
Subject: [RFC][PATCH 0/6] Add group fairness to CFS - v1
Posted by Srivatsa Vaddagiri on Mon, 11 Jun 2007 15:47:24 GMT
View Forum Message <> Reply to Message

Ingo,
	Here's an update of the group fairness patch I have been working
on. Its against CFS v16 (sched-cfs-v2.6.22-rc4-mm2-v16.patch).

The core idea is to reuse much of CFS logic to apply fairness at higher
hierarchical levels (user, container etc). In this regard CFS engine has been
modified to deal with generic 'schedulable entities'. The patches
introduce two essential structures in CFS core:

	- struct sched_entity
		- represents a schedulable entity in a hierarchy. Task
		 is the lowest element in this hierarchy. Its ancestors
		 could be user, container etc. This structure stores
		 essential attributes/execution-history (wait_runtime etc)
		 which is required by CFS engine to provide fairness between
		 'struct sched_entities' at the same hierarchy.

	- struct lrq
		- represents (per-cpu) runqueue in which ready-to-run
		 'struct sched_entities' are queued. The fair clock
		 calculation is split to be per 'struct lrq'.

Here's a brief description of the patches to follow:

Patches 1-3 introduce the essential changes in CFS core to support this
concept. They rework existing code w/o any (intended!) change in functionality.

Patch 4 fixes some bad interaction between SCHED_RT and SCHED_NORMAL
tasks in current CFS.

Patch 5 introduces basic changes in CFS core to support group fairness.

Patch 6 hooks up scheduler with container patches in mm (as an interface
for task-grouping functionality).

Changes since last version:

	- Prelimnary SMP support included (based on the idea outlined at
	 http://lkml.org/lkml/2007/5/25/146)
	- Task grouping to which fairness is applied is based on Paul Menage's
	 container patches included in -mm tree. Usage of this feature
	 is described in Patch 6/6
	- Fix some real time and SCHED_NORMAL interactions (maintain

Page 1 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=667
https://new-forum.openvz.org/index.php?t=rview&th=3679&goto=18874#msg_18874
https://new-forum.openvz.org/index.php?t=post&reply_to=18874
https://new-forum.openvz.org/index.php

	 separate nr_running/raw_weighted counters for SCHED_NORMAL
	 tasks)
	- Support arbitrary levels of hierarchy. Previous version
	 supported only 2 levels. Current version makes no assumption
	 on the number of levels supported.

TODO:

	- Weighted fair-share support
		Currently each group gets "equal" share. Support
		weighted fair-share so that some groups deemed important
		get more than this "equal" share. I believe it is
		possible to use load_weight to achieve this goal
		(similar to how niced tasks use it to get differential
		bandwidth)

	- Separate out tunables
		Right now tunable are same for all layers of scheduling. I
	 	strongly think we will need to separate them, esp
		sysctl_sched_runtime_limit.

	- Flattening hierarchy
		This may be useful if we want to avoid cost of deep
		hierarchical scheduling in core scheduler, but at the
		same time want deeper hierarchical levels to be supported from
		user pov. William Lee Irwin has suggested basic technique at
		http://lkml.org/lkml/2007/5/26/81 which I need to
		experiment with. With this technique, for ex, it is
		possible to have core scheduler support two levels
		(container, task) but use weight adjustement
		to support more levels from user pov (container, user,
		process, task).

	- (SMP optimization) during load balance, pick cache-cold tasks
	 first to migrate

	- (optimization) reduce frequency of timer tick processing at
	 higher levels (similar to how load balancing frequency varies
	 across scheduling domains).

The patches have been very stable in my tests. There is however one oops I hit
just before sending this (!). I think I know the reason for that (some
cleanup required in RT<->NORMAL switch) and am currently investigating
that.

I am sending the patches largely to get feedback on the direction this
is heading.

Page 2 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Some results of the patches below.

Legends used in the results :-

cfs 	 = base cfs performance (sched-cfs-v2.6.22-rc4-mm2-v16.patch)
cfscc 	 = base cfs + patches 1-3 applied (core changes to cfs core)
cfsccrt = base cfs + patches 1-4 applied (fix RT/NORMAL interactions)
cfsgrpch = base cfs + patches 1-5 applied (group changes applied)
cfsgrpchdi = base cfs + all patches applied (CONFIG_FAIR_GROUP_SCHED disabled)
cfsgrpchen = base cfs + all patches applied (CONFIG_FAIR_GROUP_SCHED enabled)

1. lat_ctx (from lmbench):
==========================

Context switching - times in microseconds - smaller is better

Host OS 2p/0K 2p/16K 2p/64K 8p/16K 8p/64K 16p/16K 16p/64K
 ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw
--------- ------------- ------ ------ ------ ------ ------ ------- -------

cfs Linux 2.6.22- 6.2060 7.1200 7.7746 7.6880 11.27 8.61400 20.68
cfscc Linux 2.6.22- 6.3920 6.9800 7.9320 8.5420 12.1 9.64000 20.46
cfsccrt Linux 2.6.22- 6.5280 7.1600 7.7640 7.9340 11.35 9.34000 20.34
cfsgrpch Linux 2.6.22- 6.9400 7.3080 8.0620 8.5660 12.24 9.29200 21.04
cfsgrpchdi Linux 2.6.22- 6.7966 7.4033 8.1833 8.8166 11.76 9.53667 20.33
cfsgrpchen Linux 2.6.22- 7.3366 7.7666 7.9 8.8766 12.06 9.31337 21.03

Performance of CFS with all patches applied (but with CONFIG_FAIR_GROUP_SCHED
disabled) [cfsgrpchdi above] seems to be very close to base cfs
performance [cfs above] (delta within tolerable noise level limits?)

2. hackbench
============

hackbench -pipe 10:

cfs 0.787
cfscc 0.7547
cfsccrt 0.9014
cfsgrpch 0.8691
cfsgrpchdi 0.7864
cfsgrpchen 0.9229

Page 3 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

hackbench -pipe 100:

cfs 3.726
cfscc 3.7216
cfsccrt 3.8151
cfsgrpch 3.6107
cfsgrpchdi 3.8468
cfsgrpchen 4.2332

3. Fairness result between users 'vatsa' and 'guest':

	The two groups were created as below in container filesystem:
	
	# mkdir /dev/cpuctl
	# mount -t container -ocpuctl none /dev/cpuctl
	# cd /dev/cpuctl
	# mkdir vatsa
	# mkdir guest
	
	# echo vatsa_shell_pid > vatsa/tasks
	# echo guest_shell_pid > guest/tasks

	# # Start tests now in the two user's shells

hackbench -pipe 10:

	vatsa : 1.0186
	guest : 1.0449

hackbench -pipe 100:

	vatsa : 6.9512
	guest : 7.5668	

Note: I have noticed that running lat_ctx in a loop for 10 times doesnt
give me good results. Basically I expected the loop to take same time for
both users (when run simultaneously), whereas it was taking different
times for different users. I think this can be solved by increasing
sysctl_sched_runtime_limit at group level (to remeber execution history
over a longer period).

--
Regards,
vatsa

Containers mailing list
Containers@lists.linux-foundation.org

Page 4 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: [RFC][PATCH 1/6] Introduce struct sched_entity and struct lrq
Posted by Srivatsa Vaddagiri on Mon, 11 Jun 2007 15:50:46 GMT
View Forum Message <> Reply to Message

This patch introduces two new structures:

struct sched_entity
 stores essential attributes/execution-history used by CFS core
 to drive fairness between 'schedulable entities' (tasks, users etc)

struct lrq
 runqueue used to hold ready-to-run entities

These new structures are formed by grouping together existing fields in
existing structures (task_struct and rq) and hence represents rework
with zero functionality change.

Signed-off-by : Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>

 fs/proc/array.c | 4
 include/linux/sched.h | 43 +++++----
 kernel/exit.c | 2
 kernel/posix-cpu-timers.c | 16 +--
 kernel/sched.c | 186 +++++++++++++++++++++-------------------
 kernel/sched_debug.c | 86 +++++++++---------
 kernel/sched_fair.c | 211 +++++++++++++++++++++++-----------------------
 kernel/sched_rt.c | 14 +--
 8 files changed, 289 insertions(+), 273 deletions(-)

Index: current/include/linux/sched.h
===
--- current.orig/include/linux/sched.h	2007-06-09 15:01:39.000000000 +0530
+++ current/include/linux/sched.h	2007-06-09 15:04:54.000000000 +0530
@@ -872,6 +872,29 @@
 	void (*task_new) (struct rq *rq, struct task_struct *p);
 };

+/* CFS stats for a schedulable entity (task, task-group etc) */
+struct sched_entity {
+	int load_weight;	/* for niceness load balancing purposes */
+	int on_rq;
+	struct rb_node run_node;
+	u64 wait_start_fair;

Page 5 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=667
https://new-forum.openvz.org/index.php?t=rview&th=3679&goto=18875#msg_18875
https://new-forum.openvz.org/index.php?t=post&reply_to=18875
https://new-forum.openvz.org/index.php

+	u64 wait_start;
+	u64 exec_start;
+	u64 sleep_start, sleep_start_fair;
+	u64 block_start;
+	u64 sleep_max;
+	u64 block_max;
+	u64 exec_max;
+	u64 wait_max;
+	u64 last_ran;
+
+	s64 wait_runtime;
+	u64 sum_exec_runtime;
+	s64 fair_key;
+	s64 sum_wait_runtime, sum_sleep_runtime;
+	unsigned long wait_runtime_overruns, wait_runtime_underruns;
+};
+
 struct task_struct {
 	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
 	void *stack;
@@ -886,33 +909,15 @@
 	int oncpu;
 #endif
 #endif
-	int load_weight;	/* for niceness load balancing purposes */

 	int prio, static_prio, normal_prio;
-	int on_rq;
 	struct list_head run_list;
-	struct rb_node run_node;
+	struct sched_entity se;

 	unsigned short ioprio;
 #ifdef CONFIG_BLK_DEV_IO_TRACE
 	unsigned int btrace_seq;
 #endif
-	/* CFS scheduling class statistics fields: */
-	u64 wait_start_fair;
-	u64 wait_start;
-	u64 exec_start;
-	u64 sleep_start, sleep_start_fair;
-	u64 block_start;
-	u64 sleep_max;
-	u64 block_max;
-	u64 exec_max;
-	u64 wait_max;
-
-	s64 wait_runtime;

Page 6 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-	u64 sum_exec_runtime;
-	s64 fair_key;
-	s64 sum_wait_runtime, sum_sleep_runtime;
-	unsigned long wait_runtime_overruns, wait_runtime_underruns;

 	unsigned int policy;
 	cpumask_t cpus_allowed;
Index: current/fs/proc/array.c
===
--- current.orig/fs/proc/array.c	2007-06-09 15:01:39.000000000 +0530
+++ current/fs/proc/array.c	2007-06-09 15:04:54.000000000 +0530
@@ -329,7 +329,7 @@
 	 * Use CFS's precise accounting, if available:
 	 */
 	if (!(sysctl_sched_features & 128)) {
-		u64 temp = (u64)nsec_to_clock_t(p->sum_exec_runtime);
+		u64 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

 		if (total) {
 			temp *= utime;
@@ -351,7 +351,7 @@
 	 * by userspace grows monotonically - apps rely on that):
 	 */
 	if (!(sysctl_sched_features & 128))
-		stime = nsec_to_clock_t(p->sum_exec_runtime) - task_utime(p);
+		stime = nsec_to_clock_t(p->se.sum_exec_runtime) - task_utime(p);

 	return stime;
 }
Index: current/kernel/exit.c
===
--- current.orig/kernel/exit.c	2007-06-09 14:56:50.000000000 +0530
+++ current/kernel/exit.c	2007-06-09 15:04:54.000000000 +0530
@@ -126,7 +126,7 @@
 		sig->nivcsw += tsk->nivcsw;
 		sig->inblock += task_io_get_inblock(tsk);
 		sig->oublock += task_io_get_oublock(tsk);
-		sig->sum_sched_runtime += tsk->sum_exec_runtime;
+		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
 		sig = NULL; /* Marker for below. */
 	}

Index: current/kernel/posix-cpu-timers.c
===
--- current.orig/kernel/posix-cpu-timers.c	2007-06-09 15:01:39.000000000 +0530
+++ current/kernel/posix-cpu-timers.c	2007-06-09 15:04:54.000000000 +0530
@@ -249,7 +249,7 @@
 		cpu->sched = p->signal->sum_sched_runtime;

Page 7 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 		/* Add in each other live thread. */
 		while ((t = next_thread(t)) != p) {
-			cpu->sched += t->sum_exec_runtime;
+			cpu->sched += t->se.sum_exec_runtime;
 		}
 		cpu->sched += sched_ns(p);
 		break;
@@ -467,7 +467,7 @@
 void posix_cpu_timers_exit(struct task_struct *tsk)
 {
 	cleanup_timers(tsk->cpu_timers,
-		 tsk->utime, tsk->stime, tsk->sum_exec_runtime);
+		 tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);

 }
 void posix_cpu_timers_exit_group(struct task_struct *tsk)
@@ -475,7 +475,7 @@
 	cleanup_timers(tsk->signal->cpu_timers,
 		 cputime_add(tsk->utime, tsk->signal->utime),
 		 cputime_add(tsk->stime, tsk->signal->stime),
-		 tsk->sum_exec_runtime + tsk->signal->sum_sched_runtime);
+		 tsk->se.sum_exec_runtime + tsk->signal->sum_sched_runtime);
 }

@@ -536,7 +536,7 @@
 		nsleft = max_t(unsigned long long, nsleft, 1);
 		do {
 			if (likely(!(t->flags & PF_EXITING))) {
-				ns = t->sum_exec_runtime + nsleft;
+				ns = t->se.sum_exec_runtime + nsleft;
 				if (t->it_sched_expires == 0 ||
 				 t->it_sched_expires > ns) {
 					t->it_sched_expires = ns;
@@ -1004,7 +1004,7 @@
 		struct cpu_timer_list *t = list_first_entry(timers,
 						 struct cpu_timer_list,
 						 entry);
-		if (!--maxfire || tsk->sum_exec_runtime < t->expires.sched) {
+		if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
 			tsk->it_sched_expires = t->expires.sched;
 			break;
 		}
@@ -1049,7 +1049,7 @@
 	do {
 		utime = cputime_add(utime, t->utime);
 		stime = cputime_add(stime, t->stime);
-		sum_sched_runtime += t->sum_exec_runtime;

Page 8 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+		sum_sched_runtime += t->se.sum_exec_runtime;
 		t = next_thread(t);
 	} while (t != tsk);
 	ptime = cputime_add(utime, stime);
@@ -1208,7 +1208,7 @@
 				t->it_virt_expires = ticks;
 			}

-			sched = t->sum_exec_runtime + sched_left;
+			sched = t->se.sum_exec_runtime + sched_left;
 			if (sched_expires && (t->it_sched_expires == 0 ||
 					 t->it_sched_expires > sched)) {
 				t->it_sched_expires = sched;
@@ -1300,7 +1300,7 @@

 	if (UNEXPIRED(prof) && UNEXPIRED(virt) &&
 	 (tsk->it_sched_expires == 0 ||
-	 tsk->sum_exec_runtime < tsk->it_sched_expires))
+	 tsk->se.sum_exec_runtime < tsk->it_sched_expires))
 		return;

 #undef	UNEXPIRED
Index: current/kernel/sched.c
===
--- current.orig/kernel/sched.c	2007-06-09 15:01:39.000000000 +0530
+++ current/kernel/sched.c	2007-06-09 15:07:17.000000000 +0530
@@ -116,6 +116,23 @@
 	struct list_head queue[MAX_RT_PRIO];
 };

+/* CFS-related fields in a runqueue */
+struct lrq {
+	unsigned long raw_weighted_load;
+	#define CPU_LOAD_IDX_MAX 5
+	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
+	unsigned long nr_load_updates;
+
+	u64 fair_clock, delta_fair_clock;
+	u64 exec_clock, delta_exec_clock;
+	s64 wait_runtime;
+	unsigned long wait_runtime_overruns, wait_runtime_underruns;
+
+	struct rb_root tasks_timeline;
+	struct rb_node *rb_leftmost;
+	struct rb_node *rb_load_balance_curr;
+};
+
 /*

Page 9 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 * This is the main, per-CPU runqueue data structure.
 *
@@ -131,16 +148,13 @@
 	 * remote CPUs use both these fields when doing load calculation.
 	 */
 	long nr_running;
-	unsigned long raw_weighted_load;
-	#define CPU_LOAD_IDX_MAX 5
-	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
+	struct lrq lrq;

 	unsigned char idle_at_tick;
 #ifdef CONFIG_NO_HZ
 	unsigned char in_nohz_recently;
 #endif
 	u64 nr_switches;
-	unsigned long nr_load_updates;

 	/*
 	 * This is part of a global counter where only the total sum
@@ -156,10 +170,6 @@

 	u64 clock, prev_clock_raw;
 	s64 clock_max_delta;
-	u64 fair_clock, delta_fair_clock;
-	u64 exec_clock, delta_exec_clock;
-	s64 wait_runtime;
-	unsigned long wait_runtime_overruns, wait_runtime_underruns;

 	unsigned int clock_warps, clock_overflows;
 	unsigned int clock_unstable_events;
@@ -170,10 +180,6 @@
 	int rt_load_balance_idx;
 	struct list_head *rt_load_balance_head, *rt_load_balance_curr;

-	struct rb_root tasks_timeline;
-	struct rb_node *rb_leftmost;
-	struct rb_node *rb_load_balance_curr;
-
 	atomic_t nr_iowait;

 #ifdef CONFIG_SMP
@@ -583,13 +589,13 @@
 static inline void
 inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
 {
-	rq->raw_weighted_load += p->load_weight;
+	rq->lrq.raw_weighted_load += p->se.load_weight;

Page 10 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 }

 static inline void
 dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
 {
-	rq->raw_weighted_load -= p->load_weight;
+	rq->lrq.raw_weighted_load -= p->se.load_weight;
 }

 static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
@@ -615,22 +621,22 @@

 static void set_load_weight(struct task_struct *p)
 {
-	task_rq(p)->wait_runtime -= p->wait_runtime;
-	p->wait_runtime = 0;
+	task_rq(p)->lrq.wait_runtime -= p->se.wait_runtime;
+	p->se.wait_runtime = 0;

 	if (has_rt_policy(p)) {
-		p->load_weight = prio_to_weight[0] * 2;
+		p->se.load_weight = prio_to_weight[0] * 2;
 		return;
 	}
 	/*
 	 * SCHED_IDLEPRIO tasks get minimal weight:
 	 */
 	if (p->policy == SCHED_IDLEPRIO) {
-		p->load_weight = 1;
+		p->se.load_weight = 1;
 		return;
 	}

-	p->load_weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
+	p->se.load_weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
 }

 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
@@ -639,7 +645,7 @@

 	sched_info_queued(p);
 	p->sched_class->enqueue_task(rq, p, wakeup, now);
-	p->on_rq = 1;
+	p->se.on_rq = 1;
 }

 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
@@ -647,7 +653,7 @@

Page 11 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 	u64 now = rq_clock(rq);

 	p->sched_class->dequeue_task(rq, p, sleep, now);
-	p->on_rq = 0;
+	p->se.on_rq = 0;
 }

 /*
@@ -735,7 +741,7 @@
 /* Used instead of source_load when we know the type == 0 */
 unsigned long weighted_cpuload(const int cpu)
 {
-	return cpu_rq(cpu)->raw_weighted_load;
+	return cpu_rq(cpu)->lrq.raw_weighted_load;
 }

 #ifdef CONFIG_SMP
@@ -752,18 +758,18 @@
 	u64 clock_offset, fair_clock_offset;

 	clock_offset = old_rq->clock - new_rq->clock;
-	fair_clock_offset = old_rq->fair_clock - new_rq->fair_clock;
+	fair_clock_offset = old_rq->lrq.fair_clock - new_rq->lrq.fair_clock;

-	if (p->wait_start)
-		p->wait_start -= clock_offset;
-	if (p->wait_start_fair)
-		p->wait_start_fair -= fair_clock_offset;
-	if (p->sleep_start)
-		p->sleep_start -= clock_offset;
-	if (p->block_start)
-		p->block_start -= clock_offset;
-	if (p->sleep_start_fair)
-		p->sleep_start_fair -= fair_clock_offset;
+	if (p->se.wait_start)
+		p->se.wait_start -= clock_offset;
+	if (p->se.wait_start_fair)
+		p->se.wait_start_fair -= fair_clock_offset;
+	if (p->se.sleep_start)
+		p->se.sleep_start -= clock_offset;
+	if (p->se.block_start)
+		p->se.block_start -= clock_offset;
+	if (p->se.sleep_start_fair)
+		p->se.sleep_start_fair -= fair_clock_offset;

 	task_thread_info(p)->cpu = new_cpu;

@@ -791,7 +797,7 @@

Page 12 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 	 * If the task is not on a runqueue (and not running), then
 	 * it is sufficient to simply update the task's cpu field.
 	 */
-	if (!p->on_rq && !task_running(rq, p)) {
+	if (!p->se.on_rq && !task_running(rq, p)) {
 		set_task_cpu(p, dest_cpu);
 		return 0;
 	}
@@ -822,7 +828,7 @@
 repeat:
 	rq = task_rq_lock(p, &flags);
 	/* Must be off runqueue entirely, not preempted. */
-	if (unlikely(p->on_rq || task_running(rq, p))) {
+	if (unlikely(p->se.on_rq || task_running(rq, p))) {
 		/* If it's preempted, we yield. It could be a while. */
 		preempted = !task_running(rq, p);
 		task_rq_unlock(rq, &flags);
@@ -870,9 +876,9 @@
 	struct rq *rq = cpu_rq(cpu);

 	if (type == 0)
-		return rq->raw_weighted_load;
+		return rq->lrq.raw_weighted_load;

-	return min(rq->cpu_load[type-1], rq->raw_weighted_load);
+	return min(rq->lrq.cpu_load[type-1], rq->lrq.raw_weighted_load);
 }

 /*
@@ -884,9 +890,9 @@
 	struct rq *rq = cpu_rq(cpu);

 	if (type == 0)
-		return rq->raw_weighted_load;
+		return rq->lrq.raw_weighted_load;

-	return max(rq->cpu_load[type-1], rq->raw_weighted_load);
+	return max(rq->lrq.cpu_load[type-1], rq->lrq.raw_weighted_load);
 }

 /*
@@ -897,7 +903,7 @@
 	struct rq *rq = cpu_rq(cpu);
 	unsigned long n = rq->nr_running;

-	return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
+	return n ? rq->lrq.raw_weighted_load / n : SCHED_LOAD_SCALE;
 }

Page 13 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 /*
@@ -1128,7 +1134,7 @@
 	if (!(old_state & state))
 		goto out;

-	if (p->on_rq)
+	if (p->se.on_rq)
 		goto out_running;

 	cpu = task_cpu(p);
@@ -1183,11 +1189,11 @@
 			 * of the current CPU:
 			 */
 			if (sync)
-				tl -= current->load_weight;
+				tl -= current->se.load_weight;

 			if ((tl <= load &&
 				tl + target_load(cpu, idx) <= tl_per_task) ||
-				100*(tl + p->load_weight) <= imbalance*load) {
+			 100*(tl + p->se.load_weight) <= imbalance*load) {
 				/*
 				 * This domain has SD_WAKE_AFFINE and
 				 * p is cache cold in this domain, and
@@ -1221,7 +1227,7 @@
 		old_state = p->state;
 		if (!(old_state & state))
 			goto out;
-		if (p->on_rq)
+		if (p->se.on_rq)
 			goto out_running;

 		this_cpu = smp_processor_id();
@@ -1285,18 +1291,18 @@
 */
 static void __sched_fork(struct task_struct *p)
 {
-	p->wait_start_fair = p->wait_start = p->exec_start = 0;
-	p->sum_exec_runtime = 0;
+	p->se.wait_start_fair = p->se.wait_start = p->se.exec_start = 0;
+	p->se.sum_exec_runtime = 0;

-	p->wait_runtime = 0;
+	p->se.wait_runtime = 0;

-	p->sum_wait_runtime = p->sum_sleep_runtime = 0;
-	p->sleep_start = p->sleep_start_fair = p->block_start = 0;

Page 14 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-	p->sleep_max = p->block_max = p->exec_max = p->wait_max = 0;
-	p->wait_runtime_overruns = p->wait_runtime_underruns = 0;
+	p->se.sum_wait_runtime = p->se.sum_sleep_runtime = 0;
+	p->se.sleep_start = p->se.sleep_start_fair = p->se.block_start = 0;
+	p->se.sleep_max = p->se.block_max = p->se.exec_max = p->se.wait_max = 0;
+	p->se.wait_runtime_overruns = p->se.wait_runtime_underruns = 0;

 	INIT_LIST_HEAD(&p->run_list);
-	p->on_rq = 0;
+	p->se.on_rq = 0;
 	p->nr_switches = 0;

 	/*
@@ -1367,7 +1373,7 @@
 	p->prio = effective_prio(p);

 	if (!sysctl_sched_child_runs_first || (clone_flags & CLONE_VM) ||
-			task_cpu(p) != this_cpu || !current->on_rq) {
+			task_cpu(p) != this_cpu || !current->se.on_rq) {
 		activate_task(rq, p, 0);
 	} else {
 		/*
@@ -1382,7 +1388,7 @@

 void sched_dead(struct task_struct *p)
 {
-	WARN_ON_ONCE(p->on_rq);
+	WARN_ON_ONCE(p->se.on_rq);
 }

 /**
@@ -1592,17 +1598,17 @@
 	u64 fair_delta64, exec_delta64, tmp64;
 	unsigned int i, scale;

-	this_rq->nr_load_updates++;
+	this_rq->lrq.nr_load_updates++;
 	if (!(sysctl_sched_features & 64)) {
-		this_load = this_rq->raw_weighted_load;
+		this_load = this_rq->lrq.raw_weighted_load;
 		goto do_avg;
 	}

-	fair_delta64 = this_rq->delta_fair_clock + 1;
-	this_rq->delta_fair_clock = 0;
+	fair_delta64 = this_rq->lrq.delta_fair_clock + 1;
+	this_rq->lrq.delta_fair_clock = 0;

Page 15 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-	exec_delta64 = this_rq->delta_exec_clock + 1;
-	this_rq->delta_exec_clock = 0;
+	exec_delta64 = this_rq->lrq.delta_exec_clock + 1;
+	this_rq->lrq.delta_exec_clock = 0;

 	if (fair_delta64 > (u64)LONG_MAX)
 		fair_delta64 = (u64)LONG_MAX;
@@ -1627,10 +1633,10 @@

 		/* scale is effectively 1 << i now, and >> i divides by scale */

-		old_load = this_rq->cpu_load[i];
+		old_load = this_rq->lrq.cpu_load[i];
 		new_load = this_load;

-		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
+		this_rq->lrq.cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
 	}
 }

@@ -1886,7 +1892,8 @@
 	 * skip a task if it will be the highest priority task (i.e. smallest
 	 * prio value) on its new queue regardless of its load weight
 	 */
-	skip_for_load = (p->load_weight >> 1) > rem_load_move + SCHED_LOAD_SCALE_FUZZ;
+	skip_for_load = (p->se.load_weight >> 1) > rem_load_move +
+							 SCHED_LOAD_SCALE_FUZZ;
 	if (skip_for_load && p->prio < this_best_prio)
 		skip_for_load = !best_prio_seen && p->prio == best_prio;
 	if (skip_for_load ||
@@ -1899,7 +1906,7 @@

 	pull_task(busiest, p, this_rq, this_cpu);
 	pulled++;
-	rem_load_move -= p->load_weight;
+	rem_load_move -= p->se.load_weight;

 	/*
 	 * We only want to steal up to the prescribed number of tasks
@@ -1996,7 +2003,7 @@

 			avg_load += load;
 			sum_nr_running += rq->nr_running;
-			sum_weighted_load += rq->raw_weighted_load;
+			sum_weighted_load += rq->lrq.raw_weighted_load;
 		}

 		/*

Page 16 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

@@ -2230,11 +2237,12 @@

 		rq = cpu_rq(i);

-		if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
+		if (rq->nr_running == 1 &&
+				 rq->lrq.raw_weighted_load > imbalance)
 			continue;

-		if (rq->raw_weighted_load > max_load) {
-			max_load = rq->raw_weighted_load;
+		if (rq->lrq.raw_weighted_load > max_load) {
+			max_load = rq->lrq.raw_weighted_load;
 			busiest = rq;
 		}
 	}
@@ -2838,9 +2846,9 @@
 	struct rq *rq;

 	rq = task_rq_lock(p, &flags);
-	ns = p->sum_exec_runtime;
+	ns = p->se.sum_exec_runtime;
 	if (rq->curr == p) {
-		delta_exec = rq_clock(rq) - p->exec_start;
+		delta_exec = rq_clock(rq) - p->se.exec_start;
 		if ((s64)delta_exec > 0)
 			ns += delta_exec;
 	}
@@ -3538,7 +3546,7 @@
 	rq = task_rq_lock(p, &flags);

 	oldprio = p->prio;
-	on_rq = p->on_rq;
+	on_rq = p->se.on_rq;
 	if (on_rq)
 		dequeue_task(rq, p, 0);

@@ -3591,7 +3599,7 @@
 		p->static_prio = NICE_TO_PRIO(nice);
 		goto out_unlock;
 	}
-	on_rq = p->on_rq;
+	on_rq = p->se.on_rq;
 	if (on_rq) {
 		dequeue_task(rq, p, 0);
 		dec_raw_weighted_load(rq, p);
@@ -3728,7 +3736,7 @@
 static void

Page 17 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
 {
-	BUG_ON(p->on_rq);
+	BUG_ON(p->se.on_rq);

 	p->policy = policy;
 	switch (p->policy) {
@@ -3836,7 +3844,7 @@
 		spin_unlock_irqrestore(&p->pi_lock, flags);
 		goto recheck;
 	}
-	on_rq = p->on_rq;
+	on_rq = p->se.on_rq;
 	if (on_rq)
 		deactivate_task(rq, p, 0);
 	oldprio = p->prio;
@@ -4490,7 +4498,7 @@
 	unsigned long flags;

 	__sched_fork(idle);
-	idle->exec_start = sched_clock();
+	idle->se.exec_start = sched_clock();

 	idle->prio = idle->normal_prio = MAX_PRIO;
 	idle->cpus_allowed = cpumask_of_cpu(cpu);
@@ -4633,7 +4641,7 @@
 		goto out;

 	set_task_cpu(p, dest_cpu);
-	if (p->on_rq) {
+	if (p->se.on_rq) {
 		deactivate_task(rq_src, p, 0);
 		activate_task(rq_dest, p, 0);
 		check_preempt_curr(rq_dest, p);
@@ -6100,11 +6108,11 @@
 		spin_lock_init(&rq->lock);
 		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
 		rq->nr_running = 0;
-		rq->tasks_timeline = RB_ROOT;
-		rq->clock = rq->fair_clock = 1;
+		rq->lrq.tasks_timeline = RB_ROOT;
+		rq->clock = rq->lrq.fair_clock = 1;

 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
-			rq->cpu_load[j] = 0;
+			rq->lrq.cpu_load[j] = 0;
 #ifdef CONFIG_SMP
 		rq->sd = NULL;

Page 18 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 		rq->active_balance = 0;
@@ -6187,15 +6195,15 @@
 	read_lock_irq(&tasklist_lock);

 	do_each_thread(g, p) {
-		p->fair_key = 0;
-		p->wait_runtime = 0;
-		p->wait_start_fair = 0;
-		p->wait_start = 0;
-		p->exec_start = 0;
-		p->sleep_start = 0;
-		p->sleep_start_fair = 0;
-		p->block_start = 0;
-		task_rq(p)->fair_clock = 0;
+		p->se.fair_key = 0;
+		p->se.wait_runtime = 0;
+		p->se.wait_start_fair = 0;
+		p->se.wait_start = 0;
+		p->se.exec_start = 0;
+		p->se.sleep_start = 0;
+		p->se.sleep_start_fair = 0;
+		p->se.block_start = 0;
+		task_rq(p)->lrq.fair_clock = 0;
 		task_rq(p)->clock = 0;

 		if (!rt_task(p)) {
@@ -6218,7 +6226,7 @@
 			goto out_unlock;
 #endif

-		on_rq = p->on_rq;
+		on_rq = p->se.on_rq;
 		if (on_rq)
 			deactivate_task(task_rq(p), p, 0);
 		__setscheduler(rq, p, SCHED_NORMAL, 0);
Index: current/kernel/sched_debug.c
===
--- current.orig/kernel/sched_debug.c	2007-06-09 15:01:39.000000000 +0530
+++ current/kernel/sched_debug.c	2007-06-09 15:07:16.000000000 +0530
@@ -40,16 +40,16 @@
 	SEQ_printf(m, "%15s %5d %15Ld %13Ld %13Ld %9Ld %5d "
 		 "%15Ld %15Ld %15Ld %15Ld %15Ld\n",
 		p->comm, p->pid,
-		(long long)p->fair_key,
-		(long long)(p->fair_key - rq->fair_clock),
-		(long long)p->wait_runtime,
+		(long long)p->se.fair_key,
+		(long long)(p->se.fair_key - rq->lrq.fair_clock),

