,

> - pos, buf, s - buf);

>+ unsigned long long val;

>+ unsigned long flags;

>+ spin_lock_irgsave(&counter->lock, flags);

>+ val = *res_counter_member(counter, member);
>+ spin_unlock_irgrestore(&counter->lock, flags);
>+ return val;

>}
>

> -ssize_tres_counter_write(struct res_counter *counter, int member,
> - const char __user *userbuf, size_t nbytes, loff t *pos,

> - int (*write_strategy)(char *st_buf, unsigned long long *val))
> +int res_counter_write(struct res_counter *counter, int member,

>+ unsigned long long val)

> {

> - int ret;

> - char *buf, *end;

Page 8 of 19 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> - unsigned long long tmp, *val,

> -

> - buf = kmalloc(nbytes + 1, GFP_KERNEL);
> - ret = -ENOMEM,;

> - if (buf == NULL)

> - goto out;

> -

> - buf[nbytes] = "\0";

> - ret = -EFAULT,;

> - if (copy_from_user(buf, userbuf, nbytes))
> - goto out_free;

> -

> - ret = -EINVAL,

> -

> - if (write_strategy) {

> - if (write_strategy(buf, &tmp)) {

> - goto out_free;

> - }

> - } else {

> - tmp = simple_strtoull(buf, &end, 10);
> - if (*end !="0")

> - goto out_free;

>- '}

> -

> - val = res_counter_member(counter, member);
> - *val = tmp;

> - ret = nbytes;

> -out_free:

> - kfree(buf);

> -out:

> - return ret;

>+ unsigned long flags;

>+ spin_lock_irgsave(&counter->lock, flags);

>+ *res_counter_member(counter, member) = val;
>+ spin_unlock_irgrestore(&counter->lock, flags);
>+ return O;

>}

> |[ndex: container-2.6.23-rc8-mml/mm/memcontrol.c

> --- container-2.6.23-rc8-mm2l.orig/mm/memcontrol.c

> +++ container-2.6.23-rc8-mml/mm/memcontrol.c

>@@ -437,112 +437,59 @@ void mem_cgroup_uncharge(struct page_cgr
> }

>}

>

> -int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
>

> - *tmp = memparse(buf, &buf);

Page 9 of 19 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>- if (*buf1="0)

> - return -EINVAL,

> -

> - [*

> - * Round up the value to the closest page size
> - */

> - *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
> - return O;

>}
> -

> -static ssize_t mem_cgroup_read(struct cgroup *cont,

> - struct cftype *cft, struct file *file,

> - char __user *userbuf, size_t nbytes, loff_t *ppos)

> +static unsigned long long mem_cgroup_read(struct cgroup *cont,

>+ struct cftype *cft)

>

> return res_counter_read(&mem_cgroup_from_cont(cont)->res,

> - cft->private, userbuf, nbytes, ppos,

> - NULL);

>+ cft->private);

>}

>

> -static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
> - struct file *file, const char __user *userbuf,

> - size_t nbytes, loff_t *ppos)

> +static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,

>+ unsigned long long val)

> {

>+ /* Don't allow the limit to be set for the root cgroup */
>+ if ('cont->parent)

>+ return -EINVAL;

> return res_counter_write(&mem_cgroup_from_cont(cont)->res,
> - cft->private, userbuf, nbytes, ppos,

> - mem_cgroup_write_strategy);

>+ cft->private, PAGE_ALIGN(val));

>}

>

> -static ssize_t mem_control_type_write(struct cgroup *cont,
> - struct cftype *cft, struct file *file,

> - const char __user *userbuf,

> - size_t nbytes, loff_t *pos)

>

> - int ret;

> - char *buf, *end;

> - unsigned long tmp;

> - struct mem_cgroup *mem;

> -

> - mem = mem_cgroup_from_cont(cont);

Page 10 of 19 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> - buf = kmalloc(nbytes + 1, GFP_KERNEL);
> - ret = -ENOMEM,;

> - if (buf == NULL)

> - goto out;

> -

> - buf[nbytes] = 0;

> - ret = -EFAULT,;

> - if (copy_from_user(buf, userbuf, nbytes))
> - goto out_free;
> -

> - ret = -EINVAL,
> - tmp = simple_strtoul(buf, &end, 10);
> - if (*end !="0’)

> - goto out_free;

