Subject: [PATCH] Memory shortage can result in inconsistent flocks state
Posted by Pavel Emelianov on Tue, 11 Sep 2007 12:38:13 GMT

View Forum Message <> Reply to Message

When the flock_lock_file() is called to change the flock
from F_RDLCK to F_WRLCK or vice versa the existing flock
can be removed without appropriate warning.

Look:
for_each_lock(inode, before) {
struct file_lock *fl = *before;
if (IS_POSIX(fl))
break;
if IS_LEASE(fl))
continue;
if (filp = fl->fl_file)
continue;
if (request->fl_type == fl->fl_type)
goto out;
found = 1;
locks_delete_lock(before); <<<<<<'!
break;

}

if after this point the subsequent locks_alloc_lock() will
fail the return code will be -ENOMEM, but the existing lock
is already removed.

This is a known feature that such "re-locking" is not atomic,
but in the racy case the file should stay locked (although by
some other process), but in this case the file will be unlocked.

The proposal is to prepare the lock in advance keeping no chance
to fail in the future code.

Found during making the flocks pid-namespaces aware.

Signed-off-by: Pavel Emelyanov <xemul@openvz.org>

diff --git a/fs/locks.c b/fs/locks.c

index 0dblal4..f59d066 100644

--- a/fs/locks.c

+++ b/fs/locks.c

@@ -732,6 +732,14 @@ static int flock_lock_file(struct file *
lock_kernel();
if (request->fl_flags & FL_ACCESS)

Page 1 of 8 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=725
https://new-forum.openvz.org/index.php?t=rview&th=3878&goto=20043#msg_20043
https://new-forum.openvz.org/index.php?t=post&reply_to=20043
https://new-forum.openvz.org/index.php

goto find_conflict;
+
+ if (request->fl_type '= F_UNLCK) {
+ error = -ENOMEM,;
+ new_fl = locks_alloc_lock();
+ if (new_fl == NULL)
+ goto out;
+}
+
for_each_lock(inode, before) {
struct file_lock *fl = *before;
if (IS_POSIX(fl))
@@ -753,10 +761,6 @@ static int flock _lock_file(struct file *
goto out;

}

- error = -ENOMEM,;

- new_fl = locks_alloc_lock();

- if (new_fl == NULL)

- goto out;
/*
* If a higher-priority process was blocked on the old file lock,
* give it the opportunity to lock the file.

Subject: Re: [PATCH] Memory shortage can result in inconsistent flocks state
Posted by bfields on Wed, 12 Sep 2007 19:06:53 GMT

View Forum Message <> Reply to Message

On Tue, Sep 11, 2007 at 04:38:13PM +0400, Pavel Emelyanov wrote:
> This is a known feature that such "re-locking" is not atomic,

> put in the racy case the file should stay locked (although by

> some other process), but in this case the file will be unlocked.

That's a little subtle (I assume you've never seen this actually
happen?), but it makes sense to me.

> The proposal is to prepare the lock in advance keeping no chance
> to falil in the future code.

And the patch certainly looks correct.
| can add it to my (trivial) lock patches, if that's helpful--it'll
get folded into the branch -mm pulls from and | can pass it along to

Linus for 2.6.24.

What | don't have that | wish | did is good regression tests for the
flock or lease code (for posix locks I've been using connectathon,

Page 2 of 8 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1863
https://new-forum.openvz.org/index.php?t=rview&th=3878&goto=20263#msg_20263
https://new-forum.openvz.org/index.php?t=post&reply_to=20263
https://new-forum.openvz.org/index.php

though that misses some important things too).

--b.

Subject: Re: [PATCH] Memory shortage can result in inconsistent flocks state
Posted by Pavel Emelianov on Thu, 13 Sep 2007 06:04:16 GMT

View Forum Message <> Reply to Message

J. Bruce Fields wrote:

> On Tue, Sep 11, 2007 at 04:38:13PM +0400, Pavel Emelyanov wrote:
>> This is a known feature that such "re-locking” is not atomic,

>> put in the racy case the file should stay locked (although by

>> some other process), but in this case the file will be unlocked.

>

> That's a little subtle (I assume you've never seen this actually

> happen?), but it makes sense to me.

Well, this situation is hard to notice since usually programs

try to finish up when some error is returned from the kernel,

but | do believe that this could happen in one of the openvz
kernels since we limit the kernel memory usage for "containers"
and thus -ENOMEM is a common error.

>> The proposal is to prepare the lock in advance keeping no chance
>> to fall in the future code.
>

> And the patch certainly looks correct.