Page 19 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+		(long long)p->se.wait_runtime,
 		(long long)p->nr_switches,
 		p->prio,
-		(long long)p->sum_exec_runtime,
-		(long long)p->sum_wait_runtime,
-		(long long)p->sum_sleep_runtime,
-		(long long)p->wait_runtime_overruns,
-		(long long)p->wait_runtime_underruns);
+		(long long)p->se.sum_exec_runtime,
+		(long long)p->se.sum_wait_runtime,
+		(long long)p->se.sum_sleep_runtime,
+		(long long)p->se.wait_runtime_overruns,
+		(long long)p->se.wait_runtime_underruns);
 }

 static void print_rq(struct seq_file *m, struct rq *rq, u64 now)
@@ -70,7 +70,7 @@
 	read_lock_irq(&tasklist_lock);

 	do_each_thread(g, p) {
-		if (!p->on_rq)
+		if (!p->se.on_rq)
 			continue;

 		print_task(m, rq, p, now);
@@ -89,8 +89,8 @@
 	spin_lock_irqsave(&rq->lock, flags);
 	curr = first_fair(rq);
 	while (curr) {
-		p = rb_entry(curr, struct task_struct, run_node);
-		wait_runtime_rq_sum += p->wait_runtime;
+		p = rb_entry(curr, struct task_struct, se.run_node);
+		wait_runtime_rq_sum += p->se.wait_runtime;

 		curr = rb_next(curr);
 	}
@@ -109,9 +109,9 @@
 	SEQ_printf(m, " .%-22s: %Ld\n", #x, (long long)(rq->x))

 	P(nr_running);
-	P(raw_weighted_load);
+	P(lrq.raw_weighted_load);
 	P(nr_switches);
-	P(nr_load_updates);
+	P(lrq.nr_load_updates);
 	P(nr_uninterruptible);
 	SEQ_printf(m, " .%-22s: %lu\n", "jiffies", jiffies);
 	P(next_balance);

Page 20 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

@@ -122,18 +122,18 @@
 	P(clock_overflows);
 	P(clock_unstable_events);
 	P(clock_max_delta);
-	P(fair_clock);
-	P(delta_fair_clock);
-	P(exec_clock);
-	P(delta_exec_clock);
-	P(wait_runtime);
-	P(wait_runtime_overruns);
-	P(wait_runtime_underruns);
-	P(cpu_load[0]);
-	P(cpu_load[1]);
-	P(cpu_load[2]);
-	P(cpu_load[3]);
-	P(cpu_load[4]);
+	P(lrq.fair_clock);
+	P(lrq.delta_fair_clock);
+	P(lrq.exec_clock);
+	P(lrq.delta_exec_clock);
+	P(lrq.wait_runtime);
+	P(lrq.wait_runtime_overruns);
+	P(lrq.wait_runtime_underruns);
+	P(lrq.cpu_load[0]);
+	P(lrq.cpu_load[1]);
+	P(lrq.cpu_load[2]);
+	P(lrq.cpu_load[3]);
+	P(lrq.cpu_load[4]);
 #undef P
 	print_rq_runtime_sum(m, rq);

@@ -205,21 +205,21 @@
 #define P(F) \
 	SEQ_printf(m, "%-25s:%20Ld\n", #F, (long long)p->F)

-	P(wait_start);
-	P(wait_start_fair);
-	P(exec_start);
-	P(sleep_start);
-	P(sleep_start_fair);
-	P(block_start);
-	P(sleep_max);
-	P(block_max);
-	P(exec_max);
-	P(wait_max);
-	P(wait_runtime);
-	P(wait_runtime_overruns);
-	P(wait_runtime_underruns);

Page 21 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-	P(sum_exec_runtime);
-	P(load_weight);
+	P(se.wait_start);
+	P(se.wait_start_fair);
+	P(se.exec_start);
+	P(se.sleep_start);
+	P(se.sleep_start_fair);
+	P(se.block_start);
+	P(se.sleep_max);
+	P(se.block_max);
+	P(se.exec_max);
+	P(se.wait_max);
+	P(se.wait_runtime);
+	P(se.wait_runtime_overruns);
+	P(se.wait_runtime_underruns);
+	P(se.sum_exec_runtime);
+	P(se.load_weight);
 	P(policy);
 	P(prio);
 #undef P
@@ -235,7 +235,7 @@

 void proc_sched_set_task(struct task_struct *p)
 {
-	p->sleep_max = p->block_max = p->exec_max = p->wait_max = 0;
-	p->wait_runtime_overruns = p->wait_runtime_underruns = 0;
-	p->sum_exec_runtime = 0;
+	p->se.sleep_max = p->se.block_max = p->se.exec_max = p->se.wait_max = 0;
+	p->se.wait_runtime_overruns = p->se.wait_runtime_underruns = 0;
+	p->se.sum_exec_runtime = 0;
 }
Index: current/kernel/sched_fair.c
===
--- current.orig/kernel/sched_fair.c	2007-06-09 15:01:39.000000000 +0530
+++ current/kernel/sched_fair.c	2007-06-09 15:07:16.000000000 +0530
@@ -51,10 +51,10 @@
 */
 static inline void __enqueue_task_fair(struct rq *rq, struct task_struct *p)
 {
-	struct rb_node **link = &rq->tasks_timeline.rb_node;
+	struct rb_node **link = &rq->lrq.tasks_timeline.rb_node;
 	struct rb_node *parent = NULL;
 	struct task_struct *entry;
-	s64 key = p->fair_key;
+	s64 key = p->se.fair_key;
 	int leftmost = 1;

 	/*

Page 22 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

@@ -62,12 +62,12 @@
 	 */
 	while (*link) {
 		parent = *link;
-		entry = rb_entry(parent, struct task_struct, run_node);
+		entry = rb_entry(parent, struct task_struct, se.run_node);
 		/*
 		 * We dont care about collisions. Nodes with
 		 * the same key stay together.
 		 */
-		if ((s64)(key - entry->fair_key) < 0) {
+		if ((s64)(key - entry->se.fair_key) < 0) {
 			link = &parent->rb_left;
 		} else {
 			link = &parent->rb_right;
@@ -80,31 +80,31 @@
 	 * used):
 	 */
 	if (leftmost)
-		rq->rb_leftmost = &p->run_node;
+		rq->lrq.rb_leftmost = &p->se.run_node;

-	rb_link_node(&p->run_node, parent, link);
-	rb_insert_color(&p->run_node, &rq->tasks_timeline);
+	rb_link_node(&p->se.run_node, parent, link);
+	rb_insert_color(&p->se.run_node, &rq->lrq.tasks_timeline);
 }

 static inline void __dequeue_task_fair(struct rq *rq, struct task_struct *p)
 {
-	if (rq->rb_leftmost == &p->run_node)
-		rq->rb_leftmost = NULL;
-	rb_erase(&p->run_node, &rq->tasks_timeline);
+	if (rq->lrq.rb_leftmost == &p->se.run_node)
+		rq->lrq.rb_leftmost = NULL;
+	rb_erase(&p->se.run_node, &rq->lrq.tasks_timeline);
 }

 static inline struct rb_node * first_fair(struct rq *rq)
 {
-	if (rq->rb_leftmost)
-		return rq->rb_leftmost;
+	if (rq->lrq.rb_leftmost)
+		return rq->lrq.rb_leftmost;
 	/* Cache the value returned by rb_first() */
-	rq->rb_leftmost = rb_first(&rq->tasks_timeline);
-	return rq->rb_leftmost;
+	rq->lrq.rb_leftmost = rb_first(&rq->lrq.tasks_timeline);

Page 23 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+	return rq->lrq.rb_leftmost;
 }

 static struct task_struct * __pick_next_task_fair(struct rq *rq)
 {
-	return rb_entry(first_fair(rq), struct task_struct, run_node);
+	return rb_entry(first_fair(rq), struct task_struct, se.run_node);
 }

 /**/
@@ -121,13 +121,13 @@
 	/*
 	 * Negative nice levels get the same granularity as nice-0:
 	 */
-	if (curr->load_weight >= NICE_0_LOAD)
+	if (curr->se.load_weight >= NICE_0_LOAD)
 		return granularity;
 	/*
 	 * Positive nice level tasks get linearly finer
 	 * granularity:
 	 */
-	return curr->load_weight * (s64)(granularity / NICE_0_LOAD);
+	return curr->se.load_weight * (s64)(granularity / NICE_0_LOAD);
 }

 static void limit_wait_runtime(struct rq *rq, struct task_struct *p)
@@ -138,30 +138,30 @@
 	 * Niced tasks have the same history dynamic range as
 	 * non-niced tasks:
 	 */
-	if (p->wait_runtime > limit) {
-		p->wait_runtime = limit;
-		p->wait_runtime_overruns++;
-		rq->wait_runtime_overruns++;
-	}
-	if (p->wait_runtime < -limit) {
-		p->wait_runtime = -limit;
-		p->wait_runtime_underruns++;
-		rq->wait_runtime_underruns++;
+	if (p->se.wait_runtime > limit) {
+		p->se.wait_runtime = limit;
+		p->se.wait_runtime_overruns++;
+		rq->lrq.wait_runtime_overruns++;
+	}
+	if (p->se.wait_runtime < -limit) {
+		p->se.wait_runtime = -limit;
+		p->se.wait_runtime_underruns++;
+		rq->lrq.wait_runtime_underruns++;

Page 24 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 	}
 }

 static void __add_wait_runtime(struct rq *rq, struct task_struct *p, s64 delta)
 {
-	p->wait_runtime += delta;
-	p->sum_wait_runtime += delta;
+	p->se.wait_runtime += delta;
+	p->se.sum_wait_runtime += delta;
 	limit_wait_runtime(rq, p);
 }

 static void add_wait_runtime(struct rq *rq, struct task_struct *p, s64 delta)
 {
-	rq->wait_runtime -= p->wait_runtime;
+	rq->lrq.wait_runtime -= p->se.wait_runtime;
 	__add_wait_runtime(rq, p, delta);
-	rq->wait_runtime += p->wait_runtime;
+	rq->lrq.wait_runtime += p->se.wait_runtime;
 }

 static s64 div64_s(s64 divident, unsigned long divisor)
@@ -185,7 +185,7 @@
 */
 static inline void update_curr(struct rq *rq, u64 now)
 {
-	unsigned long load = rq->raw_weighted_load;
+	unsigned long load = rq->lrq.raw_weighted_load;
 	u64 delta_exec, delta_fair, delta_mine;
 	struct task_struct *curr = rq->curr;

@@ -195,23 +195,23 @@
 	 * Get the amount of time the current task was running
 	 * since the last time we changed raw_weighted_load:
 	 */
-	delta_exec = now - curr->exec_start;
+	delta_exec = now - curr->se.exec_start;
 	if (unlikely((s64)delta_exec < 0))
 		delta_exec = 0;
-	if (unlikely(delta_exec > curr->exec_max))
-		curr->exec_max = delta_exec;
+	if (unlikely(delta_exec > curr->se.exec_max))
+		curr->se.exec_max = delta_exec;

-	curr->sum_exec_runtime += delta_exec;
-	curr->exec_start = now;
-	rq->exec_clock += delta_exec;
+	curr->se.sum_exec_runtime += delta_exec;

Page 25 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+	curr->se.exec_start = now;
+	rq->lrq.exec_clock += delta_exec;

 	delta_fair = delta_exec * NICE_0_LOAD;
 	delta_fair += load >> 1; /* rounding */
 	do_div(delta_fair, load);

 	/* Load-balancing accounting. */
-	rq->delta_fair_clock += delta_fair;
-	rq->delta_exec_clock += delta_exec;
+	rq->lrq.delta_fair_clock += delta_fair;
+	rq->lrq.delta_exec_clock += delta_exec;

 	/*
 	 * Task already marked for preemption, do not burden
@@ -221,11 +221,11 @@
 		if (unlikely(test_tsk_thread_flag(curr, TIF_NEED_RESCHED)))
 			return;

-	delta_mine = delta_exec * curr->load_weight;
+	delta_mine = delta_exec * curr->se.load_weight;
 	delta_mine += load >> 1; /* rounding */
 	do_div(delta_mine, load);

-	rq->fair_clock += delta_fair;
+	rq->lrq.fair_clock += delta_fair;
 	/*
 	 * We executed delta_exec amount of time on the CPU,
 	 * but we were only entitled to delta_mine amount of
@@ -239,8 +239,8 @@
 static inline void
 update_stats_wait_start(struct rq *rq, struct task_struct *p, u64 now)
 {
-	p->wait_start_fair = rq->fair_clock;
-	p->wait_start = now;
+	p->se.wait_start_fair = rq->lrq.fair_clock;
+	p->se.wait_start = now;
 }

 /*
@@ -260,21 +260,23 @@
 	/*
 	 * Update the key:
 	 */
-	key = rq->fair_clock;
+	key = rq->lrq.fair_clock;

 	/*

Page 26 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 	 * Optimize the common nice 0 case:
 	 */
-	if (likely(p->load_weight == NICE_0_LOAD))
-		key -= p->wait_runtime;
+	if (likely(p->se.load_weight == NICE_0_LOAD))
+		key -= p->se.wait_runtime;
 	else {
-		if (p->wait_runtime < 0)
-			key -= div64_s(p->wait_runtime * NICE_0_LOAD, p->load_weight);
+		if (p->se.wait_runtime < 0)
+			key -= div64_s(p->se.wait_runtime * NICE_0_LOAD,
+							 p->se.load_weight);
 		else
-			key -= div64_s(p->wait_runtime * p->load_weight, NICE_0_LOAD);
+			key -= div64_s(p->se.wait_runtime * p->se.load_weight,
+							 	NICE_0_LOAD);
 	}

-	p->fair_key = key;
+	p->se.fair_key = key;
 }

 /*
@@ -285,21 +287,21 @@
 {
 	s64 delta_fair, delta_wait;

-	delta_wait = now - p->wait_start;
-	if (unlikely(delta_wait > p->wait_max))
-		p->wait_max = delta_wait;
+	delta_wait = now - p->se.wait_start;
+	if (unlikely(delta_wait > p->se.wait_max))
+		p->se.wait_max = delta_wait;

-	if (p->wait_start_fair) {
-		delta_fair = rq->fair_clock - p->wait_start_fair;
+	if (p->se.wait_start_fair) {
+		delta_fair = rq->lrq.fair_clock - p->se.wait_start_fair;

-		if (unlikely(p->load_weight != NICE_0_LOAD))
-			delta_fair = div64_s(delta_fair * p->load_weight,
+		if (unlikely(p->se.load_weight != NICE_0_LOAD))
+			delta_fair = div64_s(delta_fair * p->se.load_weight,
 								NICE_0_LOAD);
 		add_wait_runtime(rq, p, delta_fair);
 	}

-	p->wait_start_fair = 0;

Page 27 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-	p->wait_start = 0;
+	p->se.wait_start_fair = 0;
+	p->se.wait_start = 0;
 }

 static inline void
@@ -323,7 +325,7 @@
 	/*
 	 * We are starting a new run period:
 	 */
-	p->exec_start = now;
+	p->se.exec_start = now;
 }

 /*
@@ -332,7 +334,7 @@
 static inline void
 update_stats_curr_end(struct rq *rq, struct task_struct *p, u64 now)
 {
-	p->exec_start = 0;
+	p->se.exec_start = 0;
 }

 /*
@@ -362,7 +364,7 @@
 		 if (curr->sched_class == &fair_sched_class)
 			add_wait_runtime(rq, curr, -delta_fair);
 	}
-	rq->fair_clock -= delta_fair;
+	rq->lrq.fair_clock -= delta_fair;
 }

 /**/
@@ -371,25 +373,26 @@

 static void enqueue_sleeper(struct rq *rq, struct task_struct *p)
 {
-	unsigned long load = rq->raw_weighted_load;
+	unsigned long load = rq->lrq.raw_weighted_load;
 	s64 delta_fair, prev_runtime;

 	if (p->policy == SCHED_BATCH || !(sysctl_sched_features & 4))
 		goto out;

-	delta_fair = rq->fair_clock - p->sleep_start_fair;
+	delta_fair = rq->lrq.fair_clock - p->se.sleep_start_fair;

 	/*

Page 28 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 	 * Fix up delta_fair with the effect of us running
 	 * during the whole sleep period:
 	 */
 	if (!(sysctl_sched_features & 32))
-		delta_fair = div64_s(delta_fair * load, load + p->load_weight);
-	delta_fair = div64_s(delta_fair * p->load_weight, NICE_0_LOAD);
+		delta_fair = div64_s(delta_fair * load,
+						 load + p->se.load_weight);
+	delta_fair = div64_s(delta_fair * p->se.load_weight, NICE_0_LOAD);

-	prev_runtime = p->wait_runtime;
+	prev_runtime = p->se.wait_runtime;
 	__add_wait_runtime(rq, p, delta_fair);
-	delta_fair = p->wait_runtime - prev_runtime;
+	delta_fair = p->se.wait_runtime - prev_runtime;

 	/*
 	 * We move the fair clock back by a load-proportional
@@ -399,9 +402,9 @@
 	distribute_fair_add(rq, delta_fair);

 out:
-	rq->wait_runtime += p->wait_runtime;
+	rq->lrq.wait_runtime += p->se.wait_runtime;

-	p->sleep_start_fair = 0;
+	p->se.sleep_start_fair = 0;
 }

 /*
@@ -420,29 +423,29 @@
 	update_curr(rq, now);

 	if (wakeup) {
-		if (p->sleep_start) {
-			delta = now - p->sleep_start;
+		if (p->se.sleep_start) {
+			delta = now - p->se.sleep_start;
 			if ((s64)delta < 0)
 				delta = 0;

-			if (unlikely(delta > p->sleep_max))
-				p->sleep_max = delta;
+			if (unlikely(delta > p->se.sleep_max))
+				p->se.sleep_max = delta;

-			p->sleep_start = 0;
+			p->se.sleep_start = 0;

Page 29 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 		}
-		if (p->block_start) {
-			delta = now - p->block_start;
+		if (p->se.block_start) {
+			delta = now - p->se.block_start;
 			if ((s64)delta < 0)
 				delta = 0;

-			if (unlikely(delta > p->block_max))
-				p->block_max = delta;
+			if (unlikely(delta > p->se.block_max))
+				p->se.block_max = delta;

-			p->block_start = 0;
+			p->se.block_start = 0;
 		}
-		p->sum_sleep_runtime += delta;
+		p->se.sum_sleep_runtime += delta;

-		if (p->sleep_start_fair)
+		if (p->se.sleep_start_fair)
 			enqueue_sleeper(rq, p);
 	}
 	update_stats_enqueue(rq, p, now);
@@ -460,11 +463,11 @@
 	update_stats_dequeue(rq, p, now);
 	if (sleep) {
 		if (p->state & TASK_INTERRUPTIBLE)
-			p->sleep_start = now;
+			p->se.sleep_start = now;
 		if (p->state & TASK_UNINTERRUPTIBLE)
-			p->block_start = now;
-		p->sleep_start_fair = rq->fair_clock;
-		rq->wait_runtime -= p->wait_runtime;
+			p->se.block_start = now;
+		p->se.sleep_start_fair = rq->lrq.fair_clock;
+		rq->lrq.wait_runtime -= p->se.wait_runtime;
 	}
 	__dequeue_task_fair(rq, p);
 }
@@ -486,9 +489,9 @@
 	 * position within the tree:
 	 */
 	dequeue_task_fair(rq, p, 0, now);
-	p->on_rq = 0;
+	p->se.on_rq = 0;
 	enqueue_task_fair(rq, p, 0, now);
-	p->on_rq = 1;

Page 30 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+	p->se.on_rq = 1;

 	/*
 	 * yield-to support: if we are on the same runqueue then
@@ -496,9 +499,9 @@
 	 */
 	if (p_to && rq == task_rq(p_to) &&
 			p_to->sched_class == &fair_sched_class
-			&& p->wait_runtime > 0) {
+			&& p->se.wait_runtime > 0) {

-		s64 delta = p->wait_runtime >> 1;
+		s64 delta = p->se.wait_runtime >> 1;

 		__add_wait_runtime(rq, p_to, delta);
 		__add_wait_runtime(rq, p, -delta);
@@ -519,7 +522,7 @@
 __check_preempt_curr_fair(struct rq *rq, struct task_struct *p,
 			 struct task_struct *curr, unsigned long granularity)
 {
-	s64 __delta = curr->fair_key - p->fair_key;
+	s64 __delta = curr->se.fair_key - p->se.fair_key;

 	/*
 	 * Take scheduling granularity into account - do not
@@ -587,13 +590,13 @@
 	 * start the wait period:
 	 */
 	if (sysctl_sched_features & 16) {
-		if (prev->on_rq &&
+		if (prev->se.on_rq &&
 			test_tsk_thread_flag(prev, TIF_NEED_RESCHED)) {

 			dequeue_task_fair(rq, prev, 0, now);
-			prev->on_rq = 0;
+			prev->se.on_rq = 0;
 			enqueue_task_fair(rq, prev, 0, now);
-			prev->on_rq = 1;
+			prev->se.on_rq = 1;
 		} else
 			update_curr(rq, now);
 	} else {
@@ -602,7 +605,7 @@

 	update_stats_curr_end(rq, prev, now);

-	if (prev->on_rq)
+	if (prev->se.on_rq)

Page 31 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 		update_stats_wait_start(rq, prev, now);
 }

@@ -625,8 +628,8 @@
 	if (!curr)
 		return NULL;

-	p = rb_entry(curr, struct task_struct, run_node);
-	rq->rb_load_balance_curr = rb_next(curr);
+	p = rb_entry(curr, struct task_struct, se.run_node);
+	rq->lrq.rb_load_balance_curr = rb_next(curr);

 	return p;
 }
@@ -638,7 +641,7 @@

 static struct task_struct * load_balance_next_fair(struct rq *rq)
 {
-	return __load_balance_iterator(rq, rq->rb_load_balance_curr);
+	return __load_balance_iterator(rq, rq->lrq.rb_load_balance_curr);
 }

 /*
@@ -654,9 +657,9 @@
 	 * position within the tree:
 	 */
 	dequeue_task_fair(rq, curr, 0, now);
-	curr->on_rq = 0;
+	curr->se.on_rq = 0;
 	enqueue_task_fair(rq, curr, 0, now);
-	curr->on_rq = 1;
+	curr->se.on_rq = 1;

 	/*
 	 * Reschedule if another task tops the current one.
@@ -689,22 +692,22 @@
 	 * until it reschedules once. We set up the key so that
 	 * it will preempt the parent:
 	 */
-	p->fair_key = current->fair_key - niced_granularity(rq->curr,
+	p->se.fair_key = current->se.fair_key - niced_granularity(rq->curr,
 						sysctl_sched_granularity) - 1;
 	/*
 	 * The first wait is dominated by the child-runs-first logic,
 	 * so do not credit it with that waiting time yet:
 	 */
-	p->wait_start_fair = 0;
+	p->se.wait_start_fair = 0;

Page 32 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 	/*
 	 * The statistical average of wait_runtime is about
 	 * -granularity/2, so initialize the task with that:
 	 */
-//	p->wait_runtime = -(s64)(sysctl_sched_granularity / 2);
+//	p->se.wait_runtime = -(s64)(sysctl_sched_granularity / 2);

 	__enqueue_task_fair(rq, p);
-	p->on_rq = 1;
+	p->se.on_rq = 1;
 	inc_nr_running(p, rq);
 }

Index: current/kernel/sched_rt.c
===
--- current.orig/kernel/sched_rt.c	2007-06-09 15:01:39.000000000 +0530
+++ current/kernel/sched_rt.c	2007-06-09 15:04:54.000000000 +0530
@@ -15,14 +15,14 @@
 	if (!has_rt_policy(curr))
 		return;

-	delta_exec = now - curr->exec_start;
+	delta_exec = now - curr->se.exec_start;
 	if (unlikely((s64)delta_exec < 0))
 		delta_exec = 0;
-	if (unlikely(delta_exec > curr->exec_max))
-		curr->exec_max = delta_exec;
+	if (unlikely(delta_exec > curr->se.exec_max))
+		curr->se.exec_max = delta_exec;

-	curr->sum_exec_runtime += delta_exec;
-	curr->exec_start = now;
+	curr->se.sum_exec_runtime += delta_exec;
+	curr->se.exec_start = now;
 }

 static void
@@ -89,7 +89,7 @@
 	queue = array->queue + idx;
 	next = list_entry(queue->next, struct task_struct, run_list);

-	next->exec_start = now;
+	next->se.exec_start = now;

 	return next;
 }
@@ -97,7 +97,7 @@

Page 33 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 static void put_prev_task_rt(struct rq *rq, struct task_struct *p, u64 now)
 {
 	update_curr_rt(rq, now);
-	p->exec_start = 0;
+	p->se.exec_start = 0;
 }

 /*

--
Regards,
vatsa

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: [RFC][PATCH 2/6] task's cpu information needs to be always correct
Posted by Srivatsa Vaddagiri on Mon, 11 Jun 2007 15:52:12 GMT
View Forum Message <> Reply to Message

We rely very much on task_cpu(p) to be correct at all times, so that we
can correctly find the runqueue from which the task has to be removed or
added to.

There is however one place in the scheduler where this assumption of
task_cpu(p) being correct is broken. This patch fixes that piece of
code.

(Thanks to Balbir Singh for pointing this out to me)

Signed-off-by : Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>

 kernel/sched.c | 8 +++++---
 1 files changed, 5 insertions(+), 3 deletions(-)

Index: current/kernel/sched.c
===
--- current.orig/kernel/sched.c	2007-06-09 15:07:17.000000000 +0530
+++ current/kernel/sched.c	2007-06-09 15:07:32.000000000 +0530
@@ -4624,7 +4624,7 @@
 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
 {
 	struct rq *rq_dest, *rq_src;
-	int ret = 0;
+	int ret = 0, on_rq;

Page 34 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=667
https://new-forum.openvz.org/index.php?t=rview&th=3679&goto=18876#msg_18876
https://new-forum.openvz.org/index.php?t=post&reply_to=18876
https://new-forum.openvz.org/index.php

 	if (unlikely(cpu_is_offline(dest_cpu)))
 		return ret;
@@ -4640,9 +4640,11 @@
 	if (!cpu_isset(dest_cpu, p->cpus_allowed))
 		goto out;

-	set_task_cpu(p, dest_cpu);
-	if (p->se.on_rq) {
+	on_rq = p->se.on_rq;
+	if (on_rq)
 		deactivate_task(rq_src, p, 0);
+	set_task_cpu(p, dest_cpu);
+	if (on_rq) {
 		activate_task(rq_dest, p, 0);
 		check_preempt_curr(rq_dest, p);
 	}
--
Regards,
vatsa

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: [RFC][PATCH 3/6] core changes in CFS
Posted by Srivatsa Vaddagiri on Mon, 11 Jun 2007 15:53:45 GMT
View Forum Message <> Reply to Message

This patch introduces core changes in CFS work to operate on generic
schedulable entities. The task specific operations (like enqueue, dequeue,
task_tick etc) is then rewritten to work off this generic CFS "library".

Signed-off-by : Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>

 kernel/sched_debug.c | 2
 kernel/sched_fair.c | 574 ++++++++++++++++++++++++++++++---------------------
 2 files changed, 345 insertions(+), 231 deletions(-)

Index: current/kernel/sched_fair.c
===
--- current.orig/kernel/sched_fair.c	2007-06-09 15:07:16.000000000 +0530
+++ current/kernel/sched_fair.c	2007-06-09 15:07:33.000000000 +0530
@@ -42,19 +42,54 @@

Page 35 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=667
https://new-forum.openvz.org/index.php?t=rview&th=3679&goto=18877#msg_18877
https://new-forum.openvz.org/index.php?t=post&reply_to=18877
https://new-forum.openvz.org/index.php

 extern struct sched_class fair_sched_class;

+/**/
+/* BEGIN : CFS operations on generic schedulable entities */
+/**/
+
+static inline struct rq *lrq_rq(struct lrq *lrq)
+{
+	return container_of(lrq, struct rq, lrq);
+}
+
+static inline struct sched_entity *lrq_curr(struct lrq *lrq)
+{
+	struct rq *rq = lrq_rq(lrq);
+	struct sched_entity *se = NULL;
+
+	if (rq->curr->sched_class == &fair_sched_class)
+		se = &rq->curr->se;
+
+	return se;
+}
+
+static long lrq_nr_running(struct lrq *lrq)
+{
+	struct rq *rq = lrq_rq(lrq);
+
+	return rq->nr_running;
+}
+
+#define entity_is_task(se)	1
+
+static inline struct task_struct *entity_to_task(struct sched_entity *se)
+{
+	return container_of(se, struct task_struct, se);
+}
+
+
 /**/
 /* Scheduling class tree data structure manipulation methods:
 */

 /*
- * Enqueue a task into the rb-tree:
+ * Enqueue a entity into the rb-tree:
 */
-static inline void __enqueue_task_fair(struct rq *rq, struct task_struct *p)
+static inline void __enqueue_entity(struct lrq *lrq, struct sched_entity *p)
 {

Page 36 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-	struct rb_node **link = &rq->lrq.tasks_timeline.rb_node;
+	struct rb_node **link = &lrq->tasks_timeline.rb_node;
 	struct rb_node *parent = NULL;
-	struct task_struct *entry;
-	s64 key = p->se.fair_key;
+	struct sched_entity *entry;
+	s64 key = p->fair_key;
 	int leftmost = 1;

 	/*
@@ -62,12 +97,12 @@
 	 */
 	while (*link) {
 		parent = *link;
-		entry = rb_entry(parent, struct task_struct, se.run_node);
+		entry = rb_entry(parent, struct sched_entity, run_node);
 		/*
 		 * We dont care about collisions. Nodes with
 		 * the same key stay together.
 		 */
-		if ((s64)(key - entry->se.fair_key) < 0) {
+		if ((s64)(key - entry->fair_key) < 0) {
 			link = &parent->rb_left;
 		} else {
 			link = &parent->rb_right;
@@ -80,31 +115,31 @@
 	 * used):
 	 */
 	if (leftmost)
-		rq->lrq.rb_leftmost = &p->se.run_node;
+		lrq->rb_leftmost = &p->run_node;

-	rb_link_node(&p->se.run_node, parent, link);
-	rb_insert_color(&p->se.run_node, &rq->lrq.tasks_timeline);
+	rb_link_node(&p->run_node, parent, link);
+	rb_insert_color(&p->run_node, &lrq->tasks_timeline);
 }

-static inline void __dequeue_task_fair(struct rq *rq, struct task_struct *p)
+static inline void __dequeue_entity(struct lrq *lrq, struct sched_entity *p)
 {
-	if (rq->lrq.rb_leftmost == &p->se.run_node)
-		rq->lrq.rb_leftmost = NULL;
-	rb_erase(&p->se.run_node, &rq->lrq.tasks_timeline);
+	if (lrq->rb_leftmost == &p->run_node)
+		lrq->rb_leftmost = NULL;
+	rb_erase(&p->run_node, &lrq->tasks_timeline);
 }

Page 37 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-static inline struct rb_node * first_fair(struct rq *rq)
+static inline struct rb_node * first_fair(struct lrq *lrq)
 {
-	if (rq->lrq.rb_leftmost)
-		return rq->lrq.rb_leftmost;
+	if (lrq->rb_leftmost)
+		return lrq->rb_leftmost;
 	/* Cache the value returned by rb_first() */
-	rq->lrq.rb_leftmost = rb_first(&rq->lrq.tasks_timeline);
-	return rq->lrq.rb_leftmost;
+	lrq->rb_leftmost = rb_first(&lrq->tasks_timeline);
+	return lrq->rb_leftmost;
 }

-static struct task_struct * __pick_next_task_fair(struct rq *rq)
+static struct sched_entity * __pick_next_entity(struct lrq *lrq)
 {
-	return rb_entry(first_fair(rq), struct task_struct, se.run_node);
+	return rb_entry(first_fair(lrq), struct sched_entity, run_node);
 }

 /**/
@@ -116,21 +151,21 @@
 * nice level, but only linearly, not exponentially:
 */
 static u64
-niced_granularity(struct task_struct *curr, unsigned long granularity)
+niced_granularity(struct sched_entity *curr, unsigned long granularity)
 {
 	/*
 	 * Negative nice levels get the same granularity as nice-0:
 	 */
-	if (curr->se.load_weight >= NICE_0_LOAD)
+	if (curr->load_weight >= NICE_0_LOAD)
 		return granularity;
 	/*
 	 * Positive nice level tasks get linearly finer
 	 * granularity:
 	 */
-	return curr->se.load_weight * (s64)(granularity / NICE_0_LOAD);
+	return curr->load_weight * (s64)(granularity / NICE_0_LOAD);
 }

-static void limit_wait_runtime(struct rq *rq, struct task_struct *p)
+static void limit_wait_runtime(struct lrq *lrq, struct sched_entity *p)
 {
 	s64 limit = sysctl_sched_runtime_limit;

Page 38 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

@@ -138,30 +173,31 @@
 	 * Niced tasks have the same history dynamic range as
 	 * non-niced tasks:
 	 */
-	if (p->se.wait_runtime > limit) {
-		p->se.wait_runtime = limit;
-		p->se.wait_runtime_overruns++;
-		rq->lrq.wait_runtime_overruns++;
-	}
-	if (p->se.wait_runtime < -limit) {
-		p->se.wait_runtime = -limit;
-		p->se.wait_runtime_underruns++;
-		rq->lrq.wait_runtime_underruns++;
+	if (p->wait_runtime > limit) {
+		p->wait_runtime = limit;
+		p->wait_runtime_overruns++;
+		lrq->wait_runtime_overruns++;
+	}
+	if (p->wait_runtime < -limit) {
+		p->wait_runtime = -limit;
+		p->wait_runtime_underruns++;
+		lrq->wait_runtime_underruns++;
 	}
 }