> -

> - if (tmp <= MEM_CGROUP_TYPE_UNSPEC || tmp >= MEM_CGROUP_TYPE_MAX)
> - goto out_free;

> -

> - mem->control_type = tmp;
> - ret = nbytes;

> -out_free:

> - kfree(buf);

> -out:

> - return ret;

> +static int mem_control_type_write(struct cgroup *cont, struct cftype *cft,

>+ u64 val)

> +{

>+ if (val <= MEM_CGROUP_TYPE_UNSPEC || val >= MEM_CGROUP_TYPE_MAX)
>+ return -EINVAL,;

>+ mem_cgroup_from_cont(cont)->control_type = val;

>+ return O;

>}
>

> -static ssize_t mem_control_type read(struct cgroup *cont,
> - struct cftype *cft,

> - struct file *file, char __user *userbuf,

> - size_t nbytes, loff t *ppos)

> +static u64 mem_control_type_read(struct cgroup *cont,
>+ struct cftype *cft)

>{

> - unsigned long val;

> - char buf[64], *s;

> - struct mem_cgroup *mem;

> -

> - mem = mem_cgroup_from_cont(cont);

> - S = buf;

> - val = mem->control_type;

> - s += sprintf(s, "%lu\n", val);

Page 11 of 19 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> - return simple_read_from_buffer((void __user *)userbuf, nbytes,

> - ppos, buf, s - buf);

>+ return mem_cgroup_from_cont(cont)->control_type;
> }

>

> static struct cftype mem_cgroup_files[] = {
> {

> .name = "usage_in_bytes",

> .private = RES_USAGE,

> - .read = mem_cgroup_read,

>+ .read_uint = mem_cgroup_read,
> }

> {

> .name ="limit_in_bytes",

> .private = RES_LIMIT,

> - .write = mem_cgroup_write,

> - .read = mem_cgroup_read,

>+ .write_uint = mem_cgroup_write,
>+ .read_uint = mem_cgroup_read,
> 1

> {

> .name = "failcnt",

> .private = RES_FAILCNT,

> - .read = mem_cgroup_read,

>+ .read_uint = mem_cgroup_read,
> h

> {

> .name = "control_type",

> - .write = mem_control_type_write,
> - .read = mem_control_type_read,
>+ .write_uint = mem_control_type_write,
>+ .read_uint = mem_control_type_read,
> S

>}

>

>

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] Simplify memory controller and resource counter 1/O
Posted by Balbir Singh on Fri, 05 Oct 2007 03:31:58 GMT

View Forum Message <> Reply to Message

Paul Menage wrote:
> Hi Balbir,

Page 12 of 19 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=675
https://new-forum.openvz.org/index.php?t=rview&th=4055&goto=21316#msg_21316
https://new-forum.openvz.org/index.php?t=post&reply_to=21316
https://new-forum.openvz.org/index.php

>

> Any thoughts on this patch?
>

Hi, Paul,
| remember seeing this patch, sorry for not responding earlier

> Cheers,

>

> Paul

>

> On 9/25/07, Paul Menage <menage@google.com> wrote:

>> Simplify the memory controller and resource counter I/O routines

>>

>> This patch strips out some 1/O boilerplate from resource counters and
>> the memory controller. It also adds locking to the resource counter
>> reads and writes, and forbids writes to the root memory cgroup'’s limit
>> file.

>>

Forbidding writing to the root resource counter is a policy decision

| am unable to make up my mind about. It sounds right, but unless
we have a notion of unlimited resources, | am a bit concerned about
taking away this flexibility.

>> One arguable drawback to this patch is that the use of memparse() is
>> |ost in the cleanup. Having said that, given the existing of shell

>> arithmetic, it's not clear to me that typing

>>

memparse(), makes it so much easier, we need to use it.

>> echo $[2<<30] > memory.limit
>>

Very geeky! | don't like it personally

>> js especially harder than

>>

>> echo 2G > memory.limit

>>

>> Signed-off-by: Paul Menage <menage@google.com>
>>

| like the read_uint() and write_uint() overall, but in the case
of setting the limit, I'd still like the flexibility of having
a strategy pattern that would make the Ul more friendly.

Page 13 of 19 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Do read_uint() and write_uint(), just read and write unsigned
integers?

