
Subject: [PATCH] Consolidate sleeping routines in file locking code
Posted by Pavel Emelianov on Tue, 18 Sep 2007 13:41:08 GMT
View Forum Message <> Reply to Message

This is the next step in fs/locks.c cleanup before turning
it into using the struct pid *.

This time I found, that there are some places that do a
similar thing - they try to apply a lock on a file and go
to sleep on error till the blocker exits.

All these places can be easily consolidated, saving 28
lines of code and more than 600 bytes from the .text,
but there is one minor note.

The locks_mandatory_area() code becomes a bit different
after this patch - it no longer checks for the inode's
permissions change. Nevertheless, this check is useless
without my another patch that wakes the waiter up in the
notify_change(), which is not considered to be useful for
now.

Later, if we do need the fix with the wakeup this can be
easily merged with this patch.

Signed-off-by: Pavel Emelyanov <xemul@openvz.org>

 fs/locks.c | 122 +++++++++++++++++++++++--------------------------------------
 1 files changed, 47 insertions(+), 75 deletions(-)

diff --git a/fs/locks.c b/fs/locks.c
index cb1c977..8e849ed 100644
--- a/fs/locks.c
+++ b/fs/locks.c
@@ -659,6 +659,29 @@ static int locks_block_on_timeout(struct
 	return result;
 }

+typedef int (*lock_wait_fn)(struct file *, struct file_lock *, void *);
+
+static int do_lock_file_wait(struct file *filp, struct file_lock *fl,
+		lock_wait_fn lockfn, void *arg)
+{
+	int error;
+
+	might_sleep();

Page 1 of 9 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=725
https://new-forum.openvz.org/index.php?t=rview&th=3990&goto=20471#msg_20471
https://new-forum.openvz.org/index.php?t=post&reply_to=20471
https://new-forum.openvz.org/index.php

+	while (1) {
+		error = lockfn(filp, fl, arg);
+		if ((error != -EAGAIN) || !(fl->fl_flags & FL_SLEEP))
+			break;
+
+		error = wait_event_interruptible(fl->fl_wait, !fl->fl_next);
+		if (error) {
+			locks_delete_block(fl);
+			break;
+		}
+	}
+
+	return error;
+}
+
 void
 posix_test_lock(struct file *filp, struct file_lock *fl)
 {
@@ -720,7 +743,8 @@ next_task:
 * whether or not a lock was successfully freed by testing the return
 * value for -ENOENT.
 */
-static int flock_lock_file(struct file *filp, struct file_lock *request)
+static
+int flock_lock_file(struct file *filp, struct file_lock *request, void *x)
 {
 	struct file_lock *new_fl = NULL;
 	struct file_lock **before;
@@ -1029,20 +1053,7 @@ EXPORT_SYMBOL(posix_lock_file);
 */
 int posix_lock_file_wait(struct file *filp, struct file_lock *fl)
 {
-	int error;
-	might_sleep ();
-	for (;;) {
-		error = posix_lock_file(filp, fl, NULL);
-		if ((error != -EAGAIN) || !(fl->fl_flags & FL_SLEEP))
-			break;
-		error = wait_event_interruptible(fl->fl_wait, !fl->fl_next);
-		if (!error)
-			continue;
-
-		locks_delete_block(fl);
-		break;
-	}
-	return error;
+	return do_lock_file_wait(filp, fl, (lock_wait_fn)posix_lock_file, NULL);
 }

Page 2 of 9 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 EXPORT_SYMBOL(posix_lock_file_wait);

@@ -1085,12 +1096,17 @@ int locks_mandatory_locked(struct inode
 * This function is called from rw_verify_area() and
 * locks_verify_truncate().
 */
+
+static int lock_mandatory_fn(struct file *filp, struct file_lock *fl, void *arg)
+{
+	return __posix_lock_file((struct inode *)arg, fl, NULL);
+}
+
 int locks_mandatory_area(int read_write, struct inode *inode,
 			 struct file *filp, loff_t offset,
 			 size_t count)
 {
 	struct file_lock fl;
-	int error;

 	locks_init_lock(&fl);
 	fl.fl_owner = current->files;
@@ -1103,27 +1119,12 @@ int locks_mandatory_area(int read_write,
 	fl.fl_start = offset;
 	fl.fl_end = offset + count - 1;