-static void __add_wait_runtime(struct rq *rq, struct task_struct *p, s64 delta)
+static void
+__add_wait_runtime(struct lrq *lrq, struct sched_entity *p, s64 delta)
 {
-	p->se.wait_runtime += delta;
-	p->se.sum_wait_runtime += delta;
-	limit_wait_runtime(rq, p);
+	p->wait_runtime += delta;
+	p->sum_wait_runtime += delta;
+	limit_wait_runtime(lrq, p);
 }

-static void add_wait_runtime(struct rq *rq, struct task_struct *p, s64 delta)
+static void add_wait_runtime(struct lrq *lrq, struct sched_entity *p, s64 delta)
 {
-	rq->lrq.wait_runtime -= p->se.wait_runtime;
-	__add_wait_runtime(rq, p, delta);
-	rq->lrq.wait_runtime += p->se.wait_runtime;
+	lrq->wait_runtime -= p->wait_runtime;
+	__add_wait_runtime(lrq, p, delta);
+	lrq->wait_runtime += p->wait_runtime;
 }

Page 39 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 static s64 div64_s(s64 divident, unsigned long divisor)
@@ -183,49 +219,51 @@
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
-static inline void update_curr(struct rq *rq, u64 now)
+static inline void update_curr(struct lrq *lrq, u64 now)
 {
-	unsigned long load = rq->lrq.raw_weighted_load;
+	unsigned long load = lrq->raw_weighted_load;
 	u64 delta_exec, delta_fair, delta_mine;
-	struct task_struct *curr = rq->curr;
+	struct sched_entity *curr = lrq_curr(lrq);
+	struct rq *rq = lrq_rq(lrq);
+	struct task_struct *curtask = rq->curr;

-	if (curr->sched_class != &fair_sched_class || curr == rq->idle || !load)
+	if (!curr || curtask == rq->idle || !load)
 		return;
 	/*
 	 * Get the amount of time the current task was running
 	 * since the last time we changed raw_weighted_load:
 	 */
-	delta_exec = now - curr->se.exec_start;
+	delta_exec = now - curr->exec_start;
 	if (unlikely((s64)delta_exec < 0))
 		delta_exec = 0;
-	if (unlikely(delta_exec > curr->se.exec_max))
-		curr->se.exec_max = delta_exec;
+	if (unlikely(delta_exec > curr->exec_max))
+		curr->exec_max = delta_exec;

-	curr->se.sum_exec_runtime += delta_exec;
-	curr->se.exec_start = now;
-	rq->lrq.exec_clock += delta_exec;
+	curr->sum_exec_runtime += delta_exec;
+	curr->exec_start = now;
+	lrq->exec_clock += delta_exec;

 	delta_fair = delta_exec * NICE_0_LOAD;
 	delta_fair += load >> 1; /* rounding */
 	do_div(delta_fair, load);

 	/* Load-balancing accounting. */
-	rq->lrq.delta_fair_clock += delta_fair;
-	rq->lrq.delta_exec_clock += delta_exec;
+	lrq->delta_fair_clock += delta_fair;

Page 40 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+	lrq->delta_exec_clock += delta_exec;

 	/*
 	 * Task already marked for preemption, do not burden
 	 * it with the cost of not having left the CPU yet:
 	 */
 	if (unlikely(sysctl_sched_features & 1))
-		if (unlikely(test_tsk_thread_flag(curr, TIF_NEED_RESCHED)))
+		if (unlikely(test_tsk_thread_flag(curtask, TIF_NEED_RESCHED)))
 			return;

-	delta_mine = delta_exec * curr->se.load_weight;
+	delta_mine = delta_exec * curr->load_weight;
 	delta_mine += load >> 1; /* rounding */
 	do_div(delta_mine, load);

-	rq->lrq.fair_clock += delta_fair;
+	lrq->fair_clock += delta_fair;
 	/*
 	 * We executed delta_exec amount of time on the CPU,
 	 * but we were only entitled to delta_mine amount of
@@ -233,21 +271,21 @@
 	 * the two values are equal)
 	 * [Note: delta_mine - delta_exec is negative]:
 	 */
-	add_wait_runtime(rq, curr, delta_mine - delta_exec);
+	add_wait_runtime(lrq, curr, delta_mine - delta_exec);
 }

 static inline void
-update_stats_wait_start(struct rq *rq, struct task_struct *p, u64 now)
+update_stats_wait_start(struct lrq *lrq, struct sched_entity *p, u64 now)
 {
-	p->se.wait_start_fair = rq->lrq.fair_clock;
-	p->se.wait_start = now;
+	p->wait_start_fair = lrq->fair_clock;
+	p->wait_start = now;
 }

 /*
 * Task is being enqueued - update stats:
 */
 static inline void
-update_stats_enqueue(struct rq *rq, struct task_struct *p, u64 now)
+update_stats_enqueue(struct lrq *lrq, struct sched_entity *p, u64 now)
 {
 	s64 key;

Page 41 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

@@ -255,86 +293,86 @@
 	 * Are we enqueueing a waiting task? (for current tasks
 	 * a dequeue/enqueue event is a NOP)
 	 */
-	if (p != rq->curr)
-		update_stats_wait_start(rq, p, now);
+	if (p != lrq_curr(lrq))
+		update_stats_wait_start(lrq, p, now);
 	/*
 	 * Update the key:
 	 */
-	key = rq->lrq.fair_clock;
+	key = lrq->fair_clock;

 	/*
 	 * Optimize the common nice 0 case:
 	 */
-	if (likely(p->se.load_weight == NICE_0_LOAD))
-		key -= p->se.wait_runtime;
+	if (likely(p->load_weight == NICE_0_LOAD))
+		key -= p->wait_runtime;
 	else {
-		if (p->se.wait_runtime < 0)
-			key -= div64_s(p->se.wait_runtime * NICE_0_LOAD,
-							 p->se.load_weight);
+		if (p->wait_runtime < 0)
+			key -= div64_s(p->wait_runtime * NICE_0_LOAD,
+							 p->load_weight);
 		else
-			key -= div64_s(p->se.wait_runtime * p->se.load_weight,
+			key -= div64_s(p->wait_runtime * p->load_weight,
 							 	NICE_0_LOAD);
 	}

-	p->se.fair_key = key;
+	p->fair_key = key;
 }

 /*
 * Note: must be called with a freshly updated rq->fair_clock.
 */
 static inline void
-update_stats_wait_end(struct rq *rq, struct task_struct *p, u64 now)
+update_stats_wait_end(struct lrq *lrq, struct sched_entity *p, u64 now)
 {
 	s64 delta_fair, delta_wait;

-	delta_wait = now - p->se.wait_start;

Page 42 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-	if (unlikely(delta_wait > p->se.wait_max))
-		p->se.wait_max = delta_wait;
+	delta_wait = now - p->wait_start;
+	if (unlikely(delta_wait > p->wait_max))
+		p->wait_max = delta_wait;

-	if (p->se.wait_start_fair) {
-		delta_fair = rq->lrq.fair_clock - p->se.wait_start_fair;
+	if (p->wait_start_fair) {
+		delta_fair = lrq->fair_clock - p->wait_start_fair;

-		if (unlikely(p->se.load_weight != NICE_0_LOAD))
-			delta_fair = div64_s(delta_fair * p->se.load_weight,
+		if (unlikely(p->load_weight != NICE_0_LOAD))
+			delta_fair = div64_s(delta_fair * p->load_weight,
 								NICE_0_LOAD);
-		add_wait_runtime(rq, p, delta_fair);
+		add_wait_runtime(lrq, p, delta_fair);
 	}

-	p->se.wait_start_fair = 0;
-	p->se.wait_start = 0;
+	p->wait_start_fair = 0;
+	p->wait_start = 0;
 }

 static inline void
-update_stats_dequeue(struct rq *rq, struct task_struct *p, u64 now)
+update_stats_dequeue(struct lrq *lrq, struct sched_entity *p, u64 now)
 {
-	update_curr(rq, now);
+	update_curr(lrq, now);
 	/*
 	 * Mark the end of the wait period if dequeueing a
 	 * waiting task:
 	 */
-	if (p != rq->curr)
-		update_stats_wait_end(rq, p, now);
+	if (p != lrq_curr(lrq))
+		update_stats_wait_end(lrq, p, now);
 }

 /*
 * We are picking a new current task - update its stats:
 */
 static inline void
-update_stats_curr_start(struct rq *rq, struct task_struct *p, u64 now)
+update_stats_curr_start(struct lrq *lrq, struct sched_entity *p, u64 now)

Page 43 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 {
 	/*
 	 * We are starting a new run period:
 	 */
-	p->se.exec_start = now;
+	p->exec_start = now;
 }

 /*
 * We are descheduling a task - update its stats:
 */
 static inline void
-update_stats_curr_end(struct rq *rq, struct task_struct *p, u64 now)
+update_stats_curr_end(struct lrq *lrq, struct sched_entity *p, u64 now)
 {
-	p->se.exec_start = 0;
+	p->exec_start = 0;
 }

 /*
@@ -347,39 +385,41 @@
 * manner we move the fair clock back by a proportional
 * amount of the new wait_runtime this task adds to the pool.
 */
-static void distribute_fair_add(struct rq *rq, s64 delta)
+static void distribute_fair_add(struct lrq *lrq, s64 delta)
 {
-	struct task_struct *curr = rq->curr;
+	struct sched_entity *curr = lrq_curr(lrq);
 	s64 delta_fair = 0;

 	if (!(sysctl_sched_features & 2))
 		return;

-	if (rq->nr_running) {
-		delta_fair = div64_s(delta, rq->nr_running);
+	if (lrq_nr_running(lrq)) {
+		delta_fair = div64_s(delta, lrq_nr_running(lrq));
 		/*
 		 * The currently running task's next wait_runtime value does
 		 * not depend on the fair_clock, so fix it up explicitly:
 		 */
-		 if (curr->sched_class == &fair_sched_class)
-			add_wait_runtime(rq, curr, -delta_fair);
+		 if (curr)
+			add_wait_runtime(lrq, curr, -delta_fair);
 	}
-	rq->lrq.fair_clock -= delta_fair;

Page 44 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+	lrq->fair_clock -= delta_fair;
 }

 /**/
 /* Scheduling class queueing methods:
 */

-static void enqueue_sleeper(struct rq *rq, struct task_struct *p)
+static void enqueue_sleeper(struct lrq *lrq, struct sched_entity *p)
 {
-	unsigned long load = rq->lrq.raw_weighted_load;
+	unsigned long load = lrq->raw_weighted_load;
 	s64 delta_fair, prev_runtime;
+	struct task_struct *tsk = entity_to_task(p);

-	if (p->policy == SCHED_BATCH || !(sysctl_sched_features & 4))
+	if ((entity_is_task(p) && tsk->policy == SCHED_BATCH) ||
+						 !(sysctl_sched_features & 4))
 		goto out;

-	delta_fair = rq->lrq.fair_clock - p->se.sleep_start_fair;
+	delta_fair = lrq->fair_clock - p->sleep_start_fair;

 	/*
 	 * Fix up delta_fair with the effect of us running
@@ -387,69 +427,206 @@
 	 */
 	if (!(sysctl_sched_features & 32))
 		delta_fair = div64_s(delta_fair * load,
-						 load + p->se.load_weight);
-	delta_fair = div64_s(delta_fair * p->se.load_weight, NICE_0_LOAD);
+						 load + p->load_weight);
+	delta_fair = div64_s(delta_fair * p->load_weight, NICE_0_LOAD);

-	prev_runtime = p->se.wait_runtime;
-	__add_wait_runtime(rq, p, delta_fair);
-	delta_fair = p->se.wait_runtime - prev_runtime;
+	prev_runtime = p->wait_runtime;
+	__add_wait_runtime(lrq, p, delta_fair);
+	delta_fair = p->wait_runtime - prev_runtime;

 	/*
 	 * We move the fair clock back by a load-proportional
 	 * amount of the new wait_runtime this task adds to
 	 * the 'pool':
 	 */
-	distribute_fair_add(rq, delta_fair);
+	distribute_fair_add(lrq, delta_fair);

Page 45 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 out:
-	rq->lrq.wait_runtime += p->se.wait_runtime;
+	lrq->wait_runtime += p->wait_runtime;

-	p->se.sleep_start_fair = 0;
+	p->sleep_start_fair = 0;
 }

-/*
- * The enqueue_task method is called before nr_running is
- * increased. Here we update the fair scheduling stats and
- * then put the task into the rbtree:
- */
 static void
-enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
+enqueue_entity(struct lrq *lrq, struct sched_entity *p, int wakeup, u64 now)
 {
 	u64 delta = 0;

 	/*
 	 * Update the fair clock.
 	 */
-	update_curr(rq, now);
+	update_curr(lrq, now);

 	if (wakeup) {
-		if (p->se.sleep_start) {
-			delta = now - p->se.sleep_start;
+		if (p->sleep_start) {
+			delta = now - p->sleep_start;
 			if ((s64)delta < 0)
 				delta = 0;

-			if (unlikely(delta > p->se.sleep_max))
-				p->se.sleep_max = delta;
+			if (unlikely(delta > p->sleep_max))
+				p->sleep_max = delta;

-			p->se.sleep_start = 0;
+			p->sleep_start = 0;
 		}
-		if (p->se.block_start) {
-			delta = now - p->se.block_start;
+		if (p->block_start) {
+			delta = now - p->block_start;
 			if ((s64)delta < 0)
 				delta = 0;

Page 46 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-			if (unlikely(delta > p->se.block_max))
-				p->se.block_max = delta;
+			if (unlikely(delta > p->block_max))
+				p->block_max = delta;

-			p->se.block_start = 0;
+			p->block_start = 0;
 		}
-		p->se.sum_sleep_runtime += delta;
+		p->sum_sleep_runtime += delta;

-		if (p->se.sleep_start_fair)
-			enqueue_sleeper(rq, p);
+		if (p->sleep_start_fair)
+			enqueue_sleeper(lrq, p);
 	}
-	update_stats_enqueue(rq, p, now);
-	__enqueue_task_fair(rq, p);
+	update_stats_enqueue(lrq, p, now);
+	__enqueue_entity(lrq, p);
+}
+
+static void
+dequeue_entity(struct lrq *lrq, struct sched_entity *p, int sleep, u64 now)
+{
+	update_stats_dequeue(lrq, p, now);
+	if (sleep) {
+		if (entity_is_task(p)) {
+			struct task_struct *tsk = entity_to_task(p);
+
+			if (tsk->state & TASK_INTERRUPTIBLE)
+				p->sleep_start = now;
+			if (tsk->state & TASK_UNINTERRUPTIBLE)
+				p->block_start = now;
+		}
+		p->sleep_start_fair = lrq->fair_clock;
+		lrq->wait_runtime -= p->wait_runtime;
+	}
+	__dequeue_entity(lrq, p);
+}
+
+/*
+ * Preempt the current task with a newly woken task if needed:
+ */
+static inline void
+__check_preempt_curr_fair(struct lrq *lrq, struct sched_entity *p,
+			 struct sched_entity *curr, unsigned long granularity)

Page 47 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+{
+	s64 __delta = curr->fair_key - p->fair_key;
+
+	/*
+	 * Take scheduling granularity into account - do not
+	 * preempt the current task unless the best task has
+	 * a larger than sched_granularity fairness advantage:
+	 */
+	if (__delta > niced_granularity(curr, granularity))
+		resched_task(lrq_rq(lrq)->curr);
+}
+
+static struct sched_entity * pick_next_entity(struct lrq *lrq, u64 now)
+{
+	struct sched_entity *p = __pick_next_entity(lrq);
+
+	/*
+	 * Any task has to be enqueued before it get to execute on
+	 * a CPU. So account for the time it spent waiting on the
+	 * runqueue. (note, here we rely on pick_next_task() having
+	 * done a put_prev_task_fair() shortly before this, which
+	 * updated rq->fair_clock - used by update_stats_wait_end())
+	 */
+	update_stats_wait_end(lrq, p, now);
+	update_stats_curr_start(lrq, p, now);
+
+	return p;
+}
+
+static void put_prev_entity(struct lrq *lrq, struct sched_entity *prev, u64 now)
+{
+	/*
+	 * If the task is still waiting for the CPU (it just got
+	 * preempted), update its position within the tree and
+	 * start the wait period:
+	 */
+	if ((sysctl_sched_features & 16) && entity_is_task(prev)) {
+		struct task_struct *prevtask = entity_to_task(prev);
+
+		if (prev->on_rq &&
+			test_tsk_thread_flag(prevtask, TIF_NEED_RESCHED)) {
+
+			dequeue_entity(lrq, prev, 0, now);
+			prev->on_rq = 0;
+			enqueue_entity(lrq, prev, 0, now);
+			prev->on_rq = 1;
+		} else
+			update_curr(lrq, now);

Page 48 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+	} else {
+		update_curr(lrq, now);
+	}
+
+	update_stats_curr_end(lrq, prev, now);
+
+	if (prev->on_rq)
+		update_stats_wait_start(lrq, prev, now);
+}
+
+static void entity_tick(struct lrq *lrq, struct sched_entity *curr)
+{
+	struct sched_entity *next;
+	struct rq *rq = lrq_rq(lrq);
+	u64 now = __rq_clock(rq);
+
+	/*
+	 * Dequeue and enqueue the task to update its
+	 * position within the tree:
+	 */
+	dequeue_entity(lrq, curr, 0, now);
+	curr->on_rq = 0;
+	enqueue_entity(lrq, curr, 0, now);
+	curr->on_rq = 1;
+
+	/*
+	 * Reschedule if another task tops the current one.
+	 */
+	next = __pick_next_entity(lrq);
+	if (next == curr)
+		return;
+
+	if (entity_is_task(curr)) {
+		struct task_struct *curtask = entity_to_task(curr),
+				 *nexttask = entity_to_task(next);
+
+		if ((curtask == rq->idle) || (rt_prio(nexttask->prio) &&
+					(nexttask->prio < curtask->prio))) {
+			resched_task(curtask);
+			return;
+		}
+	}
+	__check_preempt_curr_fair(lrq, next, curr, sysctl_sched_granularity);
+}
+
+
+/**/
+/* BEGIN : CFS operations on tasks */

Page 49 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+/**/
+
+static inline struct lrq *task_lrq(struct task_struct *p)
+{
+	return &task_rq(p)->lrq;
+}
+
+/*
+ * The enqueue_task method is called before nr_running is
+ * increased. Here we update the fair scheduling stats and
+ * then put the task into the rbtree:
+ */
+static void
+enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
+{
+	struct lrq *lrq = task_lrq(p);
+	struct sched_entity *se = &p->se;
+
+	enqueue_entity(lrq, se, wakeup, now);
 }

 /*
@@ -460,16 +637,10 @@
 static void
 dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep, u64 now)
 {
-	update_stats_dequeue(rq, p, now);
-	if (sleep) {
-		if (p->state & TASK_INTERRUPTIBLE)
-			p->se.sleep_start = now;
-		if (p->state & TASK_UNINTERRUPTIBLE)
-			p->se.block_start = now;
-		p->se.sleep_start_fair = rq->lrq.fair_clock;
-		rq->lrq.wait_runtime -= p->se.wait_runtime;
-	}
-	__dequeue_task_fair(rq, p);
+	struct lrq *lrq = task_lrq(p);
+	struct sched_entity *se = &p->se;
+
+	dequeue_entity(lrq, se, sleep, now);
 }

 /*
@@ -482,16 +653,18 @@
 {
 	struct task_struct *p_next;
 	u64 now;
+	struct lrq *lrq = task_lrq(p);

Page 50 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+	struct sched_entity *se = &p->se;

 	now = __rq_clock(rq);
 	/*
 	 * Dequeue and enqueue the task to update its
 	 * position within the tree:
 	 */
-	dequeue_task_fair(rq, p, 0, now);
-	p->se.on_rq = 0;
-	enqueue_task_fair(rq, p, 0, now);
-	p->se.on_rq = 1;
+	dequeue_entity(lrq, se, 0, now);
+	se->on_rq = 0;
+	enqueue_entity(lrq, se, 0, now);
+	se->on_rq = 1;

 	/*
 	 * yield-to support: if we are on the same runqueue then
@@ -503,35 +676,19 @@

 		s64 delta = p->se.wait_runtime >> 1;

-		__add_wait_runtime(rq, p_to, delta);
-		__add_wait_runtime(rq, p, -delta);
+		__add_wait_runtime(lrq, &p_to->se, delta);
+		__add_wait_runtime(lrq, &p->se, -delta);
 	}

 	/*
 	 * Reschedule if another task tops the current one.
 	 */
-	p_next = __pick_next_task_fair(rq);
+	se = __pick_next_entity(lrq);
+	p_next = entity_to_task(se);
 	if (p_next != p)
 		resched_task(p);
 }

-/*
- * Preempt the current task with a newly woken task if needed:
- */
-static inline void
-__check_preempt_curr_fair(struct rq *rq, struct task_struct *p,
-			 struct task_struct *curr, unsigned long granularity)
-{
-	s64 __delta = curr->se.fair_key - p->se.fair_key;
-
-	/*

Page 51 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-	 * Take scheduling granularity into account - do not
-	 * preempt the current task unless the best task has
-	 * a larger than sched_granularity fairness advantage:
-	 */
-	if (__delta > niced_granularity(curr, granularity))
-		resched_task(curr);
-}

 /*
 * Preempt the current task with a newly woken task if needed:
@@ -539,12 +696,13 @@
 static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
 {
 	struct task_struct *curr = rq->curr;
+	struct lrq *lrq = task_lrq(curr);
 	unsigned long granularity;

 	if ((curr == rq->idle) || rt_prio(p->prio)) {
 		if (sysctl_sched_features & 8) {
 			if (rt_prio(p->prio))
-				update_curr(rq, rq_clock(rq));
+				update_curr(lrq, rq_clock(rq));
 		}
 		resched_task(curr);
 	} else {
@@ -555,25 +713,18 @@
 		if (unlikely(p->policy == SCHED_BATCH))
 			granularity = sysctl_sched_batch_wakeup_granularity;

-		__check_preempt_curr_fair(rq, p, curr, granularity);
+		__check_preempt_curr_fair(lrq, &p->se, &curr->se, granularity);
 	}
 }

 static struct task_struct * pick_next_task_fair(struct rq *rq, u64 now)
 {
-	struct task_struct *p = __pick_next_task_fair(rq);
+	struct lrq *lrq = &rq->lrq;
+	struct sched_entity *se;

-	/*
-	 * Any task has to be enqueued before it get to execute on
-	 * a CPU. So account for the time it spent waiting on the
-	 * runqueue. (note, here we rely on pick_next_task() having
-	 * done a put_prev_task_fair() shortly before this, which
-	 * updated rq->fair_clock - used by update_stats_wait_end())
-	 */
-	update_stats_wait_end(rq, p, now);

Page 52 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-	update_stats_curr_start(rq, p, now);
+	se = pick_next_entity(lrq, now);

-	return p;
+	return entity_to_task(se);
 }

 /*
@@ -581,32 +732,13 @@
 */
 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, u64 now)
 {
+	struct lrq *lrq = task_lrq(prev);
+	struct sched_entity *se = &prev->se;
+
 	if (prev == rq->idle)
 		return;

-	/*
-	 * If the task is still waiting for the CPU (it just got
-	 * preempted), update its position within the tree and
-	 * start the wait period:
-	 */
-	if (sysctl_sched_features & 16) {
-		if (prev->se.on_rq &&
-			test_tsk_thread_flag(prev, TIF_NEED_RESCHED)) {
-
-			dequeue_task_fair(rq, prev, 0, now);
-			prev->se.on_rq = 0;
-			enqueue_task_fair(rq, prev, 0, now);
-			prev->se.on_rq = 1;
-		} else
-			update_curr(rq, now);
-	} else {
-		update_curr(rq, now);
-	}
-
-	update_stats_curr_end(rq, prev, now);
-
-	if (prev->se.on_rq)
-		update_stats_wait_start(rq, prev, now);
+	put_prev_entity(lrq, se, now);
 }

 /**/
@@ -636,7 +768,7 @@

 static struct task_struct * load_balance_start_fair(struct rq *rq)

Page 53 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 {
-	return __load_balance_iterator(rq, first_fair(rq));
+	return __load_balance_iterator(rq, first_fair(&rq->lrq));
 }

 static struct task_struct * load_balance_next_fair(struct rq *rq)
@@ -649,31 +781,10 @@
 */
 static void task_tick_fair(struct rq *rq, struct task_struct *curr)
 {
-	struct task_struct *next;
-	u64 now = __rq_clock(rq);
-
-	/*
-	 * Dequeue and enqueue the task to update its
-	 * position within the tree:
-	 */
-	dequeue_task_fair(rq, curr, 0, now);
-	curr->se.on_rq = 0;
-	enqueue_task_fair(rq, curr, 0, now);
-	curr->se.on_rq = 1;
-
-	/*
-	 * Reschedule if another task tops the current one.
-	 */
-	next = __pick_next_task_fair(rq);
-	if (next == curr)
-		return;
+	struct lrq *lrq = task_lrq(curr);
+	struct sched_entity *se = &curr->se;

-	if ((curr == rq->idle) || (rt_prio(next->prio) &&
-					(next->prio < curr->prio)))
-		resched_task(curr);
-	else
-		__check_preempt_curr_fair(rq, next, curr,
-					 sysctl_sched_granularity);
+	entity_tick(lrq, se);
 }

 /*
@@ -685,14 +796,17 @@
 */
 static void task_new_fair(struct rq *rq, struct task_struct *p)
 {
+	struct lrq *lrq = task_lrq(p);
+	struct sched_entity *se = &p->se;
+

Page 54 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 	sched_info_queued(p);
-	update_stats_enqueue(rq, p, rq_clock(rq));
+	update_stats_enqueue(lrq, se, rq_clock(rq));
 	/*
 	 * Child runs first: we let it run before the parent
 	 * until it reschedules once. We set up the key so that
 	 * it will preempt the parent:
 	 */
-	p->se.fair_key = current->se.fair_key - niced_granularity(rq->curr,
+	p->se.fair_key = current->se.fair_key - niced_granularity(&rq->curr->se,
 						sysctl_sched_granularity) - 1;
 	/*
 	 * The first wait is dominated by the child-runs-first logic,
@@ -706,7 +820,7 @@
 	 */
 //	p->se.wait_runtime = -(s64)(sysctl_sched_granularity / 2);

-	__enqueue_task_fair(rq, p);
+	__enqueue_entity(lrq, se);
 	p->se.on_rq = 1;
 	inc_nr_running(p, rq);
 }
Index: current/kernel/sched_debug.c
===
--- current.orig/kernel/sched_debug.c	2007-06-09 15:07:16.000000000 +0530
+++ current/kernel/sched_debug.c	2007-06-09 15:07:33.000000000 +0530
@@ -87,7 +87,7 @@
 	unsigned long flags;

 	spin_lock_irqsave(&rq->lock, flags);
-	curr = first_fair(rq);
+	curr = first_fair(&rq->lrq);
 	while (curr) {
 		p = rb_entry(curr, struct task_struct, se.run_node);
 		wait_runtime_rq_sum += p->se.wait_runtime;
--
Regards,
vatsa

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: [RFC][PATCH 4/6] Fix (bad?) interactions between SCHED_RT and
SCHED_NORMAL tasks
Posted by Srivatsa Vaddagiri on Mon, 11 Jun 2007 15:55:04 GMT

Page 55 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=667
https://new-forum.openvz.org/index.php

View Forum Message <> Reply to Message

Currently nr_running and raw_weighted_load fields in runqueue affect
some CFS calculations (like distribute_fair_add, enqueue_sleeper etc).

These fields however are shared between tasks of all classes, which can
potentialy affect those calculations for SCHED_NORMAL tasks. However I
do not know of any bad behaviour caused by not splitting these fields (like
this patch does).

This split is neverthless needed for subsequent patches.

Signed-off-by : Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>

 kernel/sched.c | 134 +++++++++++++++++++++++++---------------------------
 kernel/sched_fair.c | 65 ++++++++++++++++++++++++-
 2 files changed, 128 insertions(+), 71 deletions(-)

Index: current/kernel/sched.c
===
--- current.orig/kernel/sched.c	2007-06-09 15:07:32.000000000 +0530
+++ current/kernel/sched.c	2007-06-09 15:07:36.000000000 +0530
@@ -118,6 +118,7 @@

 /* CFS-related fields in a runqueue */
 struct lrq {
+	long nr_running;
 	unsigned long raw_weighted_load;
 	#define CPU_LOAD_IDX_MAX 5
 	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
@@ -125,6 +126,7 @@

 	u64 fair_clock, delta_fair_clock;
 	u64 exec_clock, delta_exec_clock;
+	u64 last_tick; /* when did we last smoothen cpu load? */
 	s64 wait_runtime;
 	unsigned long wait_runtime_overruns, wait_runtime_underruns;

@@ -148,12 +150,18 @@
 	 * remote CPUs use both these fields when doing load calculation.
 	 */
 	long nr_running;
-	struct lrq lrq;
+	unsigned long raw_weighted_load;
+#ifdef CONFIG_SMP
+	#define CPU_LOAD_IDX_MAX 5
+	unsigned long cpu_load[CPU_LOAD_IDX_MAX];

Page 56 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=rview&th=3679&goto=18878#msg_18878
https://new-forum.openvz.org/index.php?t=post&reply_to=18878
https://new-forum.openvz.org/index.php

 	unsigned char idle_at_tick;
 #ifdef CONFIG_NO_HZ
 	unsigned char in_nohz_recently;
 #endif
+#endif
+	struct lrq lrq;
+
 	u64 nr_switches;

 	/*
@@ -589,13 +597,13 @@
 static inline void
 inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
 {
-	rq->lrq.raw_weighted_load += p->se.load_weight;
+	rq->raw_weighted_load += p->se.load_weight;
 }

 static inline void
 dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
 {
-	rq->lrq.raw_weighted_load -= p->se.load_weight;
+	rq->raw_weighted_load -= p->se.load_weight;
 }

 static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
@@ -741,7 +749,7 @@
 /* Used instead of source_load when we know the type == 0 */
 unsigned long weighted_cpuload(const int cpu)
 {
-	return cpu_rq(cpu)->lrq.raw_weighted_load;
+	return cpu_rq(cpu)->raw_weighted_load;
 }

 #ifdef CONFIG_SMP
@@ -876,9 +884,9 @@
 	struct rq *rq = cpu_rq(cpu);

 	if (type == 0)
-		return rq->lrq.raw_weighted_load;
+		return rq->raw_weighted_load;

-	return min(rq->lrq.cpu_load[type-1], rq->lrq.raw_weighted_load);
+	return min(rq->cpu_load[type-1], rq->raw_weighted_load);
 }

 /*

Page 57 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

@@ -890,9 +898,9 @@
 	struct rq *rq = cpu_rq(cpu);

 	if (type == 0)
-		return rq->lrq.raw_weighted_load;
+		return rq->raw_weighted_load;

-	return max(rq->lrq.cpu_load[type-1], rq->lrq.raw_weighted_load);
+	return max(rq->cpu_load[type-1], rq->raw_weighted_load);
 }

 /*
@@ -903,7 +911,7 @@
 	struct rq *rq = cpu_rq(cpu);
 	unsigned long n = rq->nr_running;

-	return n ? rq->lrq.raw_weighted_load / n : SCHED_LOAD_SCALE;
+	return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
 }

 /*
@@ -1592,54 +1600,6 @@
 	return running + uninterruptible;
 }

-static void update_load_fair(struct rq *this_rq)
-{
-	unsigned long this_load, fair_delta, exec_delta, idle_delta;
-	u64 fair_delta64, exec_delta64, tmp64;
-	unsigned int i, scale;
-
-	this_rq->lrq.nr_load_updates++;
-	if (!(sysctl_sched_features & 64)) {
-		this_load = this_rq->lrq.raw_weighted_load;
-		goto do_avg;
-	}
-
-	fair_delta64 = this_rq->lrq.delta_fair_clock + 1;
-	this_rq->lrq.delta_fair_clock = 0;
-
-	exec_delta64 = this_rq->lrq.delta_exec_clock + 1;
-	this_rq->lrq.delta_exec_clock = 0;
-
-	if (fair_delta64 > (u64)LONG_MAX)
-		fair_delta64 = (u64)LONG_MAX;
-	fair_delta = (unsigned long)fair_delta64;
-
-	if (exec_delta64 > (u64)TICK_NSEC)

Page 58 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-		exec_delta64 = (u64)TICK_NSEC;
-	exec_delta = (unsigned long)exec_delta64;
-
-	idle_delta = TICK_NSEC - exec_delta;
-
-	tmp64 = SCHED_LOAD_SCALE * exec_delta64;
-	do_div(tmp64, fair_delta);
-	tmp64 *= exec_delta64;
-	do_div(tmp64, TICK_NSEC);
-	this_load = (unsigned long)tmp64;
-
-do_avg:
-	/* Update our load: */
-	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
-		unsigned long old_load, new_load;
-
-		/* scale is effectively 1 << i now, and >> i divides by scale */
-
-		old_load = this_rq->lrq.cpu_load[i];
-		new_load = this_load;
-
-		this_rq->lrq.cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
-	}
-}
-
 #ifdef CONFIG_SMP