[snip]

Warm Regards,

Balbir Singh

Linux Technology Center
IBM, ISTL

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] Simplify memory controller and resource counter 1/0O
Posted by Paul Menage on Fri, 05 Oct 2007 03:38:35 GMT

View Forum Message <> Reply to Message

On 10/4/07, Balbir Singh <balbir@linux.vnet.ibm.com> wrote:

>

> Forbidding writing to the root resource counter is a policy decision

> | am unable to make up my mind about. It sounds right, but unless
> we have a notion of unlimited resources, | am a bit concerned about
> taking away this flexibility.

One big reason for doing this is to make virtualization easier - if
you expect not to be able to write to your root cgroup's limits files,
then it's easier to make them non-writeable for a virtual server.

>
> >> One arguable drawback to this patch is that the use of memparse() is
> >> |ost in the cleanup. Having said that, given the existing of shell

> >> arithmetic, it's not clear to me that typing

> >>

>

> memparse(), makes it so much easier, we need to use it.

>

> >> echo $[2<<30] > memory.limit

> >>

>

> Very geeky! | don't like it personally

Why do you dislike it? Do you really believe that anyone using this
interface by hand isn't going to know that MB is 220 and GB is 2307

Page 14 of 19 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=4055&goto=21317#msg_21317
https://new-forum.openvz.org/index.php?t=post&reply_to=21317
https://new-forum.openvz.org/index.php

>
> Do read_uint() and write_uint(), just read and write unsigned
> integers?

Correct.

Paul

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] Simplify memory controller and resource counter 1/0O
Posted by Balbir Singh on Fri, 05 Oct 2007 03:45:46 GMT

View Forum Message <> Reply to Message

Paul Menage wrote:

> On 10/4/07, Balbir Singh <balbir@linux.vnet.ibm.com> wrote:

>> Forbidding writing to the root resource counter is a policy decision
>> | am unable to make up my mind about. It sounds right, but unless
>> we have a notion of unlimited resources, | am a bit concerned about
>> taking away this flexibility.

>

> One big reason for doing this is to make virtualization easier - if

> you expect not to be able to write to your root cgroup's limits files,

> then it's easier to make them non-writeable for a virtual server.

>

Can't we handle that through file system permissions? virtual servers
will not run as root

>>>> One arguable drawback to this patch is that the use of memparse() is
>>>> |ost in the cleanup. Having said that, given the existing of shell
>>>> grithmetic, it's not clear to me that typing

>>>>

>> memparse(), makes it so much easier, we need to use it.

>>

>>>> echo $[2<<30] > memory.limit

>>>>

>> Very geeky! | don't like it personally

>

> Why do you dislike it? Do you really believe that anyone using this

> interface by hand isn't going to know that MB is 2720 and GB is 2"30?
>

But system administrators deal with memory in MB and GB. When you go
to buy memory, you don't specify, | need 1 << 30 or 2"30 bytes of

Page 15 of 19 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=675
https://new-forum.openvz.org/index.php?t=rview&th=4055&goto=21318#msg_21318
https://new-forum.openvz.org/index.php?t=post&reply_to=21318
https://new-forum.openvz.org/index.php

memory :-). Most administrators track their memory using these
guantifiers.

>> Do read_uint() and write_uint(), just read and write unsigned
>> integers?

>

> Correct.

>

Oops.. that would be problem, what if | wanted to set my limit to
unsigned long long max?

> Paul

Warm Regards,

Balbir Singh

Linux Technology Center
IBM, ISTL

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] Simplify memory controller and resource counter 1/O
Posted by Paul Menage on Fri, 05 Oct 2007 03:54:07 GMT

View Forum Message <> Reply to Message

On 10/4/07, Balbir Singh <balbir@linux.vnet.ibm.com> wrote:

> Paul Menage wrote:

> > 0On 10/4/07, Balbir Singh <balbir@linux.vnet.ibm.com> wrote:

> >> Forbidding writing to the root resource counter is a policy decision
> >> | am unable to make up my mind about. It sounds right, but unless
> >> we have a notion of unlimited resources, | am a bit concerned about
> >> taking away this flexibility.

> >

> > One big reason for doing this is to make virtualization easier - if

> > you expect not to be able to write to your root cgroup's limits files,

> > then it's easier to make them non-writeable for a virtual server.