-	for (;;) {
-		error = __posix_lock_file(inode, &fl, NULL);
-		if (error != -EAGAIN)
-			break;
-		if (!(fl.fl_flags & FL_SLEEP))
-			break;
-		error = wait_event_interruptible(fl.fl_wait, !fl.fl_next);
-		if (!error) {
-			/*
-			 * If we've been sleeping someone might have
-			 * changed the permissions behind our back.
-			 */
-			if (__mandatory_lock(inode))
-				continue;
-		}
-
-		locks_delete_block(&fl);
-		break;
-	}
-
-	return error;
+	/*
+	 * If we've been sleeping someone might have changed the permissions

Page 3 of 9 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+	 * behind our back. However, nobody wakes us up, so go on spinning
+	 * here till the blocker dies.
+	 */
+	return do_lock_file_wait(filp, &fl, lock_mandatory_fn, inode);
 }

 EXPORT_SYMBOL(locks_mandatory_area);
@@ -1517,20 +1518,7 @@ out_unlock:
 */
 int flock_lock_file_wait(struct file *filp, struct file_lock *fl)
 {
-	int error;
-	might_sleep();
-	for (;;) {
-		error = flock_lock_file(filp, fl);
-		if ((error != -EAGAIN) || !(fl->fl_flags & FL_SLEEP))
-			break;
-		error = wait_event_interruptible(fl->fl_wait, !fl->fl_next);
-		if (!error)
-			continue;
-
-		locks_delete_block(fl);
-		break;
-	}
-	return error;
+	return do_lock_file_wait(filp, fl, flock_lock_file, NULL);
 }

 EXPORT_SYMBOL(flock_lock_file_wait);
@@ -1728,9 +1716,15 @@ int vfs_lock_file(struct file *filp, uns
 }
 EXPORT_SYMBOL_GPL(vfs_lock_file);

+static int fcntl_lock_fn(struct file *filp, struct file_lock *fl, void *arg)
+{
+	return vfs_lock_file(filp, (unsigned int)arg, fl, NULL);
+}
+
 /* Apply the lock described by l to an open file descriptor.
 * This implements both the F_SETLK and F_SETLKW commands of fcntl().
 */
+
 int fcntl_setlk(unsigned int fd, struct file *filp, unsigned int cmd,
 		struct flock __user *l)
 {
@@ -1788,18 +1782,7 @@ again:
 	if (error)
 		goto out;

Page 4 of 9 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-	for (;;) {
-		error = vfs_lock_file(filp, cmd, file_lock, NULL);
-		if (error != -EAGAIN || cmd == F_SETLK)
-			break;
-		error = wait_event_interruptible(file_lock->fl_wait,
-				!file_lock->fl_next);
-		if (!error)
-			continue;
-
-		locks_delete_block(file_lock);
-		break;
-	}
+	error = do_lock_file_wait(filp, file_lock, fcntl_lock_fn, (void *)cmd);

 	/*
 	 * Attempt to detect a close/fcntl race and recover by
@@ -1912,18 +1895,7 @@ again:
 	if (error)
 		goto out;

-	for (;;) {
-		error = vfs_lock_file(filp, cmd, file_lock, NULL);
-		if (error != -EAGAIN || cmd == F_SETLK64)
-			break;
-		error = wait_event_interruptible(file_lock->fl_wait,
-				!file_lock->fl_next);
-		if (!error)
-			continue;
-
-		locks_delete_block(file_lock);
-		break;
-	}
+	error = do_lock_file_wait(filp, file_lock, fcntl_lock_fn, (void *)cmd);

 	/*
 	 * Attempt to detect a close/fcntl race and recover by

Subject: Re: [PATCH] Consolidate sleeping routines in file locking code
Posted by bfields on Wed, 19 Sep 2007 18:37:03 GMT
View Forum Message <> Reply to Message

On Tue, Sep 18, 2007 at 05:41:08PM +0400, Pavel Emelyanov wrote:
> This is the next step in fs/locks.c cleanup before turning
> it into using the struct pid *.
>
> This time I found, that there are some places that do a

Page 5 of 9 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1863
https://new-forum.openvz.org/index.php?t=rview&th=3990&goto=20518#msg_20518
https://new-forum.openvz.org/index.php?t=post&reply_to=20518
https://new-forum.openvz.org/index.php

> similar thing - they try to apply a lock on a file and go
> to sleep on error till the blocker exits.
>
> All these places can be easily consolidated, saving 28
> lines of code and more than 600 bytes from the .text,
> but there is one minor note.