 /*
@@ -2003,7 +1963,7 @@

 			avg_load += load;
 			sum_nr_running += rq->nr_running;
-			sum_weighted_load += rq->lrq.raw_weighted_load;
+			sum_weighted_load += rq->raw_weighted_load;
 		}

 		/*
@@ -2238,11 +2198,11 @@
 		rq = cpu_rq(i);

 		if (rq->nr_running == 1 &&
-				 rq->lrq.raw_weighted_load > imbalance)
+				 rq->raw_weighted_load > imbalance)
 			continue;

-		if (rq->lrq.raw_weighted_load > max_load) {
-			max_load = rq->lrq.raw_weighted_load;
+		if (rq->raw_weighted_load > max_load) {

Page 59 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+			max_load = rq->raw_weighted_load;
 			busiest = rq;
 		}
 	}
@@ -2576,6 +2536,32 @@
 	spin_unlock(&target_rq->lock);
 }

+static void update_load(struct rq *this_rq)
+{
+	unsigned long this_load;
+	unsigned int i, scale;
+
+	this_load = this_rq->raw_weighted_load;
+
+	/* Update our load: */
+	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
+		unsigned long old_load, new_load;
+
+		/* scale is effectively 1 << i now, and >> i divides by scale */
+
+		old_load = this_rq->cpu_load[i];
+		new_load = this_load;
+		/*
+		 * Round up the averaging division if load is increasing. This
+		 * prevents us from getting stuck on 9 if the load is 10, for
+		 * example.
+		 */
+		if (new_load > old_load)
+			new_load += scale-1;
+		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
+	}
+}
+
 #ifdef CONFIG_NO_HZ
 static struct {
 	atomic_t load_balancer;
@@ -2822,14 +2808,14 @@
 	if (time_after_eq(jiffies, rq->next_balance))
 		raise_softirq(SCHED_SOFTIRQ);
 }
-#else
+#else	/* CONFIG_SMP */
 /*
 * on UP we do not need to balance between CPUs:
 */
 static inline void idle_balance(int cpu, struct rq *rq)
 {

Page 60 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 }
-#endif
+#endif	/* CONFIG_SMP */

 DEFINE_PER_CPU(struct kernel_stat, kstat);

@@ -2953,8 +2939,8 @@

 	if (!idle_at_tick)
 		task_running_tick(rq, p);
-	update_load_fair(rq);
 #ifdef CONFIG_SMP
+	update_load(rq);
 	rq->idle_at_tick = idle_at_tick;
 	trigger_load_balance(cpu);
 #endif
@@ -6090,6 +6076,18 @@
 		&& addr < (unsigned long)__sched_text_end);
 }

+static inline void init_lrq(struct lrq *lrq, struct rq *rq)
+{
+	int j;
+
+	lrq->tasks_timeline = RB_ROOT;
+	lrq->fair_clock = 1;
+	lrq->last_tick = rq_clock(rq);
+	lrq->nr_running = 0;
+	for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
+		lrq->cpu_load[j] = 0;
+}
+
 void __init sched_init(void)
 {
 	int highest_cpu = 0;
@@ -6110,12 +6108,12 @@
 		spin_lock_init(&rq->lock);
 		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
 		rq->nr_running = 0;
-		rq->lrq.tasks_timeline = RB_ROOT;
-		rq->clock = rq->lrq.fair_clock = 1;
+		rq->clock = 1;
+		init_lrq(&rq->lrq, rq);

-		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
-			rq->lrq.cpu_load[j] = 0;
 #ifdef CONFIG_SMP
+		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)

Page 61 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+			rq->cpu_load[j] = 0;
 		rq->sd = NULL;
 		rq->active_balance = 0;
 		rq->push_cpu = 0;
Index: current/kernel/sched_fair.c
===
--- current.orig/kernel/sched_fair.c	2007-06-09 15:07:33.000000000 +0530
+++ current/kernel/sched_fair.c	2007-06-09 15:07:36.000000000 +0530
@@ -64,9 +64,7 @@

 static long lrq_nr_running(struct lrq *lrq)
 {
-	struct rq *rq = lrq_rq(lrq);
-
-	return rq->nr_running;
+	return lrq->nr_running;
 }

 #define entity_is_task(se)	1
@@ -119,6 +117,8 @@

 	rb_link_node(&p->run_node, parent, link);
 	rb_insert_color(&p->run_node, &lrq->tasks_timeline);
+	lrq->raw_weighted_load += p->load_weight;
+	lrq->nr_running++;
 }

 static inline void __dequeue_entity(struct lrq *lrq, struct sched_entity *p)
@@ -126,6 +126,8 @@
 	if (lrq->rb_leftmost == &p->run_node)
 		lrq->rb_leftmost = NULL;
 	rb_erase(&p->run_node, &lrq->tasks_timeline);
+	lrq->raw_weighted_load -= p->load_weight;
+	lrq->nr_running--;
 }

 static inline struct rb_node * first_fair(struct lrq *lrq)
@@ -570,12 +572,69 @@
 		update_stats_wait_start(lrq, prev, now);
 }

+static void update_load_fair(struct lrq *this_lrq)
+{
+	unsigned long this_load, fair_delta, exec_delta, idle_delta;
+	u64 fair_delta64, exec_delta64, tmp64;
+	unsigned int i, scale;
+
+	this_lrq->nr_load_updates++;

Page 62 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+	if (!(sysctl_sched_features & 64)) {
+		this_load = this_lrq->raw_weighted_load;
+		goto do_avg;
+	}
+
+	fair_delta64 = this_lrq->delta_fair_clock + 1;
+	this_lrq->delta_fair_clock = 0;
+
+	exec_delta64 = this_lrq->delta_exec_clock + 1;
+	this_lrq->delta_exec_clock = 0;
+
+	if (fair_delta64 > (u64)LONG_MAX)
+		fair_delta64 = (u64)LONG_MAX;
+	fair_delta = (unsigned long)fair_delta64;
+
+	if (exec_delta64 > (u64)TICK_NSEC)
+		exec_delta64 = (u64)TICK_NSEC;
+	exec_delta = (unsigned long)exec_delta64;
+
+	idle_delta = TICK_NSEC - exec_delta;
+
+	tmp64 = SCHED_LOAD_SCALE * exec_delta64;
+	do_div(tmp64, fair_delta);
+	tmp64 *= exec_delta64;
+	do_div(tmp64, TICK_NSEC);
+	this_load = (unsigned long)tmp64;
+
+do_avg:
+	/* Update our load: */
+	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
+		unsigned long old_load, new_load;
+
+		/* scale is effectively 1 << i now, and >> i divides by scale */
+
+		old_load = this_lrq->cpu_load[i];
+		new_load = this_load;
+
+		this_lrq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
+	}
+}
+
 static void entity_tick(struct lrq *lrq, struct sched_entity *curr)
 {
 	struct sched_entity *next;
 	struct rq *rq = lrq_rq(lrq);
 	u64 now = __rq_clock(rq);

+	/* replay load smoothening for all ticks we lost */

Page 63 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+	while (time_after_eq64(now, lrq->last_tick)) {
+		update_load_fair(lrq);
+		lrq->last_tick += TICK_NSEC;
+	}
+	/* deal with time wraps */
+	if (unlikely(now - lrq->last_tick > TICK_NSEC))
+		lrq->last_tick = now;
+
 	/*
 	 * Dequeue and enqueue the task to update its
 	 * position within the tree:
--
Regards,
vatsa

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: [RFC][PATCH 5/6] core changes for group fairness
Posted by Srivatsa Vaddagiri on Mon, 11 Jun 2007 15:56:08 GMT
View Forum Message <> Reply to Message

This patch introduces the core changes in CFS required to accomplish
group fairness at higher levels. It also modifies load balance interface
between classes a bit, so that move_tasks (which is centric to load
balance) can be reused to balance between runqueues of various types
(struct rq in case of SCHED_RT tasks, struct lrq in case of
SCHED_NORMAL/BATCH tasks).

Signed-off-by : Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>

 include/linux/sched.h | 14 ++
 kernel/sched.c | 155 ++++++++++++++++--------------
 kernel/sched_fair.c | 252 +++-----
 kernel/sched_rt.c | 49 ++++++++-
 4 files changed, 367 insertions(+), 103 deletions(-)

Index: current/include/linux/sched.h
===
--- current.orig/include/linux/sched.h	2007-06-09 15:04:54.000000000 +0530
+++ current/include/linux/sched.h	2007-06-09 15:07:37.000000000 +0530
@@ -866,8 +866,13 @@
 	struct task_struct * (*pick_next_task) (struct rq *rq, u64 now);
 	void (*put_prev_task) (struct rq *rq, struct task_struct *p, u64 now);

Page 64 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=667
https://new-forum.openvz.org/index.php?t=rview&th=3679&goto=18879#msg_18879
https://new-forum.openvz.org/index.php?t=post&reply_to=18879
https://new-forum.openvz.org/index.php

-	struct task_struct * (*load_balance_start) (struct rq *rq);
-	struct task_struct * (*load_balance_next) (struct rq *rq);
+#ifdef CONFIG_SMP
+	int (*load_balance) (struct rq *this_rq, int this_cpu,
+			struct rq *busiest,
+		 	unsigned long max_nr_move, unsigned long max_load_move,
+			struct sched_domain *sd, enum idle_type idle,
+			int *all_pinned, unsigned long *total_load_moved);
+#endif
 	void (*task_tick) (struct rq *rq, struct task_struct *p);
 	void (*task_new) (struct rq *rq, struct task_struct *p);
 };
@@ -893,6 +898,11 @@
 	s64 fair_key;
 	s64 sum_wait_runtime, sum_sleep_runtime;
 	unsigned long wait_runtime_overruns, wait_runtime_underruns;
+#ifdef CONFIG_FAIR_GROUP_SCHED
+	struct sched_entity *parent;
+	struct lrq *lrq, /* runqueue on which this entity is (to be) queued */
+		 *my_q; /* runqueue "owned" by this entity/group */
+#endif
 };

 struct task_struct {
Index: current/kernel/sched.c
===
--- current.orig/kernel/sched.c	2007-06-09 15:07:36.000000000 +0530
+++ current/kernel/sched.c	2007-06-09 15:07:37.000000000 +0530
@@ -133,6 +133,20 @@
 	struct rb_root tasks_timeline;
 	struct rb_node *rb_leftmost;
 	struct rb_node *rb_load_balance_curr;
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+	struct sched_entity *curr;
+	struct rq *rq;
+
+	/* leaf lrqs are those that hold tasks (lowest schedulable entity in a
+	 * hierarchy). Non-leaf lrqs hold other higher schedulable entities
+	 * (like users, containers etc.)
+	 *
+	 * leaf_lrq_list ties together list of leaf lrq's in a cpu. This list
+	 * is used during load balance.
+	 */
+	struct list_head leaf_lrq_list;
+#endif
 };

Page 65 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 /*
@@ -161,6 +175,9 @@
 #endif
 #endif
 	struct lrq lrq;
+#ifdef CONFIG_FAIR_GROUP_SCHED
+	struct list_head leaf_lrq_list;	/* list of leaf lrqs on this cpu */
+#endif

 	u64 nr_switches;

@@ -619,6 +636,16 @@
 }

 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
+#ifdef CONFIG_SMP
+static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
+		 unsigned long max_nr_move, unsigned long max_load_move,
+		 struct sched_domain *sd, enum idle_type idle,
+		 int *all_pinned, unsigned long *load_moved,
+		 int this_best_prio, int best_prio, int best_prio_seen,
+		 void *iterator_arg,
+		 struct task_struct *(*iterator_start)(void *arg),
+		 struct task_struct *(*iterator_next)(void *arg));
+#endif

 #include "sched_stats.h"
 #include "sched_rt.c"
@@ -757,6 +784,9 @@
 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
 {
 	task_thread_info(p)->cpu = cpu;
+#ifdef CONFIG_FAIR_GROUP_SCHED
+	p->se.lrq = &cpu_rq(cpu)->lrq;
+#endif
 }

 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
@@ -781,6 +811,9 @@

 	task_thread_info(p)->cpu = new_cpu;

+#ifdef CONFIG_FAIR_GROUP_SCHED
+	p->se.lrq = &new_rq->lrq;
+#endif
 }

 struct migration_req {

Page 66 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

@@ -1761,89 +1794,28 @@
 	return 1;
 }

-/*
- * Load-balancing iterator: iterate through the hieararchy of scheduling
- * classes, starting with the highest-prio one:
- */
-
-struct task_struct * load_balance_start(struct rq *rq)
-{
-	struct sched_class *class = sched_class_highest;
-	struct task_struct *p;
-
-	do {
-		p = class->load_balance_start(rq);
-		if (p) {
-			rq->load_balance_class = class;
-			return p;
-		}
-		class = class->next;
-	} while (class);
-
-	return NULL;
-}
-
-struct task_struct * load_balance_next(struct rq *rq)
-{
-	struct sched_class *class = rq->load_balance_class;
-	struct task_struct *p;
-
-	p = class->load_balance_next(rq);
-	if (p)
-		return p;
-	/*
-	 * Pick up the next class (if any) and attempt to start
-	 * the iterator there:
-	 */
-	while ((class = class->next)) {
-		p = class->load_balance_start(rq);
-		if (p) {
-			rq->load_balance_class = class;
-			return p;
-		}
-	}
-	return NULL;
-}
-

Page 67 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-#define rq_best_prio(rq) (rq)->curr->prio
-
-/*
- * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
- * load from busiest to this_rq, as part of a balancing operation within
- * "domain". Returns the number of tasks moved.
- *
- * Called with both runqueues locked.
- */
-static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
+static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
 		 unsigned long max_nr_move, unsigned long max_load_move,
 		 struct sched_domain *sd, enum idle_type idle,
-		 int *all_pinned)
+		 int *all_pinned, unsigned long *load_moved,
+		 int this_best_prio, int best_prio, int best_prio_seen,
+		 void *iterator_arg,
+		 struct task_struct *(*iterator_start)(void *arg),
+		 struct task_struct *(*iterator_next)(void *arg))
 {
-	int pulled = 0, pinned = 0, this_best_prio, best_prio,
-	 best_prio_seen, skip_for_load;
+	int pulled = 0, pinned = 0, skip_for_load;
 	struct task_struct *p;
-	long rem_load_move;
+	long rem_load_move = max_load_move;

 	if (max_nr_move == 0 || max_load_move == 0)
 		goto out;

-	rem_load_move = max_load_move;
 	pinned = 1;
-	this_best_prio = rq_best_prio(this_rq);
-	best_prio = rq_best_prio(busiest);
-	/*
-	 * Enable handling of the case where there is more than one task
-	 * with the best priority. If the current running task is one
-	 * of those with prio==best_prio we know it won't be moved
-	 * and therefore it's safe to override the skip (based on load) of
-	 * any task we find with that prio.
-	 */
-	best_prio_seen = best_prio == busiest->curr->prio;

 	/*
 	 * Start the load-balancing iterator:
 	 */
-	p = load_balance_start(busiest);
+	p = (*iterator_start)(iterator_arg);

Page 68 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 next:
 	if (!p)
 		goto out;
@@ -1860,7 +1832,7 @@
 	 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {

 		best_prio_seen |= p->prio == best_prio;
-		p = load_balance_next(busiest);
+		p = (*iterator_next)(iterator_arg);
 		goto next;
 	}

@@ -1875,7 +1847,7 @@
 	if (pulled < max_nr_move && rem_load_move > 0) {
 		if (p->prio < this_best_prio)
 			this_best_prio = p->prio;
-		p = load_balance_next(busiest);
+		p = (*iterator_next)(iterator_arg);
 		goto next;
 	}
 out:
@@ -1888,10 +1860,39 @@

 	if (all_pinned)
 		*all_pinned = pinned;
+	*load_moved = max_load_move - rem_load_move;
 	return pulled;
 }

 /*
+ * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
+ * load from busiest to this_rq, as part of a balancing operation within
+ * "domain". Returns the number of tasks moved.
+ *
+ * Called with both runqueues locked.
+ */
+static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
+		 unsigned long max_nr_move, unsigned long max_load_move,
+		 struct sched_domain *sd, enum idle_type idle,
+		 int *all_pinned)
+{
+	struct sched_class *class = sched_class_highest;
+	unsigned long load_moved, total_nr_moved = 0, nr_moved;
+
+	do {
+		nr_moved = class->load_balance(this_rq, this_cpu, busiest,
+					max_nr_move, max_load_move, sd, idle,
+					all_pinned, &load_moved);

Page 69 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+		total_nr_moved += nr_moved;
+		max_nr_move -= nr_moved;
+		max_load_move -= load_moved;
+		class = class->next;
+	} while (class && max_nr_move && max_load_move);
+
+	return total_nr_moved;
+}
+
+/*
 * find_busiest_group finds and returns the busiest CPU group within the
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
@@ -4503,6 +4504,9 @@
 #else
 	task_thread_info(idle)->preempt_count = 0;
 #endif
+#ifdef CONFIG_FAIR_GROUP_SCHED
+	idle->se.lrq = &rq->lrq;
+#endif
 }

 /*
@@ -6086,6 +6090,9 @@
 	lrq->nr_running = 0;
 	for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
 		lrq->cpu_load[j] = 0;
+#ifdef CONFIG_FAIR_GROUP_SCHED
+	lrq->rq = rq;
+#endif
 }

 void __init sched_init(void)
@@ -6110,6 +6117,10 @@
 		rq->nr_running = 0;
 		rq->clock = 1;
 		init_lrq(&rq->lrq, rq);
+#ifdef CONFIG_FAIR_GROUP_SCHED
+		INIT_LIST_HEAD(&rq->leaf_lrq_list);
+		list_add(&rq->lrq.leaf_lrq_list, &rq->leaf_lrq_list);
+#endif

 #ifdef CONFIG_SMP
 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
Index: current/kernel/sched_fair.c
===
--- current.orig/kernel/sched_fair.c	2007-06-09 15:07:36.000000000 +0530
+++ current/kernel/sched_fair.c	2007-06-09 15:07:37.000000000 +0530

Page 70 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

@@ -46,6 +46,29 @@
 /* BEGIN : CFS operations on generic schedulable entities */
 /**/

+#ifdef CONFIG_FAIR_GROUP_SCHED
+
+/* cpu runqueue to which this lrq is attached */
+static inline struct rq *lrq_rq(struct lrq *lrq)
+{
+	return lrq->rq;
+}
+
+static inline struct sched_entity *lrq_curr(struct lrq *lrq)
+{
+	return lrq->curr;
+}
+
+/* An entity is a task if it doesn't "own" a runqueue */
+#define entity_is_task(se)	(!se->my_q)
+
+static inline void set_lrq_curr(struct lrq *lrq, struct sched_entity *se)
+{
+	lrq->curr = se;
+}
+
+#else	/* CONFIG_FAIR_GROUP_SCHED */
+
 static inline struct rq *lrq_rq(struct lrq *lrq)
 {
 	return container_of(lrq, struct rq, lrq);
@@ -69,6 +92,10 @@

 #define entity_is_task(se)	1

+static inline void set_lrq_curr(struct lrq *lrq, struct sched_entity *se) { }
+
+#endif	/* CONFIG_FAIR_GROUP_SCHED */
+
 static inline struct task_struct *entity_to_task(struct sched_entity *se)
 {
 	return container_of(se, struct task_struct, se);
@@ -119,6 +146,7 @@
 	rb_insert_color(&p->run_node, &lrq->tasks_timeline);
 	lrq->raw_weighted_load += p->load_weight;
 	lrq->nr_running++;
+	p->on_rq = 1;
 }

Page 71 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 static inline void __dequeue_entity(struct lrq *lrq, struct sched_entity *p)
@@ -128,6 +156,7 @@
 	rb_erase(&p->run_node, &lrq->tasks_timeline);
 	lrq->raw_weighted_load -= p->load_weight;
 	lrq->nr_running--;
+	p->on_rq = 0;
 }

 static inline struct rb_node * first_fair(struct lrq *lrq)
@@ -231,6 +260,9 @@

 	if (!curr || curtask == rq->idle || !load)
 		return;
+
+	BUG_ON(!curr->exec_start);
+
 	/*
 	 * Get the amount of time the current task was running
 	 * since the last time we changed raw_weighted_load:
@@ -539,6 +571,7 @@
 	 */
 	update_stats_wait_end(lrq, p, now);
 	update_stats_curr_start(lrq, p, now);
+	set_lrq_curr(lrq, p);

 	return p;
 }
@@ -557,9 +590,7 @@
 			test_tsk_thread_flag(prevtask, TIF_NEED_RESCHED)) {

 			dequeue_entity(lrq, prev, 0, now);
-			prev->on_rq = 0;
 			enqueue_entity(lrq, prev, 0, now);
-			prev->on_rq = 1;
 		} else
 			update_curr(lrq, now);
 	} else {
@@ -570,6 +601,7 @@

 	if (prev->on_rq)
 		update_stats_wait_start(lrq, prev, now);
+	set_lrq_curr(lrq, NULL);
 }

 static void update_load_fair(struct lrq *this_lrq)
@@ -640,9 +672,7 @@
 	 * position within the tree:
 	 */

Page 72 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 	dequeue_entity(lrq, curr, 0, now);
-	curr->on_rq = 0;
 	enqueue_entity(lrq, curr, 0, now);
-	curr->on_rq = 1;

 	/*
 	 * Reschedule if another task tops the current one.
@@ -669,11 +699,70 @@
 /* BEGIN : CFS operations on tasks */
 /**/

+#ifdef CONFIG_FAIR_GROUP_SCHED
+
+#define for_each_sched_entity(se) \
+		for (; se; se = se->parent)
+
+static inline struct lrq *task_lrq(struct task_struct *p)
+{
+	return p->se.lrq;
+}
+
+/* runqueue on which this entity is (to be) queued */
+static inline struct lrq *sched_entity_lrq(struct sched_entity *se)
+{
+	return se->lrq;
+}
+
+/* runqueue "owned" by this group */
+static inline struct lrq *group_lrq(struct sched_entity *grp)
+{
+	return grp->my_q;
+}
+
+static inline struct lrq *cpu_lrq(struct lrq *lrq, int this_cpu)
+{
+	return &cpu_rq(this_cpu)->lrq;
+}
+
+#define for_each_leaf_lrq(a, b) \
+		list_for_each_entry(b, &a->leaf_lrq_list, leaf_lrq_list)
+
+#else	/* CONFIG_FAIR_GROUP_SCHED */
+
+#define for_each_sched_entity(se) \
+		for (; se; se = NULL)
+
 static inline struct lrq *task_lrq(struct task_struct *p)
 {

Page 73 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 	return &task_rq(p)->lrq;
 }

+static inline struct lrq *sched_entity_lrq(struct sched_entity *se)
+{
+	struct task_struct *p = entity_to_task(se);
+	struct rq *rq = task_rq(p);
+
+	return &rq->lrq;
+}
+
+/* runqueue "owned" by this group */
+static inline struct lrq *group_lrq(struct sched_entity *grp)
+{
+	return NULL;
+}
+
+static inline struct lrq *cpu_lrq(struct lrq *lrq, int this_cpu)
+{
+	return &cpu_rq(this_cpu)->lrq;
+}
+
+#define for_each_leaf_lrq(a, b) \
+		for (b = &a->lrq; b; b = NULL)
+
+#endif	/* CONFIG_FAIR_GROUP_SCHED */
+
 /*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
@@ -682,10 +771,15 @@
 static void
 enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
 {
-	struct lrq *lrq = task_lrq(p);
+	struct lrq *lrq;
 	struct sched_entity *se = &p->se;

-	enqueue_entity(lrq, se, wakeup, now);
+	for_each_sched_entity(se) {
+		if (se->on_rq)
+			break;
+		lrq = sched_entity_lrq(se);
+		enqueue_entity(lrq, se, wakeup, now);
+	}
 }

 /*

Page 74 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

@@ -696,10 +790,16 @@
 static void
 dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep, u64 now)
 {
-	struct lrq *lrq = task_lrq(p);
+	struct lrq *lrq;
 	struct sched_entity *se = &p->se;

-	dequeue_entity(lrq, se, sleep, now);
+	for_each_sched_entity(se) {
+		lrq = sched_entity_lrq(se);
+		dequeue_entity(lrq, se, sleep, now);
+		/* Don't dequeue parent if it has other entities besides us */
+		if (lrq->raw_weighted_load)
+			break;
+	}
 }

 /*
@@ -721,9 +821,7 @@
 	 * position within the tree:
 	 */
 	dequeue_entity(lrq, se, 0, now);
-	se->on_rq = 0;
 	enqueue_entity(lrq, se, 0, now);
-	se->on_rq = 1;

 	/*
 	 * yield-to support: if we are on the same runqueue then
@@ -772,7 +870,10 @@
 		if (unlikely(p->policy == SCHED_BATCH))
 			granularity = sysctl_sched_batch_wakeup_granularity;

-		__check_preempt_curr_fair(lrq, &p->se, &curr->se, granularity);
+		/* todo: check for preemption at higher levels */
+		if (lrq == task_lrq(p))
+			__check_preempt_curr_fair(lrq, &p->se, &curr->se,
+								 granularity);
 	}
 }

@@ -781,7 +882,10 @@
 	struct lrq *lrq = &rq->lrq;
 	struct sched_entity *se;

-	se = pick_next_entity(lrq, now);
+	do {
+		se = pick_next_entity(lrq, now);

Page 75 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+		lrq = group_lrq(se);
+	} while (lrq);

 	return entity_to_task(se);
 }
@@ -791,19 +895,26 @@
 */
 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, u64 now)
 {
-	struct lrq *lrq = task_lrq(prev);
+	struct lrq *lrq;
 	struct sched_entity *se = &prev->se;

 	if (prev == rq->idle)
 		return;

-	put_prev_entity(lrq, se, now);
+	for_each_sched_entity(se) {
+		lrq = sched_entity_lrq(se);
+		put_prev_entity(lrq, se, now);
+	}
 }

+#ifdef CONFIG_SMP
+
 /**/
 /* Fair scheduling class load-balancing methods:
 */

+/* todo: return cache-cold tasks first */
+
 /*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
@@ -812,7 +923,7 @@
 * the current task:
 */
 static inline struct task_struct *
-__load_balance_iterator(struct rq *rq, struct rb_node *curr)
+__load_balance_iterator(struct lrq *lrq, struct rb_node *curr)
 {
 	struct task_struct *p;

@@ -820,30 +931,121 @@
 		return NULL;

 	p = rb_entry(curr, struct task_struct, se.run_node);
-	rq->lrq.rb_load_balance_curr = rb_next(curr);

Page 76 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+	lrq->rb_load_balance_curr = rb_next(curr);

 	return p;
 }

-static struct task_struct * load_balance_start_fair(struct rq *rq)
+static struct task_struct * load_balance_start_fair(void *arg)
 {
-	return __load_balance_iterator(rq, first_fair(&rq->lrq));
+	struct lrq *lrq = arg;
+
+	return __load_balance_iterator(lrq, first_fair(lrq));
 }

-static struct task_struct * load_balance_next_fair(struct rq *rq)
+static struct task_struct * load_balance_next_fair(void *arg)
 {
-	return __load_balance_iterator(rq, rq->lrq.rb_load_balance_curr);
+	struct lrq *lrq = arg;
+
+	return __load_balance_iterator(lrq, lrq->rb_load_balance_curr);
 }

+static inline int lrq_best_prio(struct lrq *lrq)
+{
+	struct sched_entity *curr;
+	struct task_struct *p;
+
+	if (!lrq->nr_running)
+		return MAX_PRIO;
+
+	curr = __pick_next_entity(lrq);
+	p = entity_to_task(curr);
+
+	return p->prio;
+}
+
+static int
+load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
+		 	unsigned long max_nr_move, unsigned long max_load_move,
+			struct sched_domain *sd, enum idle_type idle,
+			int *all_pinned, unsigned long *total_load_moved)
+{
+	struct lrq *busy_lrq;
+	unsigned long load_moved, total_nr_moved = 0, nr_moved, rem_load_move;
+
+	rem_load_move = max_load_move;
+

Page 77 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+	for_each_leaf_lrq(busiest, busy_lrq) {
+		struct lrq *this_lrq;
+		long imbalance;
+		unsigned long maxload;
+		int this_best_prio, best_prio, best_prio_seen = 0;
+
+		this_lrq = cpu_lrq(busy_lrq, this_cpu);
+
+		imbalance = busy_lrq->raw_weighted_load -
+						 this_lrq->raw_weighted_load;
+		/* Don't pull if this_lrq has more load than busy_lrq */
+		if (imbalance <= 0)
+			continue;
+
+		/* Don't pull more than imbalance/2 */
+		imbalance /= 2;
+		maxload = min(rem_load_move, (unsigned long)imbalance);
+
+		this_best_prio = lrq_best_prio(this_lrq);
+		best_prio = lrq_best_prio(busy_lrq);
+
+		/*
+		 * Enable handling of the case where there is more than one task
+		 * with the best priority. If the current running task is one
+		 * of those with prio==best_prio we know it won't be moved
+		 * and therefore it's safe to override the skip (based on load)
+		 * of any task we find with that prio.
+		 */
+		if (lrq_curr(busy_lrq) == &busiest->curr->se)
+			best_prio_seen = 1;
+
+		nr_moved = balance_tasks(this_rq, this_cpu, busiest,
+				max_nr_move, maxload, sd, idle, all_pinned,
+				&load_moved, this_best_prio, best_prio,
+				best_prio_seen,
+				/* pass busy_lrq argument into
+				 * load_balance_[start|next]_fair iterators
+				 */
+				busy_lrq,
+				load_balance_start_fair,
+				load_balance_next_fair);
+
+		total_nr_moved += nr_moved;
+		max_nr_move -= nr_moved;
+		rem_load_move -= load_moved;
+
+		/* todo: break if rem_load_move is < load_per_task */
+		if (!max_nr_move || !rem_load_move)

Page 78 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+			break;
+	}
+
+	*total_load_moved = max_load_move - rem_load_move;
+
+	return total_nr_moved;
+}
+
+#endif	/* CONFIG_SMP */
+
 /*
 * scheduler tick hitting a task of our scheduling class:
 */
 static void task_tick_fair(struct rq *rq, struct task_struct *curr)
 {
-	struct lrq *lrq = task_lrq(curr);
+	struct lrq *lrq;
 	struct sched_entity *se = &curr->se;

-	entity_tick(lrq, se);
+	for_each_sched_entity(se) {
+		lrq = sched_entity_lrq(se);
+		/* todo: reduce tick frequency at higher levels */
+		entity_tick(lrq, se);
+	}
 }

 /*
@@ -880,7 +1082,6 @@
 //	p->se.wait_runtime = -(s64)(sysctl_sched_granularity / 2);

 	__enqueue_entity(lrq, se);
-	p->se.on_rq = 1;
 	inc_nr_running(p, rq);
 }

@@ -897,8 +1098,9 @@
 	.pick_next_task		= pick_next_task_fair,
 	.put_prev_task		= put_prev_task_fair,

-	.load_balance_start	= load_balance_start_fair,
-	.load_balance_next	= load_balance_next_fair,
+#ifdef CONFIG_SMP
+	.load_balance		= load_balance_fair,
+#endif
 	.task_tick		= task_tick_fair,
 	.task_new		= task_new_fair,
 };

Page 79 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Index: current/kernel/sched_rt.c
===
--- current.orig/kernel/sched_rt.c	2007-06-09 15:04:54.000000000 +0530
+++ current/kernel/sched_rt.c	2007-06-09 15:07:37.000000000 +0530
@@ -100,6 +100,8 @@
 	p->se.exec_start = 0;
 }

+#ifdef CONFIG_SMP
+
 /*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
@@ -107,8 +109,9 @@
 * achieve that by always pre-iterating before returning
 * the current task:
 */
-static struct task_struct * load_balance_start_rt(struct rq *rq)
+static struct task_struct * load_balance_start_rt(void *arg)
 {
+	struct rq *rq = (struct rq *)arg;
 	struct prio_array *array = &rq->active;
 	struct list_head *head, *curr;
 	struct task_struct *p;
@@ -132,8 +135,9 @@
 	return p;
 }

-static struct task_struct * load_balance_next_rt(struct rq *rq)
+static struct task_struct * load_balance_next_rt(void *arg)
 {
+	struct rq *rq = (struct rq *)arg;
 	struct prio_array *array = &rq->active;
 	struct list_head *head, *curr;
 	struct task_struct *p;
@@ -170,6 +174,42 @@
 	return p;
 }

+static int
+load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
+		 	unsigned long max_nr_move, unsigned long max_load_move,
+			struct sched_domain *sd, enum idle_type idle,
+			int *all_pinned, unsigned long *load_moved)
+{
+	int this_best_prio, best_prio, best_prio_seen = 0;
+	int nr_moved;
+

Page 80 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+	best_prio = sched_find_first_bit(busiest->active.bitmap);
+	this_best_prio = sched_find_first_bit(this_rq->active.bitmap);
+
+	/*
+	 * Enable handling of the case where there is more than one task
+	 * with the best priority. If the current running task is one
+	 * of those with prio==best_prio we know it won't be moved
+	 * and therefore it's safe to override the skip (based on load)
+	 * of any task we find with that prio.
+	 */
+	if (busiest->curr->prio == best_prio)
+		best_prio_seen = 1;
+
+	nr_moved = balance_tasks(this_rq, this_cpu, busiest, max_nr_move,
+			max_load_move, sd, idle, all_pinned, load_moved,
+			this_best_prio, best_prio, best_prio_seen,
+			/* pass busiest argument into
+			 * load_balance_[start|next]_rt iterators
+			 */
+			busiest,
+			load_balance_start_rt, load_balance_next_rt);
+
+	return nr_moved;
+}
+
+#endif	/* CONFIG_SMP */
+
 static void task_tick_rt(struct rq *rq, struct task_struct *p)
 {
 	/*
@@ -204,8 +244,9 @@
 	.pick_next_task		= pick_next_task_rt,
 	.put_prev_task		= put_prev_task_rt,

-	.load_balance_start	= load_balance_start_rt,
-	.load_balance_next	= load_balance_next_rt,
+#ifdef CONFIG_SMP
+	.load_balance		= load_balance_rt,
+#endif

 	.task_tick		= task_tick_rt,
 	.task_new		= task_new_rt,
--
Regards,
vatsa

Containers mailing list
Containers@lists.linux-foundation.org

Page 81 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: [RFC][PATCH 6/6] Hook up to container infrastructure
Posted by Srivatsa Vaddagiri on Mon, 11 Jun 2007 15:58:21 GMT
View Forum Message <> Reply to Message

This patch hooks up cpu scheduler with Paul Menage's container
infrastructure.