>

> | can add it to my (trivial) lock patches, if that's helpful--it'll

> get folded into the branch -mm pulls from and | can pass it along to
> Linus for 2.6.24.

Thanks.

> What | don't have that | wish | did is good regression tests for the
> flock or lease code (for posix locks I've been using connectathon,
> though that misses some important things too).

>

> --b.

>

Subject: Re: [PATCH] Memory shortage can result in inconsistent flocks state
Posted by Balbir Singh on Thu, 13 Sep 2007 07:16:27 GMT

View Forum Message <> Reply to Message

Page 3 of 8 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=725
https://new-forum.openvz.org/index.php?t=rview&th=3878&goto=20183#msg_20183
https://new-forum.openvz.org/index.php?t=post&reply_to=20183
https://new-forum.openvz.org/index.php?t=usrinfo&id=675
https://new-forum.openvz.org/index.php?t=rview&th=3878&goto=20190#msg_20190
https://new-forum.openvz.org/index.php?t=post&reply_to=20190
https://new-forum.openvz.org/index.php

On 9/13/07, Pavel Emelyanov <xemul@openvz.org> wrote:

> J. Bruce Fields wrote:

> > 0On Tue, Sep 11, 2007 at 04:38:13PM +0400, Pavel Emelyanov wrote:
> >> This is a known feature that such "re-locking" is not atomic,

> >> put in the racy case the file should stay locked (although by

> >> some other process), but in this case the file will be unlocked.
> >

> > That's a little subtle (I assume you've never seen this actually
> > happen?), but it makes sense to me.

>

> Well, this situation is hard to notice since usually programs

> try to finish up when some error is returned from the kernel,

> but | do believe that this could happen in one of the openvz

> kernels since we limit the kernel memory usage for "containers”
> and thus -ENOMEM is a common error.

>

The fault injection framework should be able to introduce the same
error. Of course hitting the error would require careful setup of the
fault parameters.

Balbir

Subject: Re: [PATCH] Memory shortage can result in inconsistent flocks state
Posted by Chuck Ebbert on Thu, 13 Sep 2007 19:27:08 GMT

View Forum Message <> Reply to Message

On 09/11/2007 08:38 AM, Pavel Emelyanov wrote:
> When the flock_lock_file() is called to change the flock
> from F_RDLCK to F_WRLCK or vice versa the existing flock
> can be removed without appropriate warning.
>
> Look:
> for_each_lock(inode, before) {
struct file_lock *fl = *before;
if (IS_POSIX(fl))
break;
if IS_LEASE(fl))
continue;
if (filp != fl->fl_file)
continue;
if (request->fl_type == fl->fl_type)
goto out;
found = 1;
locks_delete lock(before); <<<<<<!
break;

VVVVVVYVVVYVYVYVYV

Page 4 of 8 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1642
https://new-forum.openvz.org/index.php?t=rview&th=3878&goto=20241#msg_20241
https://new-forum.openvz.org/index.php?t=post&reply_to=20241
https://new-forum.openvz.org/index.php

>

> if after this point the subsequent locks_alloc_lock() will

> fail the return code will be -ENOMEM, but the existing lock

> is already removed.

>

> This is a known feature that such "re-locking" is not atomic,

> put in the racy case the file should stay locked (although by

> some other process), but in this case the file will be unlocked.
>

> The proposal is to prepare the lock in advance keeping no chance
> to falil in the future code.

>

> Found during making the flocks pid-namespaces aware.
>

> Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
>

P> J—

>

> diff --git a/fs/locks.c b/fs/locks.c

> index 0dblal4..f59d066 100644

> --- alfs/locks.c

> +++ b/fs/locks.c

>@@ -732,6 +732,14 @@ static int flock_lock_file(struct file *
> lock_kernel();

> if (request->fl_flags & FL_ACCESS)

> goto find_conflict;

>+

> + if (request->fl_type '= F_UNLCK) {

>+ error = -ENOMEM;

>+ new_fl = locks_alloc_lock();

>+ if (new_fl == NULL)

>+ goto out;

>+}

>+

> for_each_lock(inode, before) {

> struct file_lock *fl = *before;

> if (IS_POSIX(fl))

> @@ -753,10 +761,6 @@ static int flock_lock_file(struct file *
> goto out;

>}

>

> - error = -ENOMEM,;

> - new_fl = locks_alloc_lock();

> - if (new_fl == NULL)

> - goto out;

> [*

> *If a higher-priority process was blocked on the old file lock,
> *give it the opportunity to lock the file.