I'm not opposed to consolidating this code, but would it be possible to
do so in a more straightforward way, without passing in a callback
function? E.g. a single __posix_lock_file_wait that just took an inode
instead of a filp and called __posix_lock_file() could be called from
both posix_lock_file_wait() and locks_mandatory_locked, right?

> The locks_mandatory_area() code becomes a bit different
> after this patch - it no longer checks for the inode's
> permissions change. Nevertheless, this check is useless
> without my another patch that wakes the waiter up in the
> notify_change(), which is not considered to be useful for
> now.

OK. Might be better to submit this as a separate patch, though.

--b.

Subject: Re: [PATCH] Consolidate sleeping routines in file locking code
Posted by Pavel Emelianov on Thu, 20 Sep 2007 09:09:51 GMT
View Forum Message <> Reply to Message

J. Bruce Fields wrote:
> On Tue, Sep 18, 2007 at 05:41:08PM +0400, Pavel Emelyanov wrote:
>> This is the next step in fs/locks.c cleanup before turning
>> it into using the struct pid *.
>>
>> This time I found, that there are some places that do a
>> similar thing - they try to apply a lock on a file and go
>> to sleep on error till the blocker exits.
>>
>> All these places can be easily consolidated, saving 28
>> lines of code and more than 600 bytes from the .text,
>> but there is one minor note.
>
> I'm not opposed to consolidating this code, but would it be possible to
> do so in a more straightforward way, without passing in a callback
> function? E.g. a single __posix_lock_file_wait that just took an inode
> instead of a filp and called __posix_lock_file() could be called from
> both posix_lock_file_wait() and locks_mandatory_locked, right?

Page 6 of 9 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=725
https://new-forum.openvz.org/index.php?t=rview&th=3990&goto=20537#msg_20537
https://new-forum.openvz.org/index.php?t=post&reply_to=20537
https://new-forum.openvz.org/index.php

Well, the locks_mandatory_area() has to check for inode mode change
in my lock callback, the fcntl_setlk() has to call the vfs_lock_file,
and flock_lock_file_wait() has to call the flock_lock_file, so
I don't see the ways of having one routine to lock the file.

If you don't mind, I'd port the patch with this approach (with the
"trylock" callback) on the latest Andrew's tree.

>> The locks_mandatory_area() code becomes a bit different
>> after this patch - it no longer checks for the inode's
>> permissions change. Nevertheless, this check is useless
>> without my another patch that wakes the waiter up in the
>> notify_change(), which is not considered to be useful for
>> now.
>
> OK. Might be better to submit this as a separate patch, though.

This one is already accepted, but I have just noticed that
the check for __mandatory_lock() in wait_event_interruptible
is ambiguous :(

> --b.
>

Subject: Re: [PATCH] Consolidate sleeping routines in file locking code
Posted by bfields on Thu, 20 Sep 2007 20:39:04 GMT
View Forum Message <> Reply to Message

On Thu, Sep 20, 2007 at 01:09:51PM +0400, Pavel Emelyanov wrote:
> J. Bruce Fields wrote:
> > On Tue, Sep 18, 2007 at 05:41:08PM +0400, Pavel Emelyanov wrote:
> >> This is the next step in fs/locks.c cleanup before turning
> >> it into using the struct pid *.
> >>
> >> This time I found, that there are some places that do a
> >> similar thing - they try to apply a lock on a file and go
> >> to sleep on error till the blocker exits.
> >>
> >> All these places can be easily consolidated, saving 28
> >> lines of code and more than 600 bytes from the .text,
> >> but there is one minor note.
> >
> > I'm not opposed to consolidating this code, but would it be possible to
> > do so in a more straightforward way, without passing in a callback
> > function? E.g. a single __posix_lock_file_wait that just took an inode
> > instead of a filp and called __posix_lock_file() could be called from
> > both posix_lock_file_wait() and locks_mandatory_locked, right?