The container patches allows administrator to create arbitrary groups of tasks
and define resource allocation for each group. By registering with container
infrastructure, cpu scheduler is made aware of group membership information for
each task, creation/deletion of groups etc and can use that information to
provide fairness between groups.

This mechanism can indirectly be used to provide fairness between users
also. All that is needed is a user-space program (which I am working on
and will post later) which monitors for PROC_EVENT_UID events (using
process event connector) and moves the task to appropriate user-directory in
container filesystem.

As an example for "HOWTO use this feature", follow these steps:

 1. Define CONFIG_FAIR_GROUP_SCHED (General Setup->Fair Group Scheduler)
 and compile the kernel
 2. After booting:

 # cd /dev
 # mkdir cpuctl
 # mount -t container -ocpuctl none /dev/cpuctl
 # cd cpuctl
 # mkdir grpA
 # mkdir grpB

 # echo some_pid1 > grpA/tasks
 # echo some_pid2 > grpA/tasks
 # echo some_pid3 > grpA/tasks
 # echo some_pid4 > grpA/tasks

 ...

 # echo another_pidX > grpB/tasks
 # echo another_pidY > grpB/tasks

All tasks in grpA/tasks should cumulatively share same CPU as all tasks
in grpB/tasks.

Page 82 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=667
https://new-forum.openvz.org/index.php?t=rview&th=3679&goto=18880#msg_18880
https://new-forum.openvz.org/index.php?t=post&reply_to=18880
https://new-forum.openvz.org/index.php

Signed-off-by : Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>

 include/linux/container_subsys.h | 6 +
 include/linux/sched.h | 1
 init/Kconfig | 8 +
 kernel/sched.c | 234 ++++++++++++++++++++++++++++++++++++++-
 kernel/sched_fair.c | 36 ++++--
 5 files changed, 274 insertions(+), 11 deletions(-)

Index: current/kernel/sched.c
===
--- current.orig/kernel/sched.c	2007-06-09 15:07:37.000000000 +0530
+++ current/kernel/sched.c	2007-06-09 15:07:38.000000000 +0530
@@ -116,6 +116,39 @@
 	struct list_head queue[MAX_RT_PRIO];
 };

+#ifdef CONFIG_FAIR_GROUP_SCHED
+
+#include <linux/container.h>
+
+struct lrq;
+
+struct task_grp {
+	struct container_subsys_state css;
+	/* schedulable entities of this group on each cpu */
+	struct sched_entity **se;
+	/* runqueue "owned" by this group on each cpu */
+	struct lrq **lrq;
+};
+
+static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_entity, init_sched_entity);
+static DEFINE_PER_CPU_SHARED_ALIGNED(struct lrq, init_lrq);
+
+static struct sched_entity *init_sched_entity_p[CONFIG_NR_CPUS];
+static struct lrq *init_lrq_p[CONFIG_NR_CPUS];
+
+static struct task_grp init_task_grp = {
+					.se = init_sched_entity_p,
+					.lrq = init_lrq_p,
+					};
+
+static inline struct task_grp *task_grp(struct task_struct *p)
+{
+	return container_of(task_subsys_state(p, cpuctlr_subsys_id),
+				struct task_grp, css);

Page 83 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+}
+
+#endif
+
 /* CFS-related fields in a runqueue */
 struct lrq {
 	long nr_running;
@@ -146,6 +179,7 @@
 	 * is used during load balance.
 	 */
 	struct list_head leaf_lrq_list;
+	struct task_grp *tg;	/* group that "owns" this runqueue */
 #endif
 };

@@ -785,7 +819,8 @@
 {
 	task_thread_info(p)->cpu = cpu;
 #ifdef CONFIG_FAIR_GROUP_SCHED
-	p->se.lrq = &cpu_rq(cpu)->lrq;
+	p->se.lrq = task_grp(p)->lrq[cpu];
+	p->se.parent = task_grp(p)->se[cpu];
 #endif
 }

@@ -812,7 +847,8 @@
 	task_thread_info(p)->cpu = new_cpu;

 #ifdef CONFIG_FAIR_GROUP_SCHED
-	p->se.lrq = &new_rq->lrq;
+	p->se.lrq = task_grp(p)->lrq[new_cpu];
+	p->se.parent = task_grp(p)->se[new_cpu];
 #endif
 }

@@ -4505,7 +4541,8 @@
 	task_thread_info(idle)->preempt_count = 0;
 #endif
 #ifdef CONFIG_FAIR_GROUP_SCHED
-	idle->se.lrq = &rq->lrq;
+	idle->se.lrq = init_task_grp.lrq[cpu];
+	idle->se.parent = init_task_grp.se[cpu];
 #endif
 }

@@ -6119,7 +6156,22 @@
 		init_lrq(&rq->lrq, rq);
 #ifdef CONFIG_FAIR_GROUP_SCHED

Page 84 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 		INIT_LIST_HEAD(&rq->leaf_lrq_list);
-		list_add(&rq->lrq.leaf_lrq_list, &rq->leaf_lrq_list);
+		{
+			struct lrq *lrq = &per_cpu(init_lrq, i);
+			struct sched_entity *se =
+					 &per_cpu(init_sched_entity, i);
+
+			init_lrq_p[i] = lrq;
+			init_lrq(lrq, rq);
+			lrq->tg = &init_task_grp;
+			list_add(&lrq->leaf_lrq_list, &rq->leaf_lrq_list);
+
+			init_sched_entity_p[i] = se;
+			se->lrq = &rq->lrq;
+			se->my_q = lrq;
+			se->load_weight = NICE_0_LOAD;
+			se->parent = NULL;
+		}
 #endif

 #ifdef CONFIG_SMP
@@ -6300,3 +6352,177 @@
 }

 #endif
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+
+/* return corresponding task_grp object of a container */
+static inline struct task_grp *container_tg(struct container *cont)
+{
+	return container_of(container_subsys_state(cont, cpuctlr_subsys_id),
+				struct task_grp, css);
+}
+
+/* allocate runqueue etc for a new task group */
+static int sched_create_group(struct container_subsys *ss,
+				struct container *cont)
+{
+	struct task_grp *tg;
+	struct lrq *lrq;
+	struct sched_entity *se;
+	int i;
+
+	if (!cont->parent) {
+		/* This is early initialization for the top container */
+		cont->subsys[cpuctlr_subsys_id] = &init_task_grp.css;
+		init_task_grp.css.container = cont;

Page 85 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+		return 0;
+	}
+
+	/* we support only 1-level deep hierarchical scheduler atm */
+	if (cont->parent->parent)
+		return -EINVAL;
+
+	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
+	if (!tg)
+		return -ENOMEM;
+
+	tg->lrq = kzalloc(sizeof(lrq) * num_possible_cpus(), GFP_KERNEL);
+	if (!tg->lrq)
+		goto err;
+	tg->se = kzalloc(sizeof(se) * num_possible_cpus(), GFP_KERNEL);
+	if (!tg->se)
+		goto err;
+
+	for_each_possible_cpu(i) {
+		struct rq *rq = cpu_rq(i);
+
+		lrq = kmalloc_node(sizeof(struct lrq), GFP_KERNEL,
+							 cpu_to_node(i));
+		if (!lrq)
+			goto err;
+
+		se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
+							cpu_to_node(i));
+		if (!se)
+			goto err;
+
+		memset(lrq, 0, sizeof(struct lrq));
+		memset(se, 0, sizeof(struct sched_entity));
+
+		tg->lrq[i] = lrq;
+		init_lrq(lrq, rq);
+		lrq->tg = tg;
+		list_add_rcu(&lrq->leaf_lrq_list, &rq->leaf_lrq_list);
+
+		tg->se[i] = se;
+		se->lrq = &rq->lrq;
+		se->my_q = lrq;
+		se->load_weight = NICE_0_LOAD;
+		se->parent = NULL;
+	}
+
+	/* Bind the container to task_grp object we just created */
+	cont->subsys[cpuctlr_subsys_id] = &tg->css;

Page 86 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+	tg->css.container = cont;
+
+	return 0;
+
+err:
+	for_each_possible_cpu(i) {
+		if (tg->lrq && tg->lrq[i])
+			kfree(tg->lrq[i]);
+		if (tg->se && tg->se[i])
+			kfree(tg->se[i]);
+	}
+	if (tg->lrq)
+		kfree(tg->lrq);
+	if (tg->se)
+		kfree(tg->se);
+	if (tg)
+		kfree(tg);
+
+	return -ENOMEM;
+}
+
+
+/* destroy runqueue etc associated with a task group */
+static void sched_destroy_group(struct container_subsys *ss,
+					struct container *cont)
+{
+	struct task_grp *tg = container_tg(cont);
+	struct lrq *lrq;
+	struct sched_entity *se;
+	int i;
+
+	for_each_possible_cpu(i) {
+		lrq = tg->lrq[i];
+		list_del_rcu(&lrq->leaf_lrq_list);
+	}
+
+	/* wait for possible concurrent references to lrqs complete */
+	synchronize_sched();
+
+	/* now it should be safe to free those lrqs */
+	for_each_possible_cpu(i) {
+		lrq = tg->lrq[i];
+		kfree(lrq);
+
+		se = tg->se[i];
+		kfree(se);
+	}
+

Page 87 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+	kfree(tg);
+}
+
+/* change task's runqueue when it moves between groups */
+static void sched_move_task(struct container_subsys *ss, struct container *cont,
+			struct container *old_cont, struct task_struct *tsk)
+{
+	int on_rq;
+	unsigned long flags;
+	struct rq *rq;
+	struct task_grp *tg_new = container_tg(cont);
+
+	rq = task_rq_lock(tsk, &flags);
+
+	on_rq = tsk->se.on_rq;
+	if (on_rq)
+		deactivate_task(rq, tsk, 0);
+
+	if (unlikely(rq->curr == tsk) && tsk->sched_class == &fair_sched_class)
+		tsk->sched_class->put_prev_task(rq, tsk, rq_clock(rq));
+
+	tsk->se.parent = tg_new->se[task_cpu(tsk)];
+	tsk->se.lrq = tg_new->lrq[task_cpu(tsk)];
+
+	/* todo: change task's load_weight to reflect its new group */
+
+	if (on_rq)
+		 activate_task(rq, tsk, 0);
+
+	if (unlikely(rq->curr == tsk) && tsk->sched_class == &fair_sched_class)
+		tsk->sched_class->set_curr_task(rq);
+
+	task_rq_unlock(rq, &flags);
+}
+
+
+static int sched_populate(struct container_subsys *ss, struct container *cont)
+{
+	/* todo: create a cpu_shares file to modify group weight */
+
+	return 0;
+}
+
+struct container_subsys cpuctlr_subsys = {
+	.name = "cpuctl",
+	.create = sched_create_group,
+	.destroy = sched_destroy_group,
+	.attach = sched_move_task,

Page 88 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+	.populate = sched_populate,
+	.subsys_id = cpuctlr_subsys_id,
+	.early_init = 1,
+};
+
+#endif
+
Index: current/include/linux/container_subsys.h
===
--- current.orig/include/linux/container_subsys.h	2007-06-09 14:56:43.000000000 +0530
+++ current/include/linux/container_subsys.h	2007-06-09 15:07:38.000000000 +0530
@@ -24,3 +24,9 @@
 #endif

 /* */
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+SUBSYS(cpuctlr)
+#endif
+
+/* */
Index: current/kernel/sched_fair.c
===
--- current.orig/kernel/sched_fair.c	2007-06-09 15:07:37.000000000 +0530
+++ current/kernel/sched_fair.c	2007-06-09 15:07:38.000000000 +0530
@@ -558,10 +558,9 @@
 		resched_task(lrq_rq(lrq)->curr);
 }

-static struct sched_entity * pick_next_entity(struct lrq *lrq, u64 now)
+static inline void
+set_next_entity(struct lrq *lrq, struct sched_entity *se, u64 now)
 {
-	struct sched_entity *p = __pick_next_entity(lrq);
-
 	/*
 	 * Any task has to be enqueued before it get to execute on
 	 * a CPU. So account for the time it spent waiting on the
@@ -569,9 +568,16 @@
 	 * done a put_prev_task_fair() shortly before this, which
 	 * updated rq->fair_clock - used by update_stats_wait_end())
 	 */
-	update_stats_wait_end(lrq, p, now);
-	update_stats_curr_start(lrq, p, now);
-	set_lrq_curr(lrq, p);
+	update_stats_wait_end(lrq, se, now);
+	update_stats_curr_start(lrq, se, now);
+	set_lrq_curr(lrq, se);

Page 89 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+}
+
+static struct sched_entity * pick_next_entity(struct lrq *lrq, u64 now)
+{
+	struct sched_entity *p = __pick_next_entity(lrq);
+
+	set_next_entity(lrq, p, now);

 	return p;
 }
@@ -723,7 +729,7 @@

 static inline struct lrq *cpu_lrq(struct lrq *lrq, int this_cpu)
 {
-	return &cpu_rq(this_cpu)->lrq;
+	return lrq->tg->lrq[this_cpu];
 }

 #define for_each_leaf_lrq(a, b) \
@@ -1085,6 +1091,20 @@
 	inc_nr_running(p, rq);
 }

+/* Account for a task changing its policy or group */
+static void set_curr_task_fair(struct rq *rq)
+{
+	struct task_struct *curr = rq->curr;
+	struct sched_entity *se = &curr->se;
+	struct lrq *lrq;
+	u64 now = rq_clock(rq);
+
+	for_each_sched_entity(se) {
+		lrq = sched_entity_lrq(se);
+		set_next_entity(lrq, se, now);
+	}
+}
+
 /*
 * All the scheduling class methods:
 */
@@ -1098,6 +1118,8 @@
 	.pick_next_task		= pick_next_task_fair,
 	.put_prev_task		= put_prev_task_fair,

+	.set_curr_task		= set_curr_task_fair,
+
 #ifdef CONFIG_SMP
 	.load_balance		= load_balance_fair,

Page 90 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 #endif
Index: current/include/linux/sched.h
===
--- current.orig/include/linux/sched.h	2007-06-09 15:07:37.000000000 +0530
+++ current/include/linux/sched.h	2007-06-09 15:07:38.000000000 +0530
@@ -865,6 +865,7 @@

 	struct task_struct * (*pick_next_task) (struct rq *rq, u64 now);
 	void (*put_prev_task) (struct rq *rq, struct task_struct *p, u64 now);
+	void (*set_curr_task) (struct rq *rq);

 #ifdef CONFIG_SMP
 	int (*load_balance) (struct rq *this_rq, int this_cpu,
Index: current/init/Kconfig
===
--- current.orig/init/Kconfig	2007-06-09 14:56:43.000000000 +0530
+++ current/init/Kconfig	2007-06-09 15:07:38.000000000 +0530
@@ -328,6 +328,14 @@

 	 Say N if unsure.

+config FAIR_GROUP_SCHED
+	select CONTAINERS
+	help
+	 This option enables you to group tasks and control CPU resource
+	 allocation to such groups.
+
+	 Say N if unsure.
+
 config SYSFS_DEPRECATED
 	bool "Create deprecated sysfs files"
 	default y

--
Regards,
vatsa

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC][PATCH 0/6] Add group fairness to CFS - v1
Posted by Srivatsa Vaddagiri on Mon, 11 Jun 2007 16:02:28 GMT
View Forum Message <> Reply to Message

On Mon, Jun 11, 2007 at 09:17:24PM +0530, Srivatsa Vaddagiri wrote:
> TODO:

Page 91 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=667
https://new-forum.openvz.org/index.php?t=rview&th=3679&goto=18881#msg_18881
https://new-forum.openvz.org/index.php?t=post&reply_to=18881
https://new-forum.openvz.org/index.php

>
> 	- Weighted fair-share support
> 		Currently each group gets "equal" share. Support
> 		weighted fair-share so that some groups deemed important
> 		get more than this "equal" share. I believe it is
> 		possible to use load_weight to achieve this goal
> 		(similar to how niced tasks use it to get differential
> 		bandwidth)

[snip]

	+ Fix CFS debug interface to be group aware

--
Regards,
vatsa

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC][PATCH 0/6] Add group fairness to CFS - v1
Posted by Ingo Molnar on Mon, 11 Jun 2007 19:37:35 GMT
View Forum Message <> Reply to Message

* Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> wrote:

> Ingo,
> 	Here's an update of the group fairness patch I have been
> working on. Its against CFS v16 (sched-cfs-v2.6.22-rc4-mm2-v16.patch).

thanks!

> The core idea is to reuse much of CFS logic to apply fairness at
> higher hierarchical levels (user, container etc). In this regard CFS
> engine has been modified to deal with generic 'schedulable entities'.
> The patches introduce two essential structures in CFS core:
>
> 	- struct sched_entity
> 		- represents a schedulable entity in a hierarchy. Task
> 		 is the lowest element in this hierarchy. Its ancestors
> 		 could be user, container etc. This structure stores
> 		 essential attributes/execution-history (wait_runtime etc)
> 		 which is required by CFS engine to provide fairness between
> 		 'struct sched_entities' at the same hierarchy.
>
> 	- struct lrq

Page 92 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=122
https://new-forum.openvz.org/index.php?t=rview&th=3679&goto=18882#msg_18882
https://new-forum.openvz.org/index.php?t=post&reply_to=18882
https://new-forum.openvz.org/index.php

> 		- represents (per-cpu) runqueue in which ready-to-run
> 		 'struct sched_entities' are queued. The fair clock
> 		 calculation is split to be per 'struct lrq'.
>
> Here's a brief description of the patches to follow:
>
> Patches 1-3 introduce the essential changes in CFS core to support
> this concept. They rework existing code w/o any (intended!) change in
> functionality.

i currently have these 3 patches applied to the CFS queue and it's
looking pretty good so far! If it continues to be problem-free i'll
release them as part of -v17, just to check that they truly have no bad
side-effects (they shouldnt). Then #4 can go into -v18.

i've attached my current -v17 tree - it should apply mostly cleanly
ontop of the -mm queue (with a minor number of fixups). Could you
refactor the remaining 3 patches ontop of this base? There's some
rejects in the last 3 patches due to the update_load_fair() change.

> Patch 4 fixes some bad interaction between SCHED_RT and SCHED_NORMAL
> tasks in current CFS.

btw., the plan here is to turn off 'bit 0' in sched_features: i.e. to
use the precise statistics to calculate lrq->cpu_load[], not the
timer-irq-sampled imprecise statistics. Dmitry has fixed a couple of
bugs in it that made it not work too well in previous CFS versions, but
now we are ready to turn it on for -v17. (indeed in my tree it's already
turned on - i.e. sched_features defaults to '14')

> Patch 5 introduces basic changes in CFS core to support group
> fairness.
>
> Patch 6 hooks up scheduler with container patches in mm (as an
> interface for task-grouping functionality).

ok. Kirill, how do you like Srivatsa's current approach? Would be nice
to kill two birds with the same stone, if possible :-)

> Note: I have noticed that running lat_ctx in a loop for 10 times
> doesnt give me good results. Basically I expected the loop to take
> same time for both users (when run simultaneously), whereas it was
> taking different times for different users. I think this can be solved
> by increasing sysctl_sched_runtime_limit at group level (to remeber
> execution history over a longer period).

you'll get the best hackbench results by using SCHED_BATCH:

Page 93 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 chrt -b 0 ./hackbench 10

or indeed increasing the runtime_limit would work too.

	Ingo

Index: linux/Makefile
===
--- linux.orig/Makefile
+++ linux/Makefile
@@ -1,7 +1,7 @@
 VERSION = 2
 PATCHLEVEL = 6
 SUBLEVEL = 21
-EXTRAVERSION = .4-cfs-v16
+EXTRAVERSION = .4-cfs-v17
 NAME = Nocturnal Monster Puppy

 # *DOCUMENTATION*
Index: linux/fs/proc/array.c
===
--- linux.orig/fs/proc/array.c
+++ linux/fs/proc/array.c
@@ -319,7 +319,7 @@ static clock_t task_utime(struct task_st
 	 * Use CFS's precise accounting, if available:
 	 */
 	if (!(sysctl_sched_features & 128)) {
-		u64 temp = (u64)nsec_to_clock_t(p->sum_exec_runtime);
+		u64 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

 		if (total) {
 			temp *= utime;
@@ -341,7 +341,7 @@ static clock_t task_stime(struct task_st
 	 * by userspace grows monotonically - apps rely on that):
 	 */
 	if (!(sysctl_sched_features & 128))
-		stime = nsec_to_clock_t(p->sum_exec_runtime) - task_utime(p);
+		stime = nsec_to_clock_t(p->se.sum_exec_runtime) - task_utime(p);

 	return stime;
 }
Index: linux/include/linux/sched.h
===
--- linux.orig/include/linux/sched.h
+++ linux/include/linux/sched.h
@@ -534,8 +534,7 @@ struct signal_struct {

 #define rt_prio(prio)		unlikely((prio) < MAX_RT_PRIO)

Page 94 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 #define rt_task(p)		rt_prio((p)->prio)
-#define batch_task(p)		(unlikely((p)->policy == SCHED_BATCH))
-#define is_rt_policy(p)		((p) != SCHED_NORMAL && (p) != SCHED_BATCH)
+#define is_rt_policy(p)		((p) == SCHED_FIFO || (p) == SCHED_RR)
 #define has_rt_policy(p)	unlikely(is_rt_policy((p)->policy))

 /*
@@ -819,6 +818,29 @@ struct sched_class {
 	void (*task_new) (struct rq *rq, struct task_struct *p);
 };

+/* CFS stats for a schedulable entity (task, task-group etc) */
+struct sched_entity {
+	int load_weight;	/* for niceness load balancing purposes */
+	int on_rq;
+	struct rb_node run_node;
+	u64 wait_start_fair;
+	u64 wait_start;
+	u64 exec_start;
+	u64 sleep_start, sleep_start_fair;
+	u64 block_start;
+	u64 sleep_max;
+	u64 block_max;
+	u64 exec_max;
+	u64 wait_max;
+	u64 last_ran;
+
+	s64 wait_runtime;
+	u64 sum_exec_runtime;
+	s64 fair_key;
+	s64 sum_wait_runtime, sum_sleep_runtime;
+	unsigned long wait_runtime_overruns, wait_runtime_underruns;
+};
+
 struct task_struct {
 	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
 	struct thread_info *thread_info;
@@ -833,33 +855,15 @@ struct task_struct {
 	int oncpu;
 #endif
 #endif
-	int load_weight;	/* for niceness load balancing purposes */

 	int prio, static_prio, normal_prio;
-	int on_rq;
 	struct list_head run_list;
-	struct rb_node run_node;
+	struct sched_entity se;

Page 95 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 	unsigned short ioprio;
 #ifdef CONFIG_BLK_DEV_IO_TRACE
 	unsigned int btrace_seq;
 #endif
-	/* CFS scheduling class statistics fields: */
-	u64 wait_start_fair;
-	u64 wait_start;
-	u64 exec_start;
-	u64 sleep_start, sleep_start_fair;
-	u64 block_start;
-	u64 sleep_max;
-	u64 block_max;
-	u64 exec_max;
-	u64 wait_max;
-
-	s64 wait_runtime;
-	u64 sum_exec_runtime;
-	s64 fair_key;
-	s64 sum_wait_runtime, sum_sleep_runtime;
-	unsigned long wait_runtime_overruns, wait_runtime_underruns;

 	unsigned long policy;
 	cpumask_t cpus_allowed;
Index: linux/kernel/exit.c
===
--- linux.orig/kernel/exit.c
+++ linux/kernel/exit.c
@@ -112,7 +112,7 @@ static void __exit_signal(struct task_st
 		sig->maj_flt += tsk->maj_flt;
 		sig->nvcsw += tsk->nvcsw;
 		sig->nivcsw += tsk->nivcsw;
-		sig->sum_sched_runtime += tsk->sum_exec_runtime;
+		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
 		sig = NULL; /* Marker for below. */
 	}

Index: linux/kernel/posix-cpu-timers.c
===
--- linux.orig/kernel/posix-cpu-timers.c
+++ linux/kernel/posix-cpu-timers.c
@@ -249,7 +249,7 @@ static int cpu_clock_sample_group_locked
 		cpu->sched = p->signal->sum_sched_runtime;
 		/* Add in each other live thread. */
 		while ((t = next_thread(t)) != p) {
-			cpu->sched += t->sum_exec_runtime;
+			cpu->sched += t->se.sum_exec_runtime;
 		}

Page 96 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 		cpu->sched += sched_ns(p);
 		break;
@@ -467,7 +467,7 @@ static void cleanup_timers(struct list_h
 void posix_cpu_timers_exit(struct task_struct *tsk)
 {
 	cleanup_timers(tsk->cpu_timers,
-		 tsk->utime, tsk->stime, tsk->sum_exec_runtime);
+		 tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);

 }
 void posix_cpu_timers_exit_group(struct task_struct *tsk)
@@ -475,7 +475,7 @@ void posix_cpu_timers_exit_group(struct
 	cleanup_timers(tsk->signal->cpu_timers,
 		 cputime_add(tsk->utime, tsk->signal->utime),
 		 cputime_add(tsk->stime, tsk->signal->stime),
-		 tsk->sum_exec_runtime + tsk->signal->sum_sched_runtime);
+		 tsk->se.sum_exec_runtime + tsk->signal->sum_sched_runtime);
 }

@@ -536,7 +536,7 @@ static void process_timer_rebalance(stru
 		nsleft = max_t(unsigned long long, nsleft, 1);
 		do {
 			if (likely(!(t->flags & PF_EXITING))) {
-				ns = t->sum_exec_runtime + nsleft;
+				ns = t->se.sum_exec_runtime + nsleft;
 				if (t->it_sched_expires == 0 ||
 				 t->it_sched_expires > ns) {
 					t->it_sched_expires = ns;
@@ -1004,7 +1004,7 @@ static void check_thread_timers(struct t
 		struct cpu_timer_list *t = list_entry(timers->next,
 						 struct cpu_timer_list,
 						 entry);
-		if (!--maxfire || tsk->sum_exec_runtime < t->expires.sched) {
+		if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
 			tsk->it_sched_expires = t->expires.sched;
 			break;
 		}
@@ -1049,7 +1049,7 @@ static void check_process_timers(struct
 	do {
 		utime = cputime_add(utime, t->utime);
 		stime = cputime_add(stime, t->stime);
-		sum_sched_runtime += t->sum_exec_runtime;
+		sum_sched_runtime += t->se.sum_exec_runtime;
 		t = next_thread(t);
 	} while (t != tsk);
 	ptime = cputime_add(utime, stime);
@@ -1208,7 +1208,7 @@ static void check_process_timers(struct

Page 97 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 				t->it_virt_expires = ticks;
 			}

-			sched = t->sum_exec_runtime + sched_left;
+			sched = t->se.sum_exec_runtime + sched_left;
 			if (sched_expires && (t->it_sched_expires == 0 ||
 					 t->it_sched_expires > sched)) {
 				t->it_sched_expires = sched;
@@ -1300,7 +1300,7 @@ void run_posix_cpu_timers(struct task_st

 	if (UNEXPIRED(prof) && UNEXPIRED(virt) &&
 	 (tsk->it_sched_expires == 0 ||
-	 tsk->sum_exec_runtime < tsk->it_sched_expires))
+	 tsk->se.sum_exec_runtime < tsk->it_sched_expires))
 		return;

 #undef	UNEXPIRED
Index: linux/kernel/sched.c
===
--- linux.orig/kernel/sched.c
+++ linux/kernel/sched.c
@@ -113,6 +113,23 @@ struct prio_array {
 	struct list_head queue[MAX_RT_PRIO];
 };

+/* CFS-related fields in a runqueue */
+struct lrq {
+	unsigned long raw_weighted_load;
+	#define CPU_LOAD_IDX_MAX 5
+	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
+	unsigned long nr_load_updates;
+
+	u64 fair_clock, delta_fair_clock;
+	u64 exec_clock, delta_exec_clock;
+	s64 wait_runtime;
+	unsigned long wait_runtime_overruns, wait_runtime_underruns;
+
+	struct rb_root tasks_timeline;
+	struct rb_node *rb_leftmost;
+	struct rb_node *rb_load_balance_curr;
+};
+
 /*
 * This is the main, per-CPU runqueue data structure.
 *
@@ -128,12 +145,9 @@ struct rq {
 	 * remote CPUs use both these fields when doing load calculation.
 	 */

Page 98 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 	long nr_running;
-	unsigned long raw_weighted_load;
-	#define CPU_LOAD_IDX_MAX 5
-	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
+	struct lrq lrq;

 	u64 nr_switches;
-	unsigned long nr_load_updates;

 	/*
 	 * This is part of a global counter where only the total sum
@@ -149,10 +163,6 @@ struct rq {

 	u64 clock, prev_clock_raw;
 	s64 clock_max_delta;
-	u64 fair_clock, delta_fair_clock;
-	u64 exec_clock, delta_exec_clock;
-	s64 wait_runtime;
-	unsigned long wait_runtime_overruns, wait_runtime_underruns;

 	unsigned int clock_warps, clock_overflows;
 	unsigned int clock_unstable_events;
@@ -163,10 +173,6 @@ struct rq {
 	int rt_load_balance_idx;
 	struct list_head *rt_load_balance_head, *rt_load_balance_curr;

-	struct rb_root tasks_timeline;
-	struct rb_node *rb_leftmost;
-	struct rb_node *rb_load_balance_curr;
-
 	atomic_t nr_iowait;

 #ifdef CONFIG_SMP
@@ -543,13 +549,13 @@ const int prio_to_weight[40] = {
 static inline void
 inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
 {
-	rq->raw_weighted_load += p->load_weight;
+	rq->lrq.raw_weighted_load += p->se.load_weight;
 }

 static inline void
 dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
 {
-	rq->raw_weighted_load -= p->load_weight;
+	rq->lrq.raw_weighted_load -= p->se.load_weight;
 }

Page 99 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
@@ -575,22 +581,22 @@ static void activate_task(struct rq *rq,

 static void set_load_weight(struct task_struct *p)
 {
-	task_rq(p)->wait_runtime -= p->wait_runtime;
-	p->wait_runtime = 0;
+	task_rq(p)->lrq.wait_runtime -= p->se.wait_runtime;
+	p->se.wait_runtime = 0;

 	if (has_rt_policy(p)) {
-		p->load_weight = prio_to_weight[0] * 2;
+		p->se.load_weight = prio_to_weight[0] * 2;
 		return;
 	}
 	/*
 	 * SCHED_IDLEPRIO tasks get minimal weight:
 	 */
 	if (p->policy == SCHED_IDLEPRIO) {
-		p->load_weight = 1;
+		p->se.load_weight = 1;
 		return;
 	}

-	p->load_weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
+	p->se.load_weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
 }

 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
@@ -599,7 +605,7 @@ static void enqueue_task(struct rq *rq,

 	sched_info_queued(p);
 	p->sched_class->enqueue_task(rq, p, wakeup, now);
-	p->on_rq = 1;
+	p->se.on_rq = 1;
 }

 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
@@ -607,7 +613,7 @@ static void dequeue_task(struct rq *rq,
 	u64 now = rq_clock(rq);

 	p->sched_class->dequeue_task(rq, p, sleep, now);
-	p->on_rq = 0;
+	p->se.on_rq = 0;
 }

 /*
@@ -695,7 +701,7 @@ inline int task_curr(const struct task_s

Page 100 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 /* Used instead of source_load when we know the type == 0 */
 unsigned long weighted_cpuload(const int cpu)
 {
-	return cpu_rq(cpu)->raw_weighted_load;
+	return cpu_rq(cpu)->lrq.raw_weighted_load;
 }

 #ifdef CONFIG_SMP
@@ -712,18 +718,18 @@ void set_task_cpu(struct task_struct *p,
 	u64 clock_offset, fair_clock_offset;

 	clock_offset = old_rq->clock - new_rq->clock;
-	fair_clock_offset = old_rq->fair_clock - new_rq->fair_clock;
+	fair_clock_offset = old_rq->lrq.fair_clock - new_rq->lrq.fair_clock;