> >

>

> Can't we handle that through file system permissions? virtual servers
> will not run as root

They'll probably run as root in their own user namespace if at all.
But that's the point - if userspace in general expects root cgroup

Page 16 of 19 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=4055&goto=21320#msg_21320
https://new-forum.openvz.org/index.php?t=post&reply_to=21320
https://new-forum.openvz.org/index.php

limits to not be writeable (the same way that root cpusets
cpus/mems_allowed files aren't writeable) then virtual servers will
break less.

>
> But system administrators deal with memory in MB and GB. When you go
> to buy memory, you don't specify, | need 1 << 30 or 2*30 bytes of

> memory :-). Most administrators track their memory using these

> quantifiers.

OK, so maybe we should just fold a call to memparse() into
cgroup_write_uint? Then we could use the plain write_uint() method in
the control file?

>

> >> Do read_uint() and write_uint(), just read and write unsigned
> >> integers?

> >

> > Correct.

> >

>

> Oops.. that would be problem, what if | wanted to set my limit to
> unsigned long long max?

Sorry, | wasn't getting your point about the sizing. No, they're ué4
values. (And | guess could be changed to unsigned long long if people
preferred).

Paul

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] Simplify memory controller and resource counter 1/0O
Posted by Balbir Singh on Fri, 05 Oct 2007 04:04:23 GMT

View Forum Message <> Reply to Message

Paul Menage wrote:

> On 10/4/07, Balbir Singh <balbir@linux.vnet.ibom.com> wrote:

>> Paul Menage wrote:

>>> On 10/4/07, Balbir Singh <balbir@linux.vnet.ibm.com> wrote:

>>>> Forbidding writing to the root resource counter is a policy decision
>>>> | am unable to make up my mind about. It sounds right, but unless
>>>> we have a notion of unlimited resources, | am a bit concerned about
>>>> taking away this flexibility.

>>> One big reason for doing this is to make virtualization easier - if

Page 17 of 19 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=675
https://new-forum.openvz.org/index.php?t=rview&th=4055&goto=21321#msg_21321
https://new-forum.openvz.org/index.php?t=post&reply_to=21321
https://new-forum.openvz.org/index.php

>>> you expect not to be able to write to your root cgroup's limits files,
>>> then it's easier to make them non-writeable for a virtual server.
>>>

>> Can't we handle that through file system permissions? virtual servers
>> will not run as root

>

> They'll probably run as root in their own user namespace if at all.

> But that's the point - if userspace in general expects root cgroup

> limits to not be writeable (the same way that root cpusets

> cpus/mems_allowed files aren't writeable) then virtual servers will

> break less.

>

In that case, let's have a value that says RES_COUNTER_INFINITY
and set the root to that value and make the root cgroup limits
read-only.

>> But system administrators deal with memory in MB and GB. When you go
>> to buy memory, you don't specify, | need 1 << 30 or 2730 bytes of

>> memory :-). Most administrators track their memory using these

>> quantifiers.

>

> OK, so maybe we should just fold a call to memparse() into

> cgroup_write_uint? Then we could use the plain write_uint() method in

> the control file?

>

Yes, either that way or add a strategy function, that would take
the string input from the user and convert it to unsigned long long
value. | am ok with either approach.

>>>> Do read_uint() and write_uint(), just read and write unsigned
>>>> integers?

>>> Correct.

>>>

>> Qops.. that would be problem, what if | wanted to set my limit to
>> unsigned long long max?

>

> Sorry, | wasn't getting your point about the sizing. No, they're u64
> values. (And | guess could be changed to unsigned long long if people
> preferred).

>

| would prefer unsigned long long, but we could get more opinions.

> Paul

Page 18 of 19 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Warm Regards,

Balbir Singh

Linux Technology Center
IBM, ISTL

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [PATCH] Simplify memory controller and resource counter 1/O
Posted by Paul Menage on Fri, 05 Oct 2007 04:35:48 GMT

View Forum Message <> Reply to Message

On 10/4/07, Balbir Singh <balbir@linux.vnet.ibm.com> wrote:

>

> Yes, either that way or add a strategy function, that would take

> the string input from the user and convert it to unsigned long long
> value. | am ok with either approach.

>

OK, new version of the patch sent in a separate mail.

Paul

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 19 of 19 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=4055&goto=21324#msg_21324
https://new-forum.openvz.org/index.php?t=post&reply_to=21324
https://new-forum.openvz.org/index.php