Page 7 of 9 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1863
https://new-forum.openvz.org/index.php?t=rview&th=3990&goto=20559#msg_20559
https://new-forum.openvz.org/index.php?t=post&reply_to=20559
https://new-forum.openvz.org/index.php

>
> Well, the locks_mandatory_area() has to check for inode mode change
> in my lock callback, the fcntl_setlk() has to call the vfs_lock_file,
> and flock_lock_file_wait() has to call the flock_lock_file, so
> I don't see the ways of having one routine to lock the file.
>
> If you don't mind, I'd port the patch with this approach (with the
> "trylock" callback) on the latest Andrew's tree.

OK.

> >> The locks_mandatory_area() code becomes a bit different
> >> after this patch - it no longer checks for the inode's
> >> permissions change. Nevertheless, this check is useless
> >> without my another patch that wakes the waiter up in the
> >> notify_change(), which is not considered to be useful for
> >> now.
> >
> > OK. Might be better to submit this as a separate patch, though.
>
> This one is already accepted, but I have just noticed that
> the check for __mandatory_lock() in wait_event_interruptible
> is ambiguous :(

I'm not sure what you mean here.... Do you have a fix?

--b.

Subject: Re: [PATCH] Consolidate sleeping routines in file locking code
Posted by Pavel Emelianov on Fri, 21 Sep 2007 06:57:56 GMT
View Forum Message <> Reply to Message

J. Bruce Fields wrote:
> On Thu, Sep 20, 2007 at 01:09:51PM +0400, Pavel Emelyanov wrote:
>> J. Bruce Fields wrote:
>>> On Tue, Sep 18, 2007 at 05:41:08PM +0400, Pavel Emelyanov wrote:
>>>> This is the next step in fs/locks.c cleanup before turning
>>>> it into using the struct pid *.
>>>>
>>>> This time I found, that there are some places that do a
>>>> similar thing - they try to apply a lock on a file and go
>>>> to sleep on error till the blocker exits.
>>>>
>>>> All these places can be easily consolidated, saving 28
>>>> lines of code and more than 600 bytes from the .text,
>>>> but there is one minor note.
>>> I'm not opposed to consolidating this code, but would it be possible to

Page 8 of 9 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=725
https://new-forum.openvz.org/index.php?t=rview&th=3990&goto=20566#msg_20566
https://new-forum.openvz.org/index.php?t=post&reply_to=20566
https://new-forum.openvz.org/index.php

>>> do so in a more straightforward way, without passing in a callback
>>> function? E.g. a single __posix_lock_file_wait that just took an inode
>>> instead of a filp and called __posix_lock_file() could be called from
>>> both posix_lock_file_wait() and locks_mandatory_locked, right?
>> Well, the locks_mandatory_area() has to check for inode mode change
>> in my lock callback, the fcntl_setlk() has to call the vfs_lock_file,
>> and flock_lock_file_wait() has to call the flock_lock_file, so
>> I don't see the ways of having one routine to lock the file.
>>
>> If you don't mind, I'd port the patch with this approach (with the
>> "trylock" callback) on the latest Andrew's tree.
>
> OK.

:) Thanks.

>>>> The locks_mandatory_area() code becomes a bit different
>>>> after this patch - it no longer checks for the inode's
>>>> permissions change. Nevertheless, this check is useless
>>>> without my another patch that wakes the waiter up in the
>>>> notify_change(), which is not considered to be useful for
>>>> now.
>>> OK. Might be better to submit this as a separate patch, though.
>> This one is already accepted, but I have just noticed that
>> the check for __mandatory_lock() in wait_event_interruptible
>> is ambiguous :(
>
> I'm not sure what you mean here.... Do you have a fix?

Well, I do, but this patch is already dropped from -mm.

> --b.
>

Page 9 of 9 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