-	if (p->wait_start)
-		p->wait_start -= clock_offset;
-	if (p->wait_start_fair)
-		p->wait_start_fair -= fair_clock_offset;
-	if (p->sleep_start)
-		p->sleep_start -= clock_offset;
-	if (p->block_start)
-		p->block_start -= clock_offset;
-	if (p->sleep_start_fair)
-		p->sleep_start_fair -= fair_clock_offset;
+	if (p->se.wait_start)
+		p->se.wait_start -= clock_offset;
+	if (p->se.wait_start_fair)
+		p->se.wait_start_fair -= fair_clock_offset;
+	if (p->se.sleep_start)
+		p->se.sleep_start -= clock_offset;
+	if (p->se.block_start)
+		p->se.block_start -= clock_offset;
+	if (p->se.sleep_start_fair)
+		p->se.sleep_start_fair -= fair_clock_offset;

 	task_thread_info(p)->cpu = new_cpu;

@@ -751,7 +757,7 @@ migrate_task(struct task_struct *p, int
 	 * If the task is not on a runqueue (and not running), then
 	 * it is sufficient to simply update the task's cpu field.
 	 */
-	if (!p->on_rq && !task_running(rq, p)) {
+	if (!p->se.on_rq && !task_running(rq, p)) {
 		set_task_cpu(p, dest_cpu);
 		return 0;
 	}
@@ -782,7 +788,7 @@ void wait_task_inactive(struct task_stru

Page 101 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 repeat:
 	rq = task_rq_lock(p, &flags);
 	/* Must be off runqueue entirely, not preempted. */
-	if (unlikely(p->on_rq || task_running(rq, p))) {
+	if (unlikely(p->se.on_rq || task_running(rq, p))) {
 		/* If it's preempted, we yield. It could be a while. */
 		preempted = !task_running(rq, p);
 		task_rq_unlock(rq, &flags);
@@ -830,9 +836,9 @@ static inline unsigned long source_load(
 	struct rq *rq = cpu_rq(cpu);

 	if (type == 0)
-		return rq->raw_weighted_load;
+		return rq->lrq.raw_weighted_load;

-	return min(rq->cpu_load[type-1], rq->raw_weighted_load);
+	return min(rq->lrq.cpu_load[type-1], rq->lrq.raw_weighted_load);
 }

 /*
@@ -844,9 +850,9 @@ static inline unsigned long target_load(
 	struct rq *rq = cpu_rq(cpu);

 	if (type == 0)
-		return rq->raw_weighted_load;
+		return rq->lrq.raw_weighted_load;

-	return max(rq->cpu_load[type-1], rq->raw_weighted_load);
+	return max(rq->lrq.cpu_load[type-1], rq->lrq.raw_weighted_load);
 }

 /*
@@ -857,7 +863,7 @@ static inline unsigned long cpu_avg_load
 	struct rq *rq = cpu_rq(cpu);
 	unsigned long n = rq->nr_running;

-	return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
+	return n ? rq->lrq.raw_weighted_load / n : SCHED_LOAD_SCALE;
 }

 /*
@@ -1078,7 +1084,7 @@ static int try_to_wake_up(struct task_st
 	if (!(old_state & state))
 		goto out;

-	if (p->on_rq)
+	if (p->se.on_rq)
 		goto out_running;

Page 102 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 	cpu = task_cpu(p);
@@ -1133,11 +1139,11 @@ static int try_to_wake_up(struct task_st
 			 * of the current CPU:
 			 */
 			if (sync)
-				tl -= current->load_weight;
+				tl -= current->se.load_weight;

 			if ((tl <= load &&
 				tl + target_load(cpu, idx) <= tl_per_task) ||
-				100*(tl + p->load_weight) <= imbalance*load) {
+			 100*(tl + p->se.load_weight) <= imbalance*load) {
 				/*
 				 * This domain has SD_WAKE_AFFINE and
 				 * p is cache cold in this domain, and
@@ -1171,7 +1177,7 @@ out_set_cpu:
 		old_state = p->state;
 		if (!(old_state & state))
 			goto out;
-		if (p->on_rq)
+		if (p->se.on_rq)
 			goto out_running;

 		this_cpu = smp_processor_id();
@@ -1235,18 +1241,18 @@ static void task_running_tick(struct rq
 */
 static void __sched_fork(struct task_struct *p)
 {
-	p->wait_start_fair = p->wait_start = p->exec_start = 0;
-	p->sum_exec_runtime = 0;
+	p->se.wait_start_fair = p->se.wait_start = p->se.exec_start = 0;
+	p->se.sum_exec_runtime = 0;

-	p->wait_runtime = 0;
+	p->se.wait_runtime = 0;

-	p->sum_wait_runtime = p->sum_sleep_runtime = 0;
-	p->sleep_start = p->sleep_start_fair = p->block_start = 0;
-	p->sleep_max = p->block_max = p->exec_max = p->wait_max = 0;
-	p->wait_runtime_overruns = p->wait_runtime_underruns = 0;
+	p->se.sum_wait_runtime = p->se.sum_sleep_runtime = 0;
+	p->se.sleep_start = p->se.sleep_start_fair = p->se.block_start = 0;
+	p->se.sleep_max = p->se.block_max = p->se.exec_max = p->se.wait_max = 0;
+	p->se.wait_runtime_overruns = p->se.wait_runtime_underruns = 0;

 	INIT_LIST_HEAD(&p->run_list);
-	p->on_rq = 0;

Page 103 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+	p->se.on_rq = 0;
 	p->nr_switches = 0;

 	/*
@@ -1317,7 +1323,7 @@ void fastcall wake_up_new_task(struct ta
 	p->prio = effective_prio(p);

 	if (!sysctl_sched_child_runs_first || (clone_flags & CLONE_VM) ||
-			task_cpu(p) != this_cpu || !current->on_rq) {
+			task_cpu(p) != this_cpu || !current->se.on_rq) {
 		activate_task(rq, p, 0);
 	} else {
 		/*
@@ -1332,7 +1338,7 @@ void fastcall wake_up_new_task(struct ta

 void sched_dead(struct task_struct *p)
 {
-	WARN_ON_ONCE(p->on_rq);
+	WARN_ON_ONCE(p->se.on_rq);
 }

 /**
@@ -1542,17 +1548,17 @@ static void update_load_fair(struct rq *
 	u64 fair_delta64, exec_delta64, tmp64;
 	unsigned int i, scale;

-	this_rq->nr_load_updates++;
-	if (!(sysctl_sched_features & 64)) {
-		this_load = this_rq->raw_weighted_load;
+	this_rq->lrq.nr_load_updates++;
+	if (sysctl_sched_features & 64) {
+		this_load = this_rq->lrq.raw_weighted_load;
 		goto do_avg;
 	}

-	fair_delta64 = this_rq->delta_fair_clock + 1;
-	this_rq->delta_fair_clock = 0;
+	fair_delta64 = this_rq->lrq.delta_fair_clock + 1;
+	this_rq->lrq.delta_fair_clock = 0;

-	exec_delta64 = this_rq->delta_exec_clock + 1;
-	this_rq->delta_exec_clock = 0;
+	exec_delta64 = this_rq->lrq.delta_exec_clock + 1;
+	this_rq->lrq.delta_exec_clock = 0;

 	if (fair_delta64 > (u64)LONG_MAX)
 		fair_delta64 = (u64)LONG_MAX;
@@ -1577,10 +1583,10 @@ do_avg:

Page 104 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 		/* scale is effectively 1 << i now, and >> i divides by scale */

-		old_load = this_rq->cpu_load[i];
+		old_load = this_rq->lrq.cpu_load[i];
 		new_load = this_load;

-		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
+		this_rq->lrq.cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
 	}
 }

@@ -1836,7 +1842,8 @@ next:
 	 * skip a task if it will be the highest priority task (i.e. smallest
 	 * prio value) on its new queue regardless of its load weight
 	 */
-	skip_for_load = (p->load_weight >> 1) > rem_load_move + SCHED_LOAD_SCALE_FUZZ;
+	skip_for_load = (p->se.load_weight >> 1) > rem_load_move +
+							 SCHED_LOAD_SCALE_FUZZ;
 	if (skip_for_load && p->prio < this_best_prio)
 		skip_for_load = !best_prio_seen && p->prio == best_prio;
 	if (skip_for_load ||
@@ -1849,7 +1856,7 @@ next:

 	pull_task(busiest, p, this_rq, this_cpu);
 	pulled++;
-	rem_load_move -= p->load_weight;
+	rem_load_move -= p->se.load_weight;

 	/*
 	 * We only want to steal up to the prescribed number of tasks
@@ -1946,7 +1953,7 @@ find_busiest_group(struct sched_domain *

 			avg_load += load;
 			sum_nr_running += rq->nr_running;
-			sum_weighted_load += rq->raw_weighted_load;
+			sum_weighted_load += rq->lrq.raw_weighted_load;
 		}

 		/*
@@ -2178,11 +2185,12 @@ find_busiest_queue(struct sched_group *g

 		rq = cpu_rq(i);

-		if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
+		if (rq->nr_running == 1 &&
+				 rq->lrq.raw_weighted_load > imbalance)
 			continue;

Page 105 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-		if (rq->raw_weighted_load > max_load) {
-			max_load = rq->raw_weighted_load;
+		if (rq->lrq.raw_weighted_load > max_load) {
+			max_load = rq->lrq.raw_weighted_load;
 			busiest = rq;
 		}
 	}
@@ -2607,9 +2615,9 @@ unsigned long long task_sched_runtime(st
 	struct rq *rq;

 	rq = task_rq_lock(p, &flags);
-	ns = p->sum_exec_runtime;
+	ns = p->se.sum_exec_runtime;
 	if (rq->curr == p) {
-		delta_exec = rq_clock(rq) - p->exec_start;
+		delta_exec = rq_clock(rq) - p->se.exec_start;
 		if ((s64)delta_exec > 0)
 			ns += delta_exec;
 	}
@@ -3299,7 +3307,7 @@ void rt_mutex_setprio(struct task_struct
 	rq = task_rq_lock(p, &flags);

 	oldprio = p->prio;
-	on_rq = p->on_rq;
+	on_rq = p->se.on_rq;
 	if (on_rq)
 		dequeue_task(rq, p, 0);

@@ -3352,7 +3360,7 @@ void set_user_nice(struct task_struct *p
 		p->static_prio = NICE_TO_PRIO(nice);
 		goto out_unlock;
 	}
-	on_rq = p->on_rq;
+	on_rq = p->se.on_rq;
 	if (on_rq) {
 		dequeue_task(rq, p, 0);
 		dec_raw_weighted_load(rq, p);
@@ -3489,12 +3497,13 @@ static inline struct task_struct *find_p
 static void
 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
 {
-	BUG_ON(p->on_rq);
+	BUG_ON(p->se.on_rq);

 	p->policy = policy;
 	switch (p->policy) {
 	case SCHED_NORMAL:

Page 106 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 	case SCHED_BATCH:
+	case SCHED_ISO:
 	case SCHED_IDLEPRIO:
 		p->sched_class = &fair_sched_class;
 		break;
@@ -3534,12 +3543,12 @@ recheck:
 		policy = oldpolicy = p->policy;
 	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
 			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
-			policy != SCHED_IDLEPRIO)
+			policy != SCHED_ISO && policy != SCHED_IDLEPRIO)
 		return -EINVAL;
 	/*
 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
-	 * SCHED_BATCH and SCHED_IDLEPRIO is 0.
+	 * SCHED_BATCH, SCHED_ISO and SCHED_IDLEPRIO is 0.
 	 */
 	if (param->sched_priority < 0 ||
 	 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
@@ -3570,6 +3579,12 @@ recheck:
 			 param->sched_priority > rlim_rtprio)
 				return -EPERM;
 		}
+		/*
+		 * Like positive nice levels, dont allow tasks to
+		 * move out of SCHED_IDLEPRIO either:
+		 */
+		if (p->policy == SCHED_IDLEPRIO && policy != SCHED_IDLEPRIO)
+			return -EPERM;

 		/* can't change other user's priorities */
 		if ((current->euid != p->euid) &&
@@ -3597,7 +3612,7 @@ recheck:
 		spin_unlock_irqrestore(&p->pi_lock, flags);
 		goto recheck;
 	}
-	on_rq = p->on_rq;
+	on_rq = p->se.on_rq;
 	if (on_rq)
 		deactivate_task(rq, p, 0);
 	oldprio = p->prio;
@@ -4093,6 +4108,7 @@ asmlinkage long sys_sched_get_priority_m
 		break;
 	case SCHED_NORMAL:
 	case SCHED_BATCH:
+	case SCHED_ISO:
 	case SCHED_IDLEPRIO:

Page 107 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 		ret = 0;
 		break;
@@ -4118,6 +4134,7 @@ asmlinkage long sys_sched_get_priority_m
 		break;
 	case SCHED_NORMAL:
 	case SCHED_BATCH:
+	case SCHED_ISO:
 	case SCHED_IDLEPRIO:
 		ret = 0;
 	}
@@ -4249,7 +4266,7 @@ void __cpuinit init_idle(struct task_str
 	unsigned long flags;

 	__sched_fork(idle);
-	idle->exec_start = sched_clock();
+	idle->se.exec_start = sched_clock();

 	idle->prio = idle->normal_prio = MAX_PRIO;
 	idle->cpus_allowed = cpumask_of_cpu(cpu);
@@ -4352,7 +4369,7 @@ EXPORT_SYMBOL_GPL(set_cpus_allowed);
 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
 {
 	struct rq *rq_dest, *rq_src;
-	int ret = 0;
+	int ret = 0, on_rq;

 	if (unlikely(cpu_is_offline(dest_cpu)))
 		return ret;
@@ -4368,9 +4385,11 @@ static int __migrate_task(struct task_st
 	if (!cpu_isset(dest_cpu, p->cpus_allowed))
 		goto out;

-	set_task_cpu(p, dest_cpu);
-	if (p->on_rq) {
+	on_rq = p->se.on_rq;
+	if (on_rq)
 		deactivate_task(rq_src, p, 0);
+	set_task_cpu(p, dest_cpu);
+	if (on_rq) {
 		activate_task(rq_dest, p, 0);
 		check_preempt_curr(rq_dest, p);
 	}
@@ -5752,11 +5771,11 @@ void __init sched_init(void)
 		spin_lock_init(&rq->lock);
 		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
 		rq->nr_running = 0;
-		rq->tasks_timeline = RB_ROOT;
-		rq->clock = rq->fair_clock = 1;

Page 108 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+		rq->lrq.tasks_timeline = RB_ROOT;
+		rq->clock = rq->lrq.fair_clock = 1;

 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
-			rq->cpu_load[j] = 0;
+			rq->lrq.cpu_load[j] = 0;
 #ifdef CONFIG_SMP
 		rq->sd = NULL;
 		rq->active_balance = 0;
@@ -5836,15 +5855,15 @@ void normalize_rt_tasks(void)

 	read_lock_irq(&tasklist_lock);
 	do_each_thread(g, p) {
-		p->fair_key = 0;
-		p->wait_runtime = 0;
-		p->wait_start_fair = 0;
-		p->wait_start = 0;
-		p->exec_start = 0;
-		p->sleep_start = 0;
-		p->sleep_start_fair = 0;
-		p->block_start = 0;
-		task_rq(p)->fair_clock = 0;
+		p->se.fair_key = 0;
+		p->se.wait_runtime = 0;
+		p->se.wait_start_fair = 0;
+		p->se.wait_start = 0;
+		p->se.exec_start = 0;
+		p->se.sleep_start = 0;
+		p->se.sleep_start_fair = 0;
+		p->se.block_start = 0;
+		task_rq(p)->lrq.fair_clock = 0;
 		task_rq(p)->clock = 0;

 		if (!rt_task(p)) {
@@ -5867,7 +5886,7 @@ void normalize_rt_tasks(void)
 			goto out_unlock;
 #endif

-		on_rq = p->on_rq;
+		on_rq = p->se.on_rq;
 		if (on_rq)
 			deactivate_task(task_rq(p), p, 0);
 		__setscheduler(rq, p, SCHED_NORMAL, 0);
Index: linux/kernel/sched_debug.c
===
--- linux.orig/kernel/sched_debug.c
+++ linux/kernel/sched_debug.c
@@ -40,19 +40,19 @@ print_task(struct seq_file *m, struct rq

Page 109 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 	SEQ_printf(m, "%15s %5d %15Ld %13Ld %13Ld %9Ld %5d "
 		 "%15Ld %15Ld %15Ld %15Ld %15Ld\n",
 		p->comm, p->pid,
-		(long long)p->fair_key,
-		(long long)(p->fair_key - rq->fair_clock),
-		(long long)p->wait_runtime,
+		(long long)p->se.fair_key,
+		(long long)(p->se.fair_key - rq->lrq.fair_clock),
+		(long long)p->se.wait_runtime,
 		(long long)p->nr_switches,
 		p->prio,
-		(long long)p->sum_exec_runtime,
-		(long long)p->sum_wait_runtime,
-		(long long)p->sum_sleep_runtime,
-		(long long)p->wait_runtime_overruns,
-		(long long)p->wait_runtime_underruns);
+		(long long)p->se.sum_exec_runtime,
+		(long long)p->se.sum_wait_runtime,
+		(long long)p->se.sum_sleep_runtime,
+		(long long)p->se.wait_runtime_overruns,
+		(long long)p->se.wait_runtime_underruns);
 }

-static void print_rq(struct seq_file *m, struct rq *rq, u64 now)
+static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu, u64 now)
 {
 	struct task_struct *g, *p;

@@ -70,7 +70,7 @@ static void print_rq(struct seq_file *m,
 	read_lock_irq(&tasklist_lock);

 	do_each_thread(g, p) {
-		if (!p->on_rq)
+		if (!p->se.on_rq || task_cpu(p) != rq_cpu)
 			continue;

 		print_task(m, rq, p, now);
@@ -87,10 +87,10 @@ static void print_rq_runtime_sum(struct
 	unsigned long flags;

 	spin_lock_irqsave(&rq->lock, flags);
-	curr = first_fair(rq);
+	curr = first_fair(&rq->lrq);
 	while (curr) {
-		p = rb_entry(curr, struct task_struct, run_node);
-		wait_runtime_rq_sum += p->wait_runtime;
+		p = rb_entry(curr, struct task_struct, se.run_node);
+		wait_runtime_rq_sum += p->se.wait_runtime;

Page 110 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 		curr = rb_next(curr);
 	}
@@ -109,9 +109,9 @@ static void print_cpu(struct seq_file *m
 	SEQ_printf(m, " .%-22s: %Ld\n", #x, (long long)(rq->x))

 	P(nr_running);
-	P(raw_weighted_load);
+	P(lrq.raw_weighted_load);
 	P(nr_switches);
-	P(nr_load_updates);
+	P(lrq.nr_load_updates);
 	P(nr_uninterruptible);
 	SEQ_printf(m, " .%-22s: %lu\n", "jiffies", jiffies);
 	P(next_balance);
@@ -122,22 +122,22 @@ static void print_cpu(struct seq_file *m
 	P(clock_overflows);
 	P(clock_unstable_events);
 	P(clock_max_delta);
-	P(fair_clock);
-	P(delta_fair_clock);
-	P(exec_clock);
-	P(delta_exec_clock);
-	P(wait_runtime);
-	P(wait_runtime_overruns);
-	P(wait_runtime_underruns);
-	P(cpu_load[0]);
-	P(cpu_load[1]);
-	P(cpu_load[2]);
-	P(cpu_load[3]);
-	P(cpu_load[4]);
+	P(lrq.fair_clock);
+	P(lrq.delta_fair_clock);
+	P(lrq.exec_clock);
+	P(lrq.delta_exec_clock);
+	P(lrq.wait_runtime);
+	P(lrq.wait_runtime_overruns);
+	P(lrq.wait_runtime_underruns);
+	P(lrq.cpu_load[0]);
+	P(lrq.cpu_load[1]);
+	P(lrq.cpu_load[2]);
+	P(lrq.cpu_load[3]);
+	P(lrq.cpu_load[4]);
 #undef P
 	print_rq_runtime_sum(m, rq);

-	print_rq(m, rq, now);
+	print_rq(m, rq, cpu, now);

Page 111 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 }

 static int sched_debug_show(struct seq_file *m, void *v)
@@ -205,21 +205,21 @@ void proc_sched_show_task(struct task_st
 #define P(F) \
 	SEQ_printf(m, "%-25s:%20Ld\n", #F, (long long)p->F)

-	P(wait_start);
-	P(wait_start_fair);
-	P(exec_start);
-	P(sleep_start);
-	P(sleep_start_fair);
-	P(block_start);
-	P(sleep_max);
-	P(block_max);
-	P(exec_max);
-	P(wait_max);
-	P(wait_runtime);
-	P(wait_runtime_overruns);
-	P(wait_runtime_underruns);
-	P(sum_exec_runtime);
-	P(load_weight);
+	P(se.wait_start);
+	P(se.wait_start_fair);
+	P(se.exec_start);
+	P(se.sleep_start);
+	P(se.sleep_start_fair);
+	P(se.block_start);
+	P(se.sleep_max);
+	P(se.block_max);
+	P(se.exec_max);
+	P(se.wait_max);
+	P(se.wait_runtime);
+	P(se.wait_runtime_overruns);
+	P(se.wait_runtime_underruns);
+	P(se.sum_exec_runtime);
+	P(se.load_weight);
 	P(policy);
 	P(prio);
 #undef P
@@ -235,7 +235,7 @@ void proc_sched_show_task(struct task_st

 void proc_sched_set_task(struct task_struct *p)
 {
-	p->sleep_max = p->block_max = p->exec_max = p->wait_max = 0;
-	p->wait_runtime_overruns = p->wait_runtime_underruns = 0;
-	p->sum_exec_runtime = 0;
+	p->se.sleep_max = p->se.block_max = p->se.exec_max = p->se.wait_max = 0;

Page 112 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+	p->se.wait_runtime_overruns = p->se.wait_runtime_underruns = 0;
+	p->se.sum_exec_runtime = 0;
 }
Index: linux/kernel/sched_fair.c
===
--- linux.orig/kernel/sched_fair.c
+++ linux/kernel/sched_fair.c
@@ -38,22 +38,57 @@ unsigned int sysctl_sched_batch_wakeup_g
 */
 unsigned int sysctl_sched_runtime_limit __read_mostly;

-unsigned int sysctl_sched_features __read_mostly = 1 | 2 | 4 | 8 | 0 | 0;
+unsigned int sysctl_sched_features __read_mostly = 0 | 2 | 4 | 8 | 0 | 0;

 extern struct sched_class fair_sched_class;

+/**/
+/* BEGIN : CFS operations on generic schedulable entities */
+/**/
+
+static inline struct rq *lrq_rq(struct lrq *lrq)
+{
+	return container_of(lrq, struct rq, lrq);
+}
+
+static inline struct sched_entity *lrq_curr(struct lrq *lrq)
+{
+	struct rq *rq = lrq_rq(lrq);
+	struct sched_entity *se = NULL;
+
+	if (rq->curr->sched_class == &fair_sched_class)
+		se = &rq->curr->se;
+
+	return se;
+}
+
+static long lrq_nr_running(struct lrq *lrq)
+{
+	struct rq *rq = lrq_rq(lrq);
+
+	return rq->nr_running;
+}
+
+#define entity_is_task(se)	1
+
+static inline struct task_struct *entity_to_task(struct sched_entity *se)
+{
+	return container_of(se, struct task_struct, se);

Page 113 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+}
+
+
 /**/
 /* Scheduling class tree data structure manipulation methods:
 */

 /*
- * Enqueue a task into the rb-tree:
+ * Enqueue a entity into the rb-tree:
 */
-static inline void __enqueue_task_fair(struct rq *rq, struct task_struct *p)
+static inline void __enqueue_entity(struct lrq *lrq, struct sched_entity *p)
 {
-	struct rb_node **link = &rq->tasks_timeline.rb_node;
+	struct rb_node **link = &lrq->tasks_timeline.rb_node;
 	struct rb_node *parent = NULL;
-	struct task_struct *entry;
+	struct sched_entity *entry;
 	s64 key = p->fair_key;
 	int leftmost = 1;

@@ -62,7 +97,7 @@ static inline void __enqueue_task_fair(s
 	 */
 	while (*link) {
 		parent = *link;
-		entry = rb_entry(parent, struct task_struct, run_node);
+		entry = rb_entry(parent, struct sched_entity, run_node);
 		/*
 		 * We dont care about collisions. Nodes with
 		 * the same key stay together.
@@ -80,31 +115,31 @@ static inline void __enqueue_task_fair(s
 	 * used):
 	 */
 	if (leftmost)
-		rq->rb_leftmost = &p->run_node;
+		lrq->rb_leftmost = &p->run_node;

 	rb_link_node(&p->run_node, parent, link);
-	rb_insert_color(&p->run_node, &rq->tasks_timeline);
+	rb_insert_color(&p->run_node, &lrq->tasks_timeline);
 }

-static inline void __dequeue_task_fair(struct rq *rq, struct task_struct *p)
+static inline void __dequeue_entity(struct lrq *lrq, struct sched_entity *p)
 {
-	if (rq->rb_leftmost == &p->run_node)
-		rq->rb_leftmost = NULL;

Page 114 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-	rb_erase(&p->run_node, &rq->tasks_timeline);
+	if (lrq->rb_leftmost == &p->run_node)
+		lrq->rb_leftmost = NULL;
+	rb_erase(&p->run_node, &lrq->tasks_timeline);
 }

-static inline struct rb_node * first_fair(struct rq *rq)
+static inline struct rb_node * first_fair(struct lrq *lrq)
 {
-	if (rq->rb_leftmost)
-		return rq->rb_leftmost;
+	if (lrq->rb_leftmost)
+		return lrq->rb_leftmost;
 	/* Cache the value returned by rb_first() */
-	rq->rb_leftmost = rb_first(&rq->tasks_timeline);
-	return rq->rb_leftmost;
+	lrq->rb_leftmost = rb_first(&lrq->tasks_timeline);
+	return lrq->rb_leftmost;
 }

-static struct task_struct * __pick_next_task_fair(struct rq *rq)
+static struct sched_entity * __pick_next_entity(struct lrq *lrq)
 {
-	return rb_entry(first_fair(rq), struct task_struct, run_node);
+	return rb_entry(first_fair(lrq), struct sched_entity, run_node);
 }

 /**/
@@ -115,8 +150,8 @@ static struct task_struct * __pick_next_
 * We rescale the rescheduling granularity of tasks according to their
 * nice level, but only linearly, not exponentially:
 */
-static u64
-niced_granularity(struct task_struct *curr, unsigned long granularity)
+static s64
+niced_granularity(struct sched_entity *curr, unsigned long granularity)
 {
 	/*
 	 * Negative nice levels get the same granularity as nice-0:
@@ -130,7 +165,7 @@ niced_granularity(struct task_struct *cu
 	return curr->load_weight * (s64)(granularity / NICE_0_LOAD);
 }

-static void limit_wait_runtime(struct rq *rq, struct task_struct *p)
+static void limit_wait_runtime(struct lrq *lrq, struct sched_entity *p)
 {
 	s64 limit = sysctl_sched_runtime_limit;

Page 115 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

@@ -141,27 +176,28 @@ static void limit_wait_runtime(struct rq
 	if (p->wait_runtime > limit) {
 		p->wait_runtime = limit;
 		p->wait_runtime_overruns++;
-		rq->wait_runtime_overruns++;
+		lrq->wait_runtime_overruns++;
 	}
 	if (p->wait_runtime < -limit) {
 		p->wait_runtime = -limit;
 		p->wait_runtime_underruns++;
-		rq->wait_runtime_underruns++;
+		lrq->wait_runtime_underruns++;
 	}
 }

-static void __add_wait_runtime(struct rq *rq, struct task_struct *p, s64 delta)
+static void
+__add_wait_runtime(struct lrq *lrq, struct sched_entity *p, s64 delta)
 {
 	p->wait_runtime += delta;
 	p->sum_wait_runtime += delta;
-	limit_wait_runtime(rq, p);
+	limit_wait_runtime(lrq, p);
 }

-static void add_wait_runtime(struct rq *rq, struct task_struct *p, s64 delta)
+static void add_wait_runtime(struct lrq *lrq, struct sched_entity *p, s64 delta)
 {
-	rq->wait_runtime -= p->wait_runtime;
-	__add_wait_runtime(rq, p, delta);
-	rq->wait_runtime += p->wait_runtime;
+	lrq->wait_runtime -= p->wait_runtime;
+	__add_wait_runtime(lrq, p, delta);
+	lrq->wait_runtime += p->wait_runtime;
 }

 static s64 div64_s(s64 divident, unsigned long divisor)
@@ -183,13 +219,15 @@ static s64 div64_s(s64 divident, unsigne
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
-static inline void update_curr(struct rq *rq, u64 now)
+static inline void update_curr(struct lrq *lrq, u64 now)
 {
-	unsigned long load = rq->raw_weighted_load;
+	unsigned long load = lrq->raw_weighted_load;
 	u64 delta_exec, delta_fair, delta_mine;
-	struct task_struct *curr = rq->curr;

Page 116 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+	struct sched_entity *curr = lrq_curr(lrq);
+	struct rq *rq = lrq_rq(lrq);
+	struct task_struct *curtask = rq->curr;

-	if (curr->sched_class != &fair_sched_class || curr == rq->idle || !load)
+	if (!curr || curtask == rq->idle || !load)
 		return;
 	/*
 	 * Get the amount of time the current task was running
@@ -203,29 +241,29 @@ static inline void update_curr(struct rq

 	curr->sum_exec_runtime += delta_exec;
 	curr->exec_start = now;
-	rq->exec_clock += delta_exec;
+	lrq->exec_clock += delta_exec;

 	delta_fair = delta_exec * NICE_0_LOAD;
 	delta_fair += load >> 1; /* rounding */
 	do_div(delta_fair, load);

 	/* Load-balancing accounting. */
-	rq->delta_fair_clock += delta_fair;
-	rq->delta_exec_clock += delta_exec;
+	lrq->delta_fair_clock += delta_fair;
+	lrq->delta_exec_clock += delta_exec;

 	/*
 	 * Task already marked for preemption, do not burden
 	 * it with the cost of not having left the CPU yet:
 	 */
 	if (unlikely(sysctl_sched_features & 1))
-		if (unlikely(test_tsk_thread_flag(curr, TIF_NEED_RESCHED)))
+		if (unlikely(test_tsk_thread_flag(curtask, TIF_NEED_RESCHED)))
 			return;

 	delta_mine = delta_exec * curr->load_weight;
 	delta_mine += load >> 1; /* rounding */
 	do_div(delta_mine, load);

-	rq->fair_clock += delta_fair;
+	lrq->fair_clock += delta_fair;
 	/*
 	 * We executed delta_exec amount of time on the CPU,
 	 * but we were only entitled to delta_mine amount of
@@ -233,13 +271,13 @@ static inline void update_curr(struct rq
 	 * the two values are equal)
 	 * [Note: delta_mine - delta_exec is negative]:
 	 */

Page 117 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-	add_wait_runtime(rq, curr, delta_mine - delta_exec);
+	add_wait_runtime(lrq, curr, delta_mine - delta_exec);
 }

 static inline void
-update_stats_wait_start(struct rq *rq, struct task_struct *p, u64 now)
+update_stats_wait_start(struct lrq *lrq, struct sched_entity *p, u64 now)
 {
-	p->wait_start_fair = rq->fair_clock;
+	p->wait_start_fair = lrq->fair_clock;
 	p->wait_start = now;
 }

@@ -247,7 +285,7 @@ update_stats_wait_start(struct rq *rq, s
 * Task is being enqueued - update stats:
 */
 static inline void
-update_stats_enqueue(struct rq *rq, struct task_struct *p, u64 now)
+update_stats_enqueue(struct lrq *lrq, struct sched_entity *p, u64 now)
 {
 	s64 key;

@@ -255,12 +293,12 @@ update_stats_enqueue(struct rq *rq, stru
 	 * Are we enqueueing a waiting task? (for current tasks
 	 * a dequeue/enqueue event is a NOP)
 	 */
-	if (p != rq->curr)
-		update_stats_wait_start(rq, p, now);
+	if (p != lrq_curr(lrq))
+		update_stats_wait_start(lrq, p, now);
 	/*
 	 * Update the key:
 	 */
-	key = rq->fair_clock;
+	key = lrq->fair_clock;

 	/*
 	 * Optimize the common nice 0 case:
@@ -269,9 +307,11 @@ update_stats_enqueue(struct rq *rq, stru
 		key -= p->wait_runtime;
 	else {
 		if (p->wait_runtime < 0)
-			key -= div64_s(p->wait_runtime * NICE_0_LOAD, p->load_weight);
+			key -= div64_s(p->wait_runtime * NICE_0_LOAD,
+							 p->load_weight);
 		else
-			key -= div64_s(p->wait_runtime * p->load_weight, NICE_0_LOAD);
+			key -= div64_s(p->wait_runtime * p->load_weight,

Page 118 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+							 	NICE_0_LOAD);
 	}

 	p->fair_key = key;
@@ -281,7 +321,7 @@ update_stats_enqueue(struct rq *rq, stru
 * Note: must be called with a freshly updated rq->fair_clock.
 */
 static inline void
-update_stats_wait_end(struct rq *rq, struct task_struct *p, u64 now)
+update_stats_wait_end(struct lrq *lrq, struct sched_entity *p, u64 now)
 {
 	s64 delta_fair, delta_wait;