Page 5 of 8 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Doesn't that create a leak in some cases?

for_each_lock(inode, before) {
struct file_lock *fl = *before;
if (IS_POSIX(fl))
break;
if IS_LEASE(fl))
continue;
if (filp = fl->fl_file)
continue;
if (request->fl_type == fl->fl_type)
goto out; << LKL LEAK?
found = 1;
locks_delete_lock(before);
break;

VVVVVVVYVYVYVYVYVYVYV

Subject: Re: [PATCH] Memory shortage can result in inconsistent flocks state
Posted by bfields on Thu, 13 Sep 2007 19:34:39 GMT

View Forum Message <> Reply to Message

On Thu, Sep 13, 2007 at 03:27:08PM -0400, Chuck Ebbert wrote:
> 0On 09/11/2007 08:38 AM, Pavel Emelyanov wrote:

> > diff --git a/fs/locks.c b/fs/locks.c

> > index 0dblal4..f59d066 100644

> > --- a/fs/locks.c

> > +++ bffs/locks.c

>> @@ -732,6 +732,14 @@ static int flock _lock_file(struct file *
>> lock_kernel();

>> if (request->fl_flags & FL_ACCESS)

>> goto find_conflict;

> >+

> > + if (request->fl_type '= F_UNLCK) {

> >+ error = -ENOMEM,;

> >+ new_fl =locks_alloc_lock();

> >+ if (new_fl == NULL)

> >+ goto out;

>>+}

> >+

> > for_each_lock(inode, before) {

>> struct file_lock *fl = *before;

>> if (IS_POSIX(fl)

>> @@ -753,10 +761,6 @@ static int flock _lock_file(struct file *
>> goto out;

>> }

> >

Page 6 of 8 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1863
https://new-forum.openvz.org/index.php?t=rview&th=3878&goto=20264#msg_20264
https://new-forum.openvz.org/index.php?t=post&reply_to=20264
https://new-forum.openvz.org/index.php

> > - error = -ENOMEM;

> > -new_fl = locks_alloc_lock();

> > - if (new_fl == NULL)

> > - goto out;

>> [*

>> *|f a higher-priority process was blocked on the old file lock,
>> *give it the opportunity to lock the file.

>

> Doesn't that create a leak in some cases?

>

> > for_each_lock(inode, before) {

> > struct file_lock *fl = *before;

> > if (IS_POSIX(fl))

> > break;

> > if IS_LEASE(fl))

> > continue;

> > if (filp = fl->fl_file)

> > continue;

> > if (request->fl_type == fl->fl_type)
> > goto out; <<<<<<<<<<<<<<<< LEAK?

You mean, a leak of the memory allocated for new_fl? That's freed at
the exit labeled with "out". It's the only exit:

out:
unlock_kernel();
if (new_fl)
locks_free_lock(new_fl);
return error;

And new_fl is initially NULL, assigned only once by the allocation, then
assigned to NULL only at the very end when we know we've succeeded.

Am | missing something else?

--b.

> > found = 1;

> > locks_delete_lock(before);
> > break;

> > }

Subject: Re: [PATCH] Memory shortage can result in inconsistent flocks state
Posted by Chuck Ebbert on Thu, 13 Sep 2007 19:45:01 GMT

View Forum Message <> Reply to Message

On 09/13/2007 03:34 PM, J. Bruce Fields wrote:

Page 7 of 8 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1642
https://new-forum.openvz.org/index.php?t=rview&th=3878&goto=20242#msg_20242
https://new-forum.openvz.org/index.php?t=post&reply_to=20242
https://new-forum.openvz.org/index.php

>> Doesn't that create a leak in some cases?

>>
>>> for_each_lock(inode, before) {

>>> struct file_lock *fl = *before;

>>> if (IS_POSIX(fl))

>>> break;

>>> if IS_LEASE(fl))

>>> continue;

>>> if (filp != fl->fl_file)

>>> continue;

>>> if (request->fl_type == fl->fl_type)

>>> goto out; <<<<<<<<<<K<K<L<L<<< LEAK?
>

> You mean, a leak of the memory allocated for new_fl? That's freed at
> the exit labeled with "out". It's the only exit:

>

> out:

> unlock_kernel();

> if (new_fl)

> |ocks_free_lock(new_fl);

> return error;

>

> And new_fl is initially NULL, assigned only once by the allocation, then
> assigned to NULL only at the very end when we know we've succeeded.
>

> Am | missing something else?

>

Never mind, | didn't look closely enough. Looks good to me.

Page 8 of 8 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

