Subject: Re: [RFC, PATCH] handle the multi-threaded init's exit() properly
Posted by Roland McGrath on Thu, 02 Aug 2007 22:51:27 GMT

View Forum Message <> Reply to Message

This looks fine to me, though | don't know anything about the nsproxy bit.
Now that choose _new_parent is one trivial line, you might go on to get rid
of it and roll its one line into reparent_thread.

Thanks,
Roland

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC, PATCH] handle the multi-threaded init's exit() properly
Posted by Oleg Nesterov on Fri, 03 Aug 2007 18:26:31 GMT

View Forum Message <> Reply to Message

On 08/02, Roland McGrath wrote:

>

> This looks fine to me, though | don't know anything about the nsproxy bit.
> Now that choose_new_parent is one trivial line, you might go on to get rid
> of it and roll its one line into reparent_thread.

OK, thanks. Please find the same patch + "kill one-liner reparent_thread()"
below.
[PATCH] handle the multi-threaded init's exit() properly
With or without this patch, multi-threaded init's are not fully supported, but
do_exit() is completely wrong. This becomes a real problem when we support pid
namespaces.
1. do_exit() panics when the main thread of /sbin/init exits. It should not

until the whole thread group exits. Move the code below, under the

"if (group_dead)" check.

Note: this means that forget_original_parent() can use an already dead
child_reaper()'s task_struct. This is OK for /sbin/init because

- do_wait() from alive sub-thread still can reap a zombie, we iterate
over all sub-thread's ->children lists

- do_notify_parent() will wakeup some alive sub-thread because it sends

Page 1 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1180
https://new-forum.openvz.org/index.php?t=rview&th=3770&goto=19542#msg_19542
https://new-forum.openvz.org/index.php?t=post&reply_to=19542
https://new-forum.openvz.org/index.php?t=usrinfo&id=691
https://new-forum.openvz.org/index.php?t=rview&th=3770&goto=19554#msg_19554
https://new-forum.openvz.org/index.php?t=post&reply_to=19554
https://new-forum.openvz.org/index.php

the group-wide signal

However, we should remove choose_new_parent()->BUG_ON(reaper->exit_state)
for this.

2. We are playing games with ->nsproxy->pid_ns. This code is bogus today, and
it has to be changed anyway when we really support pid namespaces, just
remove it.

Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>

--- t/kernel/exit.c~MTINIT 2007-07-28 16:58:17.000000000 +0400

+++ t/kernel/exit.c 2007-08-03 18:05:52.000000000 +0400

@@ -601,17 +601,6 @@ static void exit_mm(struct task_struct *
mmput(mm);

}

-static inline void

-choose_new_parent(struct task_struct *p, struct task_struct *reaper)
{

e

- * Make sure we're not reparenting to ourselves and that

- *the parent is not a zombie.

- %/

- BUG_ON(p == reaper || reaper->exit_state);

- p->real_parent = reaper,;

-}

static void

reparent_thread(struct task_struct *p, struct task_struct *father, int traced)

{
@@ -719,7 +708,7 @@ forget_original_parent(struct task_struc

if (father == p->real_parent) {
[* reparent with a reaper, real father it's us */
- choose_new_parent(p, reaper);
+ p->real_parent = reaper;
reparent_thread(p, father, 0);
} else {
[* reparent ptraced task to its real parent */
@@ -740,7 +729,7 @@ forget_original_parent(struct task_struc
}
list_for_each_safe(_p, _n, &father->ptrace_children) {
p = list_entry(_p, struct task_struct, ptrace_list);
- choose_new_parent(p, reaper);
+ p->real_parent = reaper;
reparent_thread(p, father, 1);
}

Page 2 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

}
@@ -895,6 +884,14 @@ static void check_stack usage(void)

static inline void check_stack usage(void) {}
#endif

+static inline void exit_child_reaper(struct task_struct *tsk)
+
+ if (likely(tsk->group_leader != child_reaper(tsk)))
+ return;
+
+ panic("Attempted to kill init!");
+}
+
fastcall NORET_TYPE void do_exit(long code)
{
struct task_struct *tsk = current;
@@ -908,13 +905,6 @@ fastcall NORET_TYPE void do_exit(long co
panic("Aiee, killing interrupt handler!");
if (unlikely('tsk->pid))
panic("Attempted to kill the idle task!");
- if (unlikely(tsk == child_reaper(tsk))) {
- if (tsk->nsproxy->pid_ns != &init_pid_ns)
- tsk->nsproxy->pid_ns->child_reaper = init_pid_ns.child_reaper;
- else
- panic("Attempted to kill init!");
-}

if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
current->ptrace_message = code;
@@ -964,6 +954,7 @@ fastcall NORET_TYPE void do_exit(long co
}
group_dead = atomic_dec_and_test(&tsk->signal->live);
if (group_dead) {
+ exit_child_reaper(tsk);
hrtimer_cancel(&tsk->signal->real_timer);
exit_itimers(tsk->signal);

}

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 3 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