@@ -290,12 +330,12 @@ update_stats_wait_end(struct rq *rq, str
 		p->wait_max = delta_wait;

 	if (p->wait_start_fair) {
-		delta_fair = rq->fair_clock - p->wait_start_fair;
+		delta_fair = lrq->fair_clock - p->wait_start_fair;

 		if (unlikely(p->load_weight != NICE_0_LOAD))
 			delta_fair = div64_s(delta_fair * p->load_weight,
 								NICE_0_LOAD);
-		add_wait_runtime(rq, p, delta_fair);
+		add_wait_runtime(lrq, p, delta_fair);
 	}

 	p->wait_start_fair = 0;
@@ -303,22 +343,22 @@ update_stats_wait_end(struct rq *rq, str
 }

 static inline void
-update_stats_dequeue(struct rq *rq, struct task_struct *p, u64 now)
+update_stats_dequeue(struct lrq *lrq, struct sched_entity *p, u64 now)
 {
-	update_curr(rq, now);
+	update_curr(lrq, now);
 	/*
 	 * Mark the end of the wait period if dequeueing a
 	 * waiting task:
 	 */
-	if (p != rq->curr)
-		update_stats_wait_end(rq, p, now);
+	if (p != lrq_curr(lrq))
+		update_stats_wait_end(lrq, p, now);
 }

 /*

Page 119 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 * We are picking a new current task - update its stats:
 */
 static inline void
-update_stats_curr_start(struct rq *rq, struct task_struct *p, u64 now)
+update_stats_curr_start(struct lrq *lrq, struct sched_entity *p, u64 now)
 {
 	/*
 	 * We are starting a new run period:
@@ -330,7 +370,7 @@ update_stats_curr_start(struct rq *rq, s
 * We are descheduling a task - update its stats:
 */
 static inline void
-update_stats_curr_end(struct rq *rq, struct task_struct *p, u64 now)
+update_stats_curr_end(struct lrq *lrq, struct sched_entity *p, u64 now)
 {
 	p->exec_start = 0;
 }
@@ -345,50 +385,53 @@ update_stats_curr_end(struct rq *rq, str
 * manner we move the fair clock back by a proportional
 * amount of the new wait_runtime this task adds to the pool.
 */
-static void distribute_fair_add(struct rq *rq, s64 delta)
+static void distribute_fair_add(struct lrq *lrq, s64 delta)
 {
-	struct task_struct *curr = rq->curr;
+	struct sched_entity *curr = lrq_curr(lrq);
 	s64 delta_fair = 0;

 	if (!(sysctl_sched_features & 2))
 		return;

-	if (rq->nr_running) {
-		delta_fair = div64_s(delta, rq->nr_running);
+	if (lrq_nr_running(lrq)) {
+		delta_fair = div64_s(delta, lrq_nr_running(lrq));
 		/*
 		 * The currently running task's next wait_runtime value does
 		 * not depend on the fair_clock, so fix it up explicitly:
 		 */
-		 if (curr->sched_class == &fair_sched_class)
-			add_wait_runtime(rq, curr, -delta_fair);
+		 if (curr)
+			add_wait_runtime(lrq, curr, -delta_fair);
 	}
-	rq->fair_clock -= delta_fair;
+	lrq->fair_clock -= delta_fair;
 }

Page 120 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 /**/
 /* Scheduling class queueing methods:
 */

-static void enqueue_sleeper(struct rq *rq, struct task_struct *p)
+static void enqueue_sleeper(struct lrq *lrq, struct sched_entity *p)
 {
-	unsigned long load = rq->raw_weighted_load;
+	unsigned long load = lrq->raw_weighted_load;
 	s64 delta_fair, prev_runtime;
+	struct task_struct *tsk = entity_to_task(p);

-	if (p->policy == SCHED_BATCH || !(sysctl_sched_features & 4))
+	if ((entity_is_task(p) && tsk->policy == SCHED_BATCH) ||
+						 !(sysctl_sched_features & 4))
 		goto out;

-	delta_fair = rq->fair_clock - p->sleep_start_fair;
+	delta_fair = lrq->fair_clock - p->sleep_start_fair;

 	/*
 	 * Fix up delta_fair with the effect of us running
 	 * during the whole sleep period:
 	 */
 	if (!(sysctl_sched_features & 32))
-		delta_fair = div64_s(delta_fair * load, load + p->load_weight);
+		delta_fair = div64_s(delta_fair * load,
+						 load + p->load_weight);
 	delta_fair = div64_s(delta_fair * p->load_weight, NICE_0_LOAD);

 	prev_runtime = p->wait_runtime;
-	__add_wait_runtime(rq, p, delta_fair);
+	__add_wait_runtime(lrq, p, delta_fair);
 	delta_fair = p->wait_runtime - prev_runtime;

 	/*
@@ -396,28 +439,23 @@ static void enqueue_sleeper(struct rq *r
 	 * amount of the new wait_runtime this task adds to
 	 * the 'pool':
 	 */
-	distribute_fair_add(rq, delta_fair);
+	distribute_fair_add(lrq, delta_fair);

 out:
-	rq->wait_runtime += p->wait_runtime;
+	lrq->wait_runtime += p->wait_runtime;

 	p->sleep_start_fair = 0;

Page 121 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 }

-/*
- * The enqueue_task method is called before nr_running is
- * increased. Here we update the fair scheduling stats and
- * then put the task into the rbtree:
- */
 static void
-enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
+enqueue_entity(struct lrq *lrq, struct sched_entity *p, int wakeup, u64 now)
 {
 	u64 delta = 0;

 	/*
 	 * Update the fair clock.
 	 */
-	update_curr(rq, now);
+	update_curr(lrq, now);

 	if (wakeup) {
 		if (p->sleep_start) {
@@ -443,10 +481,152 @@ enqueue_task_fair(struct rq *rq, struct
 		p->sum_sleep_runtime += delta;

 		if (p->sleep_start_fair)
-			enqueue_sleeper(rq, p);
+			enqueue_sleeper(lrq, p);
+	}
+	update_stats_enqueue(lrq, p, now);
+	__enqueue_entity(lrq, p);
+}
+
+static void
+dequeue_entity(struct lrq *lrq, struct sched_entity *p, int sleep, u64 now)
+{
+	update_stats_dequeue(lrq, p, now);
+	if (sleep) {
+		if (entity_is_task(p)) {
+			struct task_struct *tsk = entity_to_task(p);
+
+			if (tsk->state & TASK_INTERRUPTIBLE)
+				p->sleep_start = now;
+			if (tsk->state & TASK_UNINTERRUPTIBLE)
+				p->block_start = now;
+		}
+		p->sleep_start_fair = lrq->fair_clock;
+		lrq->wait_runtime -= p->wait_runtime;
+	}

Page 122 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+	__dequeue_entity(lrq, p);
+}
+
+/*
+ * Preempt the current task with a newly woken task if needed:
+ */
+static inline void
+__check_preempt_curr_fair(struct lrq *lrq, struct sched_entity *p,
+			 struct sched_entity *curr, unsigned long granularity)
+{
+	s64 __delta = curr->fair_key - p->fair_key;
+
+	/*
+	 * Take scheduling granularity into account - do not
+	 * preempt the current task unless the best task has
+	 * a larger than sched_granularity fairness advantage:
+	 */
+	if (__delta > niced_granularity(curr, granularity))
+		resched_task(lrq_rq(lrq)->curr);
+}
+
+static struct sched_entity * pick_next_entity(struct lrq *lrq, u64 now)
+{
+	struct sched_entity *p = __pick_next_entity(lrq);
+
+	/*
+	 * Any task has to be enqueued before it get to execute on
+	 * a CPU. So account for the time it spent waiting on the
+	 * runqueue. (note, here we rely on pick_next_task() having
+	 * done a put_prev_task_fair() shortly before this, which
+	 * updated rq->fair_clock - used by update_stats_wait_end())
+	 */
+	update_stats_wait_end(lrq, p, now);
+	update_stats_curr_start(lrq, p, now);
+
+	return p;
+}
+
+static void put_prev_entity(struct lrq *lrq, struct sched_entity *prev, u64 now)
+{
+	/*
+	 * If the task is still waiting for the CPU (it just got
+	 * preempted), update its position within the tree and
+	 * start the wait period:
+	 */
+	if ((sysctl_sched_features & 16) && entity_is_task(prev)) {
+		struct task_struct *prevtask = entity_to_task(prev);
+

Page 123 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+		if (prev->on_rq &&
+			test_tsk_thread_flag(prevtask, TIF_NEED_RESCHED)) {
+
+			dequeue_entity(lrq, prev, 0, now);
+			prev->on_rq = 0;
+			enqueue_entity(lrq, prev, 0, now);
+			prev->on_rq = 1;
+		} else
+			update_curr(lrq, now);
+	} else {
+		update_curr(lrq, now);
+	}
+
+	update_stats_curr_end(lrq, prev, now);
+
+	if (prev->on_rq)
+		update_stats_wait_start(lrq, prev, now);
+}
+
+static void entity_tick(struct lrq *lrq, struct sched_entity *curr)
+{
+	struct sched_entity *next;
+	struct rq *rq = lrq_rq(lrq);
+	u64 now = __rq_clock(rq);
+
+	/*
+	 * Dequeue and enqueue the task to update its
+	 * position within the tree:
+	 */
+	dequeue_entity(lrq, curr, 0, now);
+	curr->on_rq = 0;
+	enqueue_entity(lrq, curr, 0, now);
+	curr->on_rq = 1;
+
+	/*
+	 * Reschedule if another task tops the current one.
+	 */
+	next = __pick_next_entity(lrq);
+	if (next == curr)
+		return;
+
+	if (entity_is_task(curr)) {
+		struct task_struct *curtask = entity_to_task(curr),
+				 *nexttask = entity_to_task(next);
+
+		if ((curtask == rq->idle) || (rt_prio(nexttask->prio) &&
+					(nexttask->prio < curtask->prio))) {
+			resched_task(curtask);

Page 124 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+			return;
+		}
 	}
-	update_stats_enqueue(rq, p, now);
-	__enqueue_task_fair(rq, p);
+	__check_preempt_curr_fair(lrq, next, curr, sysctl_sched_granularity);
+}
+
+
+/**/
+/* BEGIN : CFS operations on tasks */
+/**/
+
+static inline struct lrq *task_lrq(struct task_struct *p)
+{
+	return &task_rq(p)->lrq;
+}
+
+/*
+ * The enqueue_task method is called before nr_running is
+ * increased. Here we update the fair scheduling stats and
+ * then put the task into the rbtree:
+ */
+static void
+enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
+{
+	struct lrq *lrq = task_lrq(p);
+	struct sched_entity *se = &p->se;
+
+	enqueue_entity(lrq, se, wakeup, now);
 }

 /*
@@ -457,16 +637,10 @@ enqueue_task_fair(struct rq *rq, struct
 static void
 dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep, u64 now)
 {
-	update_stats_dequeue(rq, p, now);
-	if (sleep) {
-		if (p->state & TASK_INTERRUPTIBLE)
-			p->sleep_start = now;
-		if (p->state & TASK_UNINTERRUPTIBLE)
-			p->block_start = now;
-		p->sleep_start_fair = rq->fair_clock;
-		rq->wait_runtime -= p->wait_runtime;
-	}
-	__dequeue_task_fair(rq, p);
+	struct lrq *lrq = task_lrq(p);

Page 125 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+	struct sched_entity *se = &p->se;
+
+	dequeue_entity(lrq, se, sleep, now);
 }

 /*
@@ -479,16 +653,18 @@ yield_task_fair(struct rq *rq, struct ta
 {
 	struct task_struct *p_next;
 	u64 now;
+	struct lrq *lrq = task_lrq(p);
+	struct sched_entity *se = &p->se;

 	now = __rq_clock(rq);
 	/*
 	 * Dequeue and enqueue the task to update its
 	 * position within the tree:
 	 */
-	dequeue_task_fair(rq, p, 0, now);
-	p->on_rq = 0;
-	enqueue_task_fair(rq, p, 0, now);
-	p->on_rq = 1;
+	dequeue_entity(lrq, se, 0, now);
+	se->on_rq = 0;
+	enqueue_entity(lrq, se, 0, now);
+	se->on_rq = 1;

 	/*
 	 * yield-to support: if we are on the same runqueue then
@@ -496,39 +672,23 @@ yield_task_fair(struct rq *rq, struct ta
 	 */
 	if (p_to && rq == task_rq(p_to) &&
 			p_to->sched_class == &fair_sched_class
-			&& p->wait_runtime > 0) {
+			&& p->se.wait_runtime > 0) {

-		s64 delta = p->wait_runtime >> 1;
+		s64 delta = p->se.wait_runtime >> 1;

-		__add_wait_runtime(rq, p_to, delta);
-		__add_wait_runtime(rq, p, -delta);
+		__add_wait_runtime(lrq, &p_to->se, delta);
+		__add_wait_runtime(lrq, &p->se, -delta);
 	}

 	/*
 	 * Reschedule if another task tops the current one.
 	 */

Page 126 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-	p_next = __pick_next_task_fair(rq);
+	se = __pick_next_entity(lrq);
+	p_next = entity_to_task(se);
 	if (p_next != p)
 		resched_task(p);
 }

-/*
- * Preempt the current task with a newly woken task if needed:
- */
-static inline void
-__check_preempt_curr_fair(struct rq *rq, struct task_struct *p,
-			 struct task_struct *curr, unsigned long granularity)
-{
-	s64 __delta = curr->fair_key - p->fair_key;
-
-	/*
-	 * Take scheduling granularity into account - do not
-	 * preempt the current task unless the best task has
-	 * a larger than sched_granularity fairness advantage:
-	 */
-	if (__delta > niced_granularity(curr, granularity))
-		resched_task(curr);
-}

 /*
 * Preempt the current task with a newly woken task if needed:
@@ -536,12 +696,13 @@ __check_preempt_curr_fair(struct rq *rq,
 static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
 {
 	struct task_struct *curr = rq->curr;
+	struct lrq *lrq = task_lrq(curr);
 	unsigned long granularity;

 	if ((curr == rq->idle) || rt_prio(p->prio)) {
 		if (sysctl_sched_features & 8) {
 			if (rt_prio(p->prio))
-				update_curr(rq, rq_clock(rq));
+				update_curr(lrq, rq_clock(rq));
 		}
 		resched_task(curr);
 	} else {
@@ -552,25 +713,18 @@ static void check_preempt_curr_fair(stru
 		if (unlikely(p->policy == SCHED_BATCH))
 			granularity = sysctl_sched_batch_wakeup_granularity;

-		__check_preempt_curr_fair(rq, p, curr, granularity);
+		__check_preempt_curr_fair(lrq, &p->se, &curr->se, granularity);

Page 127 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 	}
 }

 static struct task_struct * pick_next_task_fair(struct rq *rq, u64 now)
 {
-	struct task_struct *p = __pick_next_task_fair(rq);
+	struct lrq *lrq = &rq->lrq;
+	struct sched_entity *se;

-	/*
-	 * Any task has to be enqueued before it get to execute on
-	 * a CPU. So account for the time it spent waiting on the
-	 * runqueue. (note, here we rely on pick_next_task() having
-	 * done a put_prev_task_fair() shortly before this, which
-	 * updated rq->fair_clock - used by update_stats_wait_end())
-	 */
-	update_stats_wait_end(rq, p, now);
-	update_stats_curr_start(rq, p, now);
+	se = pick_next_entity(lrq, now);

-	return p;
+	return entity_to_task(se);
 }

 /*
@@ -578,32 +732,13 @@ static struct task_struct * pick_next_ta
 */
 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, u64 now)
 {
+	struct lrq *lrq = task_lrq(prev);
+	struct sched_entity *se = &prev->se;
+
 	if (prev == rq->idle)
 		return;

-	/*
-	 * If the task is still waiting for the CPU (it just got
-	 * preempted), update its position within the tree and
-	 * start the wait period:
-	 */
-	if (sysctl_sched_features & 16) {
-		if (prev->on_rq &&
-			test_tsk_thread_flag(prev, TIF_NEED_RESCHED)) {
-
-			dequeue_task_fair(rq, prev, 0, now);
-			prev->on_rq = 0;
-			enqueue_task_fair(rq, prev, 0, now);
-			prev->on_rq = 1;

Page 128 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-		} else
-			update_curr(rq, now);
-	} else {
-		update_curr(rq, now);
-	}
-
-	update_stats_curr_end(rq, prev, now);
-
-	if (prev->on_rq)
-		update_stats_wait_start(rq, prev, now);
+	put_prev_entity(lrq, se, now);
 }

 /**/
@@ -625,20 +760,20 @@ __load_balance_iterator(struct rq *rq, s
 	if (!curr)
 		return NULL;

-	p = rb_entry(curr, struct task_struct, run_node);
-	rq->rb_load_balance_curr = rb_next(curr);
+	p = rb_entry(curr, struct task_struct, se.run_node);
+	rq->lrq.rb_load_balance_curr = rb_next(curr);

 	return p;
 }

 static struct task_struct * load_balance_start_fair(struct rq *rq)
 {
-	return __load_balance_iterator(rq, first_fair(rq));
+	return __load_balance_iterator(rq, first_fair(&rq->lrq));
 }

 static struct task_struct * load_balance_next_fair(struct rq *rq)
 {
-	return __load_balance_iterator(rq, rq->rb_load_balance_curr);
+	return __load_balance_iterator(rq, rq->lrq.rb_load_balance_curr);
 }

 /*
@@ -646,31 +781,10 @@ static struct task_struct * load_balance
 */
 static void task_tick_fair(struct rq *rq, struct task_struct *curr)
 {
-	struct task_struct *next;
-	u64 now = __rq_clock(rq);
-
-	/*
-	 * Dequeue and enqueue the task to update its

Page 129 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-	 * position within the tree:
-	 */
-	dequeue_task_fair(rq, curr, 0, now);
-	curr->on_rq = 0;
-	enqueue_task_fair(rq, curr, 0, now);
-	curr->on_rq = 1;
+	struct lrq *lrq = task_lrq(curr);
+	struct sched_entity *se = &curr->se;

-	/*
-	 * Reschedule if another task tops the current one.
-	 */
-	next = __pick_next_task_fair(rq);
-	if (next == curr)
-		return;
-
-	if ((curr == rq->idle) || (rt_prio(next->prio) &&
-					(next->prio < curr->prio)))
-		resched_task(curr);
-	else
-		__check_preempt_curr_fair(rq, next, curr,
-					 sysctl_sched_granularity);
+	entity_tick(lrq, se);
 }

 /*
@@ -682,29 +796,32 @@ static void task_tick_fair(struct rq *rq
 */
 static void task_new_fair(struct rq *rq, struct task_struct *p)
 {
+	struct lrq *lrq = task_lrq(p);
+	struct sched_entity *se = &p->se;
+
 	sched_info_queued(p);
-	update_stats_enqueue(rq, p, rq_clock(rq));
+	update_stats_enqueue(lrq, se, rq_clock(rq));
 	/*
 	 * Child runs first: we let it run before the parent
 	 * until it reschedules once. We set up the key so that
 	 * it will preempt the parent:
 	 */
-	p->fair_key = current->fair_key - niced_granularity(rq->curr,
+	p->se.fair_key = current->se.fair_key - niced_granularity(&rq->curr->se,
 						sysctl_sched_granularity) - 1;
 	/*
 	 * The first wait is dominated by the child-runs-first logic,
 	 * so do not credit it with that waiting time yet:
 	 */

Page 130 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-	p->wait_start_fair = 0;
+	p->se.wait_start_fair = 0;

 	/*
 	 * The statistical average of wait_runtime is about
 	 * -granularity/2, so initialize the task with that:
 	 */
-//	p->wait_runtime = -(s64)(sysctl_sched_granularity / 2);
+//	p->se.wait_runtime = -(s64)(sysctl_sched_granularity / 2);

-	__enqueue_task_fair(rq, p);
-	p->on_rq = 1;
+	__enqueue_entity(lrq, se);
+	p->se.on_rq = 1;
 	inc_nr_running(p, rq);
 }

Index: linux/kernel/sched_rt.c
===
--- linux.orig/kernel/sched_rt.c
+++ linux/kernel/sched_rt.c
@@ -15,14 +15,14 @@ static inline void update_curr_rt(struct
 	if (!has_rt_policy(curr))
 		return;

-	delta_exec = now - curr->exec_start;
+	delta_exec = now - curr->se.exec_start;
 	if (unlikely((s64)delta_exec < 0))
 		delta_exec = 0;
-	if (unlikely(delta_exec > curr->exec_max))
-		curr->exec_max = delta_exec;
+	if (unlikely(delta_exec > curr->se.exec_max))
+		curr->se.exec_max = delta_exec;

-	curr->sum_exec_runtime += delta_exec;
-	curr->exec_start = now;
+	curr->se.sum_exec_runtime += delta_exec;
+	curr->se.exec_start = now;
 }

 static void
@@ -89,7 +89,7 @@ static struct task_struct * pick_next_ta
 	queue = array->queue + idx;
 	next = list_entry(queue->next, struct task_struct, run_list);

-	next->exec_start = now;
+	next->se.exec_start = now;

Page 131 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 	return next;
 }
@@ -97,7 +97,7 @@ static struct task_struct * pick_next_ta
 static void put_prev_task_rt(struct rq *rq, struct task_struct *p, u64 now)
 {
 	update_curr_rt(rq, now);
-	p->exec_start = 0;
+	p->se.exec_start = 0;
 }

 /*

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

File Attachments
1) sched-cfs-v17-rc4.patch, downloaded 332 times

Subject: Re: [RFC][PATCH 0/6] Add group fairness to CFS - v1
Posted by Ingo Molnar on Mon, 11 Jun 2007 19:39:31 GMT
View Forum Message <> Reply to Message

* Ingo Molnar <mingo@elte.hu> wrote:

> > Patch 4 fixes some bad interaction between SCHED_RT and SCHED_NORMAL
> > tasks in current CFS.
>
> btw., the plan here is to turn off 'bit 0' in sched_features: i.e. to
> use the precise statistics to calculate lrq->cpu_load[], not the
> timer-irq-sampled imprecise statistics. [...]

i mean bit 6, value 64. I flipped around its meaning in -v17-rc4, so the
new precise stats code there is now default-enabled - making SMP
load-balancing more accurate.

	Ingo

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [ckrm-tech] [RFC][PATCH 1/6] Introduce struct sched_entity and struct
lrq

Page 132 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=getfile&id=410
https://new-forum.openvz.org/index.php?t=usrinfo&id=122
https://new-forum.openvz.org/index.php?t=rview&th=3679&goto=18883#msg_18883
https://new-forum.openvz.org/index.php?t=post&reply_to=18883
https://new-forum.openvz.org/index.php

Posted by Balbir Singh on Tue, 12 Jun 2007 02:15:59 GMT
View Forum Message <> Reply to Message

Srivatsa Vaddagiri wrote:
> This patch introduces two new structures:
>
> struct sched_entity
> stores essential attributes/execution-history used by CFS core
> to drive fairness between 'schedulable entities' (tasks, users etc)
>
> struct lrq
> runqueue used to hold ready-to-run entities
>
> These new structures are formed by grouping together existing fields in
> existing structures (task_struct and rq) and hence represents rework
> with zero functionality change.
>
> Signed-off-by : Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
[snip]

>
> +/* CFS-related fields in a runqueue */
> +struct lrq {
> +	unsigned long raw_weighted_load;
> +	#define CPU_LOAD_IDX_MAX 5
> +	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
> +	unsigned long nr_load_updates;
> +
> +	u64 fair_clock, delta_fair_clock;
> +	u64 exec_clock, delta_exec_clock;
> +	s64 wait_runtime;
> +	unsigned long wait_runtime_overruns, wait_runtime_underruns;
> +
> +	struct rb_root tasks_timeline;
> +	struct rb_node *rb_leftmost;
> +	struct rb_node *rb_load_balance_curr;
> +};
> +

Shouldn't the rq->lock move into lrq?

--
	Warm Regards,
	Balbir Singh
	Linux Technology Center
	IBM, ISTL

Containers mailing list
Containers@lists.linux-foundation.org

Page 133 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=675
https://new-forum.openvz.org/index.php?t=rview&th=3679&goto=18885#msg_18885
https://new-forum.openvz.org/index.php?t=post&reply_to=18885
https://new-forum.openvz.org/index.php

https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [ckrm-tech] [RFC][PATCH 2/6] task's cpu information needs to be
always correct
Posted by Balbir Singh on Tue, 12 Jun 2007 02:17:08 GMT
View Forum Message <> Reply to Message

Srivatsa Vaddagiri wrote:
> We rely very much on task_cpu(p) to be correct at all times, so that we
> can correctly find the runqueue from which the task has to be removed or
> added to.
>
> There is however one place in the scheduler where this assumption of
> task_cpu(p) being correct is broken. This patch fixes that piece of
> code.
>
> (Thanks to Balbir Singh for pointing this out to me)
>
> Signed-off-by : Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
>

Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>

> ---
> kernel/sched.c | 8 +++++---
> 1 files changed, 5 insertions(+), 3 deletions(-)
>
> Index: current/kernel/sched.c
> ===
> --- current.orig/kernel/sched.c	2007-06-09 15:07:17.000000000 +0530
> +++ current/kernel/sched.c	2007-06-09 15:07:32.000000000 +0530
> @@ -4624,7 +4624,7 @@
> static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
> {
> 	struct rq *rq_dest, *rq_src;
> -	int ret = 0;
> +	int ret = 0, on_rq;
>
> 	if (unlikely(cpu_is_offline(dest_cpu)))
> 		return ret;
> @@ -4640,9 +4640,11 @@
> 	if (!cpu_isset(dest_cpu, p->cpus_allowed))
> 		goto out;
>
> -	set_task_cpu(p, dest_cpu);
> -	if (p->se.on_rq) {
> +	on_rq = p->se.on_rq;

Page 134 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=675
https://new-forum.openvz.org/index.php?t=rview&th=3679&goto=18886#msg_18886
https://new-forum.openvz.org/index.php?t=post&reply_to=18886
https://new-forum.openvz.org/index.php

> +	if (on_rq)
> 		deactivate_task(rq_src, p, 0);
> +	set_task_cpu(p, dest_cpu);
> +	if (on_rq) {
> 		activate_task(rq_dest, p, 0);
> 		check_preempt_curr(rq_dest, p);
> 	}

--
	Warm Regards,
	Balbir Singh
	Linux Technology Center
	IBM, ISTL

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC][PATCH 3/6] core changes in CFS
Posted by Balbir Singh on Tue, 12 Jun 2007 02:29:22 GMT
View Forum Message <> Reply to Message

Srivatsa Vaddagiri wrote:
> +#define entity_is_task(se)	1

Could you add some comments as to what this means? Should be it boolean instead
(true)

> /*
> - * Enqueue a task into the rb-tree:
> + * Enqueue a entity into the rb-tree:

Enqueue an entity

> -static void limit_wait_runtime(struct rq *rq, struct task_struct *p)
> +static void limit_wait_runtime(struct lrq *lrq, struct sched_entity *p)

p is a general convention for tasks in the code, could we use something
different -- may be "e"?

>
> static s64 div64_s(s64 divident, unsigned long divisor)
> @@ -183,49 +219,51 @@
> * Update the current task's runtime statistics. Skip current tasks that
> * are not in our scheduling class.

Page 135 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=675
https://new-forum.openvz.org/index.php?t=rview&th=3679&goto=18887#msg_18887
https://new-forum.openvz.org/index.php?t=post&reply_to=18887
https://new-forum.openvz.org/index.php

> */
> -static inline void update_curr(struct rq *rq, u64 now)
> +static inline void update_curr(struct lrq *lrq, u64 now)
> {
> -	unsigned long load = rq->lrq.raw_weighted_load;
> +	unsigned long load = lrq->raw_weighted_load;
> 	u64 delta_exec, delta_fair, delta_mine;
> -	struct task_struct *curr = rq->curr;
> +	struct sched_entity *curr = lrq_curr(lrq);

How about curr_entity?

> +	struct rq *rq = lrq_rq(lrq);
> +	struct task_struct *curtask = rq->curr;
>
> -	if (curr->sched_class != &fair_sched_class || curr == rq->idle || !load)
> +	if (!curr || curtask == rq->idle || !load)

Can !curr ever be true? shoudn't we look into the sched_class of the task
that the entity belongs to?

--
	Warm Regards,
	Balbir Singh
	Linux Technology Center
	IBM, ISTL

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [ckrm-tech] [RFC][PATCH 1/6] Introduce struct sched_entity and struct
lrq
Posted by Srivatsa Vaddagiri on Tue, 12 Jun 2007 03:52:45 GMT
View Forum Message <> Reply to Message

On Tue, Jun 12, 2007 at 07:45:59AM +0530, Balbir Singh wrote:
> > +/* CFS-related fields in a runqueue */
> > +struct lrq {
> > +	unsigned long raw_weighted_load;
> > +	#define CPU_LOAD_IDX_MAX 5
> > +	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
> > +	unsigned long nr_load_updates;
> > +
> > +	u64 fair_clock, delta_fair_clock;
> > +	u64 exec_clock, delta_exec_clock;

Page 136 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=667
https://new-forum.openvz.org/index.php?t=rview&th=3679&goto=18889#msg_18889
https://new-forum.openvz.org/index.php?t=post&reply_to=18889
https://new-forum.openvz.org/index.php

> > +	s64 wait_runtime;
> > +	unsigned long wait_runtime_overruns, wait_runtime_underruns;
> > +
> > +	struct rb_root tasks_timeline;
> > +	struct rb_node *rb_leftmost;
> > +	struct rb_node *rb_load_balance_curr;
> > +};
> > +
>
> Shouldn't the rq->lock move into lrq?

Right now, the per-cpu rq lock protects all (local) runqueues attached with the
cpu. At some point, for scalability reasons, we may want to split that to
be per-cpu per-local runqueue (as you point out). I will put that in my todo
list of things to consider. Thanks for the review!

--
Regards,
vatsa

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC][PATCH 3/6] core changes in CFS
Posted by Srivatsa Vaddagiri on Tue, 12 Jun 2007 04:22:47 GMT
View Forum Message <> Reply to Message

On Tue, Jun 12, 2007 at 07:59:22AM +0530, Balbir Singh wrote:
> > +#define entity_is_task(se)	1
>
> Could you add some comments as to what this means?

sure. Basically this macro tests whether a given schedulable entity is
task or not. Other possible schedulable entities could be process, user,
container etc. These various entities form a hierarchy with task being
at the bottom of the hierarchy.

> Should be it boolean instead (true)

I don't have a good opinion on this. Would it make sparse friendly?

> > + * Enqueue a entity into the rb-tree:
>
> Enqueue an entity

yes

Page 137 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=667
https://new-forum.openvz.org/index.php?t=rview&th=3679&goto=18891#msg_18891
https://new-forum.openvz.org/index.php?t=post&reply_to=18891
https://new-forum.openvz.org/index.php

>
> > -static void limit_wait_runtime(struct rq *rq, struct task_struct *p)
> > +static void limit_wait_runtime(struct lrq *lrq, struct sched_entity *p)
>
> p is a general convention for tasks in the code, could we use something
> different -- may be "e"?

'se' perhaps as is used elsewhere. I avoided making that change so that
people will see less diff o/p in the patch :) I agree though a better
name is needed.

> > static s64 div64_s(s64 divident, unsigned long divisor)
> > @@ -183,49 +219,51 @@
> > * Update the current task's runtime statistics. Skip current tasks that
> > * are not in our scheduling class.
> > */
> > -static inline void update_curr(struct rq *rq, u64 now)
> > +static inline void update_curr(struct lrq *lrq, u64 now)
> > {
> > -	unsigned long load = rq->lrq.raw_weighted_load;
> > +	unsigned long load = lrq->raw_weighted_load;
> > 	u64 delta_exec, delta_fair, delta_mine;
> > -	struct task_struct *curr = rq->curr;
> > +	struct sched_entity *curr = lrq_curr(lrq);
>
> How about curr_entity?

I prefer its current name, but will consider your suggestion in next
iteration.

> > +	struct rq *rq = lrq_rq(lrq);
> > +	struct task_struct *curtask = rq->curr;
> >
> > -	if (curr->sched_class != &fair_sched_class || curr == rq->idle || !load)
> > +	if (!curr || curtask == rq->idle || !load)
>
> Can !curr ever be true? shoudn't we look into the sched_class of the task
> that the entity belongs to?

Couple of cases that we need to consider here:

CONFIG_FAIR_GROUP_SCHED disabled:

	lrq_curr() essentially returns NULL if currently running task
	doesnt belong to fair_sched_class, else it returns &rq->curr->se
	So the check for fair_sched_class is taken care in that
	function.

Page 138 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

CONFIG_FAIR_GROUP_SCHED enabled:

	lrq_curr() returns lrq->curr. I introduced ->curr field in lrq
	to optimize on not having to update lrq's fair_clock
	(update_curr upon enqueue/dequeue task) if it was not currently
	"active".

	Lets say that there are two groups 'vatsa' and 'guest'
	with their own lrqs on each cpu. If CPU0 is currently running a
	task from group 'vatsa', then lrq_vatsa->curr will point to
	the currently running task, while lrq_guest->curr will be
	NULL. While the task from 'vatsa' is running, if we were to
	enqueue/dequeue task from group 'guest', we need not
	update lrq_guest's fair_clock (as it is not active currently).
	This optimization in update_curr is made possible by maintaining
	a 'curr' field in lrq.

Hope this answers your question.

--
Regards,
vatsa

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC][PATCH 0/6] Add group fairness to CFS - v1
Posted by Srivatsa Vaddagiri on Tue, 12 Jun 2007 05:50:24 GMT
View Forum Message <> Reply to Message

On Mon, Jun 11, 2007 at 09:37:35PM +0200, Ingo Molnar wrote:
> > Patches 1-3 introduce the essential changes in CFS core to support
> > this concept. They rework existing code w/o any (intended!) change in
> > functionality.
>
> i currently have these 3 patches applied to the CFS queue and it's
> looking pretty good so far! If it continues to be problem-free i'll
> release them as part of -v17, just to check that they truly have no bad
> side-effects (they shouldnt). Then #4 can go into -v18.

ok. I am also most concerned about not upsetting current performance of
CFS when CONFIG_FAIR_GROUP_SCHED is turned off. Staging these patches in
incremental versions of CFS is a good idea to test that.

> i've attached my current -v17 tree - it should apply mostly cleanly

Page 139 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=667
https://new-forum.openvz.org/index.php?t=rview&th=3679&goto=18894#msg_18894
https://new-forum.openvz.org/index.php?t=post&reply_to=18894
https://new-forum.openvz.org/index.php

> ontop of the -mm queue (with a minor number of fixups). Could you
> refactor the remaining 3 patches ontop of this base? There's some
> rejects in the last 3 patches due to the update_load_fair() change.

sure, i will rework them on this -v17 snapshot.

> > Patch 4 fixes some bad interaction between SCHED_RT and SCHED_NORMAL
> > tasks in current CFS.
>
> btw., the plan here is to turn off 'bit 0' in sched_features: i.e. to
> use the precise statistics to calculate lrq->cpu_load[], not the
> timer-irq-sampled imprecise statistics. Dmitry has fixed a couple of
> bugs in it that made it not work too well in previous CFS versions, but
> now we are ready to turn it on for -v17. (indeed in my tree it's already
> turned on - i.e. sched_features defaults to '14')

On Mon, Jun 11, 2007 at 09:39:31PM +0200, Ingo Molnar wrote:
> i mean bit 6, value 64. I flipped around its meaning in -v17-rc4, so the
> new precise stats code there is now default-enabled - making SMP
> load-balancing more accurate.

I must be missing something here. AFAICS, cpu_load calculation still is
timer-interrupt driven in the -v17 snapshot you sent me. Besides, there
is no change in default value of bit 6 b/n v16 and v17:

-unsigned int sysctl_sched_features __read_mostly = 1 | 2 | 4 | 8 | 0 | 0;
+unsigned int sysctl_sched_features __read_mostly = 0 | 2 | 4 | 8 | 0 | 0;

So where's this precise stats based calculation of cpu_load?

Anyway, do you agree that splitting the cpu_load/nr_running fields so that:

rq->nr_running 	 	 = total count of -all- tasks in runqueue
rq->raw_weighted_load	 = total weight of -all- tasks in runqueue
rq->lrq.nr_running 	 = total count of SCHED_NORMAL/BATCH tasks in runqueue
rq->lrq.raw_weighted_load = total weight of SCHED_NORMAL/BATCH tasks in runqueue

is a good thing to avoid SCHED_RT<->SCHED_NORMAL/BATCH mixup (as accomplished
in Patch #4)?

If you don't agree, then I will make this split dependent on
CONFIG_FAIR_GROUP_SCHED

> > Patch 5 introduces basic changes in CFS core to support group
> > fairness.
> >
> > Patch 6 hooks up scheduler with container patches in mm (as an
> > interface for task-grouping functionality).

Page 140 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Just to be clear, by container patches, I am referring to "process" container
patches from Paul Menage [1]. They aren't necessarily tied to
"virtualization-related" container support in -mm tree, although I
believe that "virtualization-related" container patches will make use of the
same "process-related" container patches for their task-grouping requirements.
Phew ..we need better names!

> ok. Kirill, how do you like Srivatsa's current approach? Would be nice
> to kill two birds with the same stone, if possible :-)

One thing the current patches don't support is the notion of virtual
cpus (which Kirill and other "virtualization-related" container folks would
perhaps want). IMHO, the current patches can still be usefull for
containers to load balance between those virtual cpus (as and when it is
introduced).

> you'll get the best hackbench results by using SCHED_BATCH:
>
> chrt -b 0 ./hackbench 10

thanks for this tip. Will try out and let you know how it fares for me.

> or indeed increasing the runtime_limit would work too.

References:

1. https://lists.linux-foundation.org/pipermail/containers/2007-May/005261.html

--
Regards,
vatsa

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC][PATCH 0/6] Add group fairness to CFS - v1
Posted by Ingo Molnar on Tue, 12 Jun 2007 06:26:12 GMT
View Forum Message <> Reply to Message

* Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> wrote:

> On Mon, Jun 11, 2007 at 09:39:31PM +0200, Ingo Molnar wrote:
> > i mean bit 6, value 64. I flipped around its meaning in -v17-rc4, so the
> > new precise stats code there is now default-enabled - making SMP

Page 141 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=122
https://new-forum.openvz.org/index.php?t=rview&th=3679&goto=18888#msg_18888
https://new-forum.openvz.org/index.php?t=post&reply_to=18888
https://new-forum.openvz.org/index.php

> > load-balancing more accurate.
>
> I must be missing something here. AFAICS, cpu_load calculation still
> is timer-interrupt driven in the -v17 snapshot you sent me. Besides,
> there is no change in default value of bit 6 b/n v16 and v17:
>
> -unsigned int sysctl_sched_features __read_mostly = 1 | 2 | 4 | 8 | 0 | 0;
> +unsigned int sysctl_sched_features __read_mostly = 0 | 2 | 4 | 8 | 0 | 0;
>
> So where's this precise stats based calculation of cpu_load?

but there's a change in the interpretation of bit 6:

- if (!(sysctl_sched_features & 64)) {
- this_load = this_rq->raw_weighted_load;
+ if (sysctl_sched_features & 64) {
+ this_load = this_rq->lrq.raw_weighted_load;

the update of the cpu_load[] value is timer interrupt driven, but the
value that is sampled is not. Previously we used ->raw_weighted_load
(at whatever value it happened to be at the moment the timer irq hit the
system), now we basically use a load derived from the fair-time passed
since the last scheduler tick. (Mathematically it's close to an integral
of load done over that period) So it takes all scheduling activities and
all load values into account to calculate the average, not just the
value that was sampled by the scheduler tick.

this, besides being more precise (it for example correctly samples
short-lived, timer-interrupt-driven workloads too, which were largely
'invisible' to the previous load calculation method), also enables us to
make the scheduler tick hrtimer based in the (near) future. (in essence
making the scheduler tick-less even when there are tasks running)

> Anyway, do you agree that splitting the cpu_load/nr_running fields so
> that:
>
> rq->nr_running 	 	 = total count of -all- tasks in runqueue
> rq->raw_weighted_load	 = total weight of -all- tasks in runqueue
> rq->lrq.nr_running 	 = total count of SCHED_NORMAL/BATCH tasks in runqueue
> rq->lrq.raw_weighted_load = total weight of SCHED_NORMAL/BATCH tasks in runqueue
>
> is a good thing to avoid SCHED_RT<->SCHED_NORMAL/BATCH mixup (as
> accomplished in Patch #4)?

yes, i agree in general, even though this causes some small overhead.
This also has another advantage: the inter-policy isolation and load
balancing is similar to what fair group scheduling does, so even 'plain'
Linux will use the majority of the framework.

Page 142 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> If you don't agree, then I will make this split dependent on
> CONFIG_FAIR_GROUP_SCHED

no, i'd rather avoid that #ifdeffery.

> > > Patch 6 hooks up scheduler with container patches in mm (as an
> > > interface for task-grouping functionality).
>
> Just to be clear, by container patches, I am referring to "process"
> container patches from Paul Menage [1]. They aren't necessarily tied
> to "virtualization-related" container support in -mm tree, although I
> believe that "virtualization-related" container patches will make use
> of the same "process-related" container patches for their
> task-grouping requirements. Phew ..we need better names!

i'd still like to hear back from Kirill & co whether this framework is
flexible enough for their work (OpenVZ, etc.) too.

	Ingo

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC][PATCH 4/6] Fix (bad?) interactions between SCHED_RT and
SCHED_NORMAL tasks
Posted by Dmitry Adamushko on Tue, 12 Jun 2007 09:03:36 GMT
View Forum Message <> Reply to Message

On 11/06/07, Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> wrote:
> Currently nr_running and raw_weighted_load fields in runqueue affect
> some CFS calculations (like distribute_fair_add, enqueue_sleeper etc).

[briefly looked.. a few comments so far]

(1)

I had an idea of per-sched-class 'load balance' calculator. So that
update_load() (as in your patch) would look smth like :

...
struct sched_class *class = sched_class_highest;
unsigned long total = 0;

do {

Page 143 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1843
https://new-forum.openvz.org/index.php?t=rview&th=3679&goto=18892#msg_18892
https://new-forum.openvz.org/index.php?t=post&reply_to=18892
https://new-forum.openvz.org/index.php

 total += class->update_load(..., now);
 class = class->next;
 } while (class);
...

and e.g. update_load_fair() would become a fair_sched_class :: update_load().

That said, all the sched_classes would report a load created by their
entities (tasks) over the last sampling period. Ideally, the
calculation should not be merely based on the 'raw_weighted_load' but
rather done in a similar way to update_load_fair() as in v17.

I'll take a look at how it can be mapped on the current v17 codebase
(including your patches #1-3) and come up with some real code so we
would have a base for discussion.

(2)

> static void entity_tick(struct lrq *lrq, struct sched_entity *curr)
> {
> struct sched_entity *next;
> struct rq *rq = lrq_rq(lrq);
> u64 now = __rq_clock(rq);
>
> + /* replay load smoothening for all ticks we lost */
> + while (time_after_eq64(now, lrq->last_tick)) {
> + update_load_fair(lrq);
> + lrq->last_tick += TICK_NSEC;
> + }

I think, it won't work properly this way. The first call returns a
load for last TICK_NSEC and all the consequent ones report zero load
('this_load = 0' internally).. as a result, we will get a lower load
than it likely was.

I guess, update_load_fair() (as it's in v17) could be slightly changed
to report the load for an interval of time over which the load
statistics have been accumulated (delta_exec_time and fair_exec_time):

update_load_fair(Irq, now - Irq->last_tick)

This new (second) argument would be used instead of TICK_NSEC
(internally in update_load_fair()) ... but again, I'll come up with
some code for further discussion.

> --

Page 144 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> Regards,
> vatsa
>

--
Best regards,
Dmitry Adamushko

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC][PATCH 4/6] Fix (bad?) interactions between SCHED_RT and
SCHED_NORMAL tasks
Posted by Srivatsa Vaddagiri on Tue, 12 Jun 2007 10:26:22 GMT
View Forum Message <> Reply to Message

On Tue, Jun 12, 2007 at 11:03:36AM +0200, Dmitry Adamushko wrote:
> I had an idea of per-sched-class 'load balance' calculator. So that
> update_load() (as in your patch) would look smth like :
>
> ...
> struct sched_class *class = sched_class_highest;
> unsigned long total = 0;
>
> do {
> total += class->update_load(..., now);
> class = class->next;
> } while (class);
> ...
>
> and e.g. update_load_fair() would become a fair_sched_class ::
> update_load().
>
> That said, all the sched_classes would report a load created by their
> entities (tasks) over the last sampling period. Ideally, the
> calculation should not be merely based on the 'raw_weighted_load' but
> rather done in a similar way to update_load_fair() as in v17.

I like this idea. It neatly segregates load calculation across classes.
It effectively replaces what update_load() function I introduced in
Patch #4.

Btw what will update_load_rt() return?

> > static void entity_tick(struct lrq *lrq, struct sched_entity *curr)
> > {

Page 145 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=667
https://new-forum.openvz.org/index.php?t=rview&th=3679&goto=18899#msg_18899
https://new-forum.openvz.org/index.php?t=post&reply_to=18899
https://new-forum.openvz.org/index.php

> > struct sched_entity *next;
> > struct rq *rq = lrq_rq(lrq);
> > u64 now = __rq_clock(rq);
> >
> >+ /* replay load smoothening for all ticks we lost */
> >+ while (time_after_eq64(now, lrq->last_tick)) {
> >+ update_load_fair(lrq);
> >+ lrq->last_tick += TICK_NSEC;
> >+ }
>
> I think, it won't work properly this way. The first call returns a
> load for last TICK_NSEC and all the consequent ones report zero load
> ('this_load = 0' internally)..

mm ..

 exec_delta64 = this_lrq->delta_exec_clock + 1;
 this_lrq->delta_exec_clock = 0;

So exec_delta64 (and fair_delta64) should be min 1 in successive calls. How can that lead to
this_load = 0?

The idea behind 'replay lost ticks' is to avoid load smoothening of
-every- lrq -every- tick. Lets say that there are ten lrqs
(corresponding to ten different users). We load smoothen only the currently
active lrq (whose task is currently running). Other lrqs load get smoothened
as soon as they become active next time (thus catching up with all lost ticks).

--
Regards,
vatsa

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC][PATCH 0/6] Add group fairness to CFS - v1
Posted by Srivatsa Vaddagiri on Tue, 12 Jun 2007 10:56:37 GMT
View Forum Message <> Reply to Message

[resending ..my earlier reply doesn't seem to have made it to lkml]

On Tue, Jun 12, 2007 at 08:26:12AM +0200, Ingo Molnar wrote:
> > So where's this precise stats based calculation of cpu_load?
>
> but there's a change in the interpretation of bit 6:

Page 146 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=667
https://new-forum.openvz.org/index.php?t=rview&th=3679&goto=18900#msg_18900
https://new-forum.openvz.org/index.php?t=post&reply_to=18900
https://new-forum.openvz.org/index.php

>
> - if (!(sysctl_sched_features & 64)) {
> - this_load = this_rq->raw_weighted_load;
> + if (sysctl_sched_features & 64) {
> + this_load = this_rq->lrq.raw_weighted_load;
>
> the update of the cpu_load[] value is timer interrupt driven, but the
> _value_ that is sampled is not. [...]

Ah ..ok. Should have realized it earlier. Thanks for the education, but:

> Previously we used ->raw_weighted_load
> (at whatever value it happened to be at the moment the timer irq hit the
> system), now we basically use a load derived from the fair-time passed
> since the last scheduler tick. [...]

Isn't that biasing the overall cpu load to be dependent on SCHED_NORMAL
task load (afaics update_curr_rt doesn't update fair_clock at all)?

What if a CPU had just real-time tasks and no SCHED_NORMAL/BATCH tasks?
Would the cpu_load be seen to be very low?

[Dmitry's proposal for a per-class update_load() callback seems to be a
good thing in this regard]

> > Just to be clear, by container patches, I am referring to "process"
> > container patches from Paul Menage [1]. They aren't necessarily tied
> > to "virtualization-related" container support in -mm tree, although I
> > believe that "virtualization-related" container patches will make use
> > of the same "process-related" container patches for their
> > task-grouping requirements. Phew ..we need better names!
>
> i'd still like to hear back from Kirill & co whether this framework is
> flexible enough for their work (OpenVZ, etc.) too.

sure .. i would love to hear their feedback as well on the overall
approach of these patches, which is:

1. Using Paul Menage's process container patches as the basis of
 task-grouping functionaility. I think there is enough consensus
 on this already

(more importantly)

2. Using CFS core to achieve fairness at higher hierarchical levels
 (including at a container level). It would be nice to reuse much
 of the CFS logic which is driving fairness between tasks currently.

Page 147 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

3. Using smpnice mechanism for SMP load-balance between CPUs
 (also largely based on what is there currently in CFS). Basic idea behind
 this is described at http://lkml.org/lkml/2007/5/25/146

Kirill/Herbert/Eric?

--
Regards,
vatsa

--
Regards,
vatsa

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC][PATCH 4/6] Fix (bad?) interactions between SCHED_RT and
SCHED_NORMAL tasks
Posted by Dmitry Adamushko on Tue, 12 Jun 2007 12:23:38 GMT
View Forum Message <> Reply to Message

On 12/06/07, Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> wrote:
> On Tue, Jun 12, 2007 at 11:03:36AM +0200, Dmitry Adamushko wrote:
> > I had an idea of per-sched-class 'load balance' calculator. So that
> > update_load() (as in your patch) would look smth like :
> >
> > ...
> > struct sched_class *class = sched_class_highest;
> > unsigned long total = 0;
> >
> > do {
> > total += class->update_load(..., now);
> > class = class->next;
> > } while (class);
> > ...
> >
> > and e.g. update_load_fair() would become a fair_sched_class ::
> > update_load().
> >
> > That said, all the sched_classes would report a load created by their
> > entities (tasks) over the last sampling period. Ideally, the
> > calculation should not be merely based on the 'raw_weighted_load' but
> > rather done in a similar way to update_load_fair() as in v17.
>
> I like this idea. It neatly segregates load calculation across classes.

Page 148 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1843
https://new-forum.openvz.org/index.php?t=rview&th=3679&goto=18898#msg_18898
https://new-forum.openvz.org/index.php?t=post&reply_to=18898
https://new-forum.openvz.org/index.php

> It effectively replaces what update_load() function I introduced in
> Patch #4.

Good.

(a minor disclaimer :)
We discussed it a bit with Ingo and I don't remember who first
expressed this idea in written words (although I seem to remember, I
did have it in mind before -- it's not rocket science after all :)

>
> Btw what will update_load_rt() return?

Well, as a _temporary_ stub - just return the 'raw_weighted_load'
contributed by the RT tasks..
Ideally, we'd like a similar approach to the update_fair_load() --
i.e. we need the run-time history of rt_sched_class's (like of any
other class) tasks over the last sampling period, so e.g. we do
account periodic RT tasks which happen to escape accounting through
'raw_weghted_load' due to the fact that they are not active at the
moment of timer interrupts (when 'raw_weighted_load' snapshots are
taken).

>
> > > static void entity_tick(struct lrq *lrq, struct sched_entity *curr)
> > > {
> > > struct sched_entity *next;
> > > struct rq *rq = lrq_rq(lrq);
> > > u64 now = __rq_clock(rq);
> > >
> > >+ /* replay load smoothening for all ticks we lost */
> > >+ while (time_after_eq64(now, lrq->last_tick)) {
> > >+ update_load_fair(lrq);
> > >+ lrq->last_tick += TICK_NSEC;
> > >+ }
> >
> > I think, it won't work properly this way. The first call returns a
> > load for last TICK_NSEC and all the consequent ones report zero load
> > ('this_load = 0' internally)..
>
> mm ..
>
> exec_delta64 = this_lrq->delta_exec_clock + 1;
> this_lrq->delta_exec_clock = 0;
>
> So exec_delta64 (and fair_delta64) should be min 1 in successive calls. How can that lead to
this_load = 0?

Page 149 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

just substitute {exec,fair}_delta == 1 in the following code:

 tmp64 = SCHED_LOAD_SCALE * exec_delta64;
 do_div(tmp64, fair_delta);
 tmp64 *= exec_delta64;
 do_div(tmp64, TICK_NSEC);
 this_load = (unsigned long)tmp64;

we'd get

 tmp64 = 1024 * 1;
 tmp64 =/ 1;
 tmp64 *= 1;
 tmp64 /= 1000000;

as a result, this_load = 1024/1000000; which is 0 (no floating point calc.).

> The idea behind 'replay lost ticks' is to avoid load smoothening of
> -every- lrq -every- tick. Lets say that there are ten lrqs
> (corresponding to ten different users). We load smoothen only the currently
> active lrq (whose task is currently running).

The raw idea behind update_load_fair() is that it evaluates the
run-time history between 2 consequent calls to it (which is now at
timer freq. --- that's a sapling period). So if you call
update_fair_load() in a loop, the sampling period is actually an
interval between 2 consequent calls. IOW, you can't say "3 ticks were
lost" so at first evaluate the load for the first tick, then the
second one, etc. ...

Anyway, I'm missing the details regarding the way you are going to do
per-group 'load balancing' so refrain from further commenting so
far... it's just that the current implementation of update_load_fair()
is unlikely to work as you expect in your 'replay lost ticks' loop :-)

> Other lrqs load get smoothened
> as soon as they become active next time (thus catching up with all lost ticks).

Ok, let's say user1 tasks were highly active till T1 moment of time..
cpu_load[] of user's lrq
has accumulated this load.
now user's tasks were not active for an interval of dT.. so you don't
update its cpu_load[] in the mean time? Let's say 'load balancing'
takes place at the moment T2 = T1 + dT

Are you going to do any 'load balancing' between users? Based on what?
If it's user's lrq :: cpu_load[] .. then it _still_ shows the load at
the moment of T1 while we are at the moment T2 (and user1 was not

Page 150 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

active during dT)..

>
> --
> Regards,
> vatsa
>

--
Best regards,
Dmitry Adamushko

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC][PATCH 4/6] Fix (bad?) interactions between SCHED_RT and
SCHED_NORMAL tasks
Posted by Srivatsa Vaddagiri on Tue, 12 Jun 2007 13:30:45 GMT
View Forum Message <> Reply to Message

On Tue, Jun 12, 2007 at 02:23:38PM +0200, Dmitry Adamushko wrote:
> >mm ..
> >
> > exec_delta64 = this_lrq->delta_exec_clock + 1;
> > this_lrq->delta_exec_clock = 0;
> >
> >So exec_delta64 (and fair_delta64) should be min 1 in successive calls.
> >How can that lead to this_load = 0?
>
> just substitute {exec,fair}_delta == 1 in the following code:
>
> tmp64 = SCHED_LOAD_SCALE * exec_delta64;
> do_div(tmp64, fair_delta);
> tmp64 *= exec_delta64;
> do_div(tmp64, TICK_NSEC);
> this_load = (unsigned long)tmp64;
>
> we'd get
>
> tmp64 = 1024 * 1;
> tmp64 =/ 1;
> tmp64 *= 1;
> tmp64 /= 1000000;
>
> as a result, this_load = 1024/1000000; which is 0 (no floating point calc.).

Page 151 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=667
https://new-forum.openvz.org/index.php?t=rview&th=3679&goto=18907#msg_18907
https://new-forum.openvz.org/index.php?t=post&reply_to=18907
https://new-forum.openvz.org/index.php

Ok ..

But isn't that the same result we would have obtained anyways had we
called update_load_fair() on all lrq's on every timer tick? If a user's
lrq was inactive for several ticks, then its exec_delta will be seen as
zero for those several ticks, which means we would compute its 'this_load' to be
zero as well for those several ticks?

Basically what I want to know is, are we sacrificing any accuracy here
because of "deferring" smoothening of cpu_load for a (inactive) lrq
(apart from the inaccurate figure used during load_balance as you point
out below).

> >The idea behind 'replay lost ticks' is to avoid load smoothening of
> >-every- lrq -every- tick. Lets say that there are ten lrqs
> >(corresponding to ten different users). We load smoothen only the currently
> >active lrq (whose task is currently running).
>
> The raw idea behind update_load_fair() is that it evaluates the
> run-time history between 2 consequent calls to it (which is now at
> timer freq. --- that's a sapling period). So if you call
> update_fair_load() in a loop, the sampling period is actually an
> interval between 2 consequent calls. IOW, you can't say "3 ticks were
> lost" so at first evaluate the load for the first tick, then the
> second one, etc. ...

Assuming the lrq was inactive for all those 3 ticks and became active at
4th tick, would the end result of cpu_load (as obtained in my code) be
any different than calling update_load_fair() on all lrq on each tick?

> Anyway, I'm missing the details regarding the way you are going to do
> per-group 'load balancing' so refrain from further commenting so
> far... it's just that the current implementation of update_load_fair()
> is unlikely to work as you expect in your 'replay lost ticks' loop :-)

Even though this lost ticks loop is easily triggered with user-based lrqs,
I think the same "loop" can be seen in current CFS code (i.e say v16)
when low level timer interrupt handler replays such lost timer ticks (say we
were in a critical section for some time with timer interrupt disabled).
As an example see arch/powerpc/kernel/time.c:timer_interrupt() calling
account_process_time->scheduler_tick in a loop.

If there is any bug in 'replay lost ticks' loop in the patch I posted, then
it should already be present in current (i.e v16) implementation of
update_load_fair()?

> >Other lrqs load get smoothened

Page 152 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> >as soon as they become active next time (thus catching up with all lost
> >ticks).
>
> Ok, let's say user1 tasks were highly active till T1 moment of time..
> cpu_load[] of user's lrq
> has accumulated this load.
> now user's tasks were not active for an interval of dT.. so you don't
> update its cpu_load[] in the mean time? Let's say 'load balancing'
> takes place at the moment T2 = T1 + dT
>
> Are you going to do any 'load balancing' between users? Based on what?

Yes, patch #5 introduces group-aware load-balance. It is two-step:

First, we identify busiest group and busiest queue, based on
rq->raw_weighted_load/cpu_load (which is accumulation of weight from all
clases on a CPU). This part of the code is untouched.

Next when loadbalancing between two chosen CPUs (busiest and this cpu),
move_tasks() is iteratively called on each user/group's lrq on both cpus, with
the max_load_move argument set to 1/2 the imabalnce between that user's lrqs
on both cpus. For this lrq imbalance calculation, I was using
lrq->raw_weighted_load from both cpus, though I agree using
lrq->cpu_load is a better bet.

> If it's user's lrq :: cpu_load[] .. then it _still_ shows the load at
> the moment of T1 while we are at the moment T2 (and user1 was not
> active during dT)..

Good point. So how do we solve this? I really really want to avoid
running update_load_fair() on all lrq's every tick (it will be a massive
overhead). I am assuming that lrqs don't remain inactive for a long time
(given CFS's fairness promise!) and hence probably their cpu_load[] also
won't be -that- stale in practice?

--
Regards,
vatsa

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC][PATCH 4/6] Fix (bad?) interactions between SCHED_RT and
SCHED_NORMAL tasks

Page 153 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Posted by Dmitry Adamushko on Tue, 12 Jun 2007 14:31:38 GMT
View Forum Message <> Reply to Message

On 12/06/07, Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> wrote:
> > [...]
> >
> > just substitute {exec,fair}_delta == 1 in the following code:
> >
> > tmp64 = SCHED_LOAD_SCALE * exec_delta64;
> > do_div(tmp64, fair_delta);
> > tmp64 *= exec_delta64;
> > do_div(tmp64, TICK_NSEC);
> > this_load = (unsigned long)tmp64;
> >
> > we'd get
> >
> > tmp64 = 1024 * 1;
> > tmp64 =/ 1;
> > tmp64 *= 1;
> > tmp64 /= 1000000;
> >
> > as a result, this_load = 1024/1000000; which is 0 (no floating point calc.).
>
> Ok ..
>
> But isn't that the same result we would have obtained anyways had we
> called update_load_fair() on all lrq's on every timer tick? If a user's
> lrq was inactive for several ticks, then its exec_delta will be seen as
> zero for those several ticks, which means we would compute its 'this_load' to be
> zero as well for those several ticks?

Yeah.. seems to be so. But let's consider whether these 'inactive ticks' are
really inactive [1] :

The fact that user's tasks are not active at the moment of a timer
interrupt doesn't mean
they were not active _during_ the last tick. That's why another
approach in update_load_fair() which doesn't depend on a snapshot of
rq->raw_weighted_load
at timer tick's time. I guess, we'd lose this with 'inactive ticks',
right? ok, maybe
it's not that important for per-user cpu_load, duno at the moment.

>
> Basically what I want to know is, are we sacrificing any accuracy here
> because of "deferring" smoothening of cpu_load for a (inactive) lrq
> (apart from the inaccurate figure used during load_balance as you point
> out below).

Page 154 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1843
https://new-forum.openvz.org/index.php?t=rview&th=3679&goto=18901#msg_18901
https://new-forum.openvz.org/index.php?t=post&reply_to=18901
https://new-forum.openvz.org/index.php

At least, we are getting some inaccuracy (not in a generic case
though) due to the

 if (exec_delta64 > (u64)TICK_NSEC)
 exec_delta64 = (u64)TICK_NSEC; [*]

in update_load_fair().. and that's smth I want to try changing...

>
> Assuming the lrq was inactive for all those 3 ticks and became active at
> 4th tick, would the end result of cpu_load (as obtained in my code) be
> any different than calling update_load_fair() on all lrq on each tick?

With the current code, yes - it may be. In case, [*] condition (see
above) comes into play (and these 'inactive' ticks were not really
inactive as described above).

> Even though this lost ticks loop is easily triggered with user-based lrqs,
> I think the same "loop" can be seen in current CFS code (i.e say v16)
> when low level timer interrupt handler replays such lost timer ticks (say we
> were in a critical section for some time with timer interrupt disabled).
> As an example see arch/powerpc/kernel/time.c:timer_interrupt() calling
> account_process_time->scheduler_tick in a loop.
>
> If there is any bug in 'replay lost ticks' loop in the patch I posted, then
> it should already be present in current (i.e v16) implementation of
> update_load_fair()?

I think, you are right.

>
> Yes, patch #5 introduces group-aware load-balance. It is two-step:
>
> First, we identify busiest group and busiest queue, based on
> rq->raw_weighted_load/cpu_load (which is accumulation of weight from all
> clases on a CPU). This part of the code is untouched.

I'll take a look (e.g. I guess, we have got a notion of "user's
weght"... so does/how a user's weight contribute to his tasks weight..
otherwise, I think, the approach of determining
the busiest CPU based only on pure tasks' weight would be wrong.. will
look at it first).

> > If it's user's lrq :: cpu_load[] .. then it _still_ shows the load at
> > the moment of T1 while we are at the moment T2 (and user1 was not
> > active during dT)..

Page 155 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>
> Good point. So how do we solve this? I really really want to avoid
> running update_load_fair() on all lrq's every tick (it will be a massive
> overhead).

yeahh.. have to think about it.
btw, I recall the patch #4 adds some light but noticeable overhead,
right? did you look at where exactly the overhead comes from?

> I am assuming that lrqs don't remain inactive for a long time
> (given CFS's fairness promise!) and hence probably their cpu_load[] also
> won't be -that- stale in practice?

I guess, it's not only about CFS but about the users' behavior, which
is something
we can't control and so can't rely on it.
Say, a user was active till the moment T1 and then just gone.. - all
his tasks are really inactive.
So at the moment T2 user's Irq :: cpu_load will still express the
situation at the moment T1?
As long as user's lrq is not involved in 'load balancing', this
inaccuracy can be revealed only if the info is exported via /proc.

But say, user's task becomes finally active after _a lot_ of inactive
ticks (the user came back).. now it's in the rq and waiting for its
turn (which can be easily > 1 tick).. in the mean time 'load
balancing' is triggered.. and it considers the old lrq :: cpu_load[]
...

P.S.

just a personal impression.. I'm quite confused by this 'lrq' name...
it looks pretty similar to 'Irq' (with a big 'i') and I can't stop
reading it as 'IRQ' [chores: so stop it!]

would be smth like 'cfs_rq' or even 'sched_rq' better? :-)

> --
> Regards,
> vatsa

--
Best regards,
Dmitry Adamushko

Page 156 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC][PATCH 4/6] Fix (bad?) interactions between SCHED_RT and
SCHED_NORMAL tasks
Posted by Srivatsa Vaddagiri on Tue, 12 Jun 2007 15:43:32 GMT
View Forum Message <> Reply to Message

On Tue, Jun 12, 2007 at 04:31:38PM +0200, Dmitry Adamushko wrote:
> >But isn't that the same result we would have obtained anyways had we
> >called update_load_fair() on all lrq's on every timer tick? If a user's
> >lrq was inactive for several ticks, then its exec_delta will be seen as
> >zero for those several ticks, which means we would compute its 'this_load'
> >to be
> >zero as well for those several ticks?
>
> Yeah.. seems to be so. But let's consider whether these 'inactive ticks' are
> really inactive [1] :
>
> The fact that user's tasks are not active at the moment of a timer
> interrupt doesn't mean
> they were not active _during_ the last tick.

sure

> That's why another
> approach in update_load_fair() which doesn't depend on a snapshot of
> rq->raw_weighted_load
> at timer tick's time. I guess, we'd lose this with 'inactive ticks',
> right?

Sorry this is not clear. We'd lose what with 'inactive' ticks?

If you are referring to the delta execution time a user's lrq consumed
in the middle of a tick and whether we would lose them during subsequent
update_load(), the answer IMO is no. Becasue put_prev_task_fair() would
account for the small delta execution time when the task/lrq got
descheduled.

> ok, maybe
> it's not that important for per-user cpu_load, duno at the moment.

I would say any lossy accounting would be bad in long run. If you think
put_prev_task_fair()->update_curr() still leaves open some problem, I
would be interested in knowing that.

Page 157 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=667
https://new-forum.openvz.org/index.php?t=rview&th=3679&goto=18908#msg_18908
https://new-forum.openvz.org/index.php?t=post&reply_to=18908
https://new-forum.openvz.org/index.php

> >Basically what I want to know is, are we sacrificing any accuracy here
> >because of "deferring" smoothening of cpu_load for a (inactive) lrq
> >(apart from the inaccurate figure used during load_balance as you point
> >out below).
>
> At least, we are getting some inaccuracy (not in a generic case
> though) due to the
>
> if (exec_delta64 > (u64)TICK_NSEC)
> exec_delta64 = (u64)TICK_NSEC; [*]
>
> in update_load_fair()..

If that is a problem (and I tend to agree that it is), then it is not unique to
group lrq accounting. So we have common problems to solve :)

> and that's smth I want to try changing...

good.

> >Assuming the lrq was inactive for all those 3 ticks and became active at
> >4th tick, would the end result of cpu_load (as obtained in my code) be
> >any different than calling update_load_fair() on all lrq on each tick?
>
> With the current code, yes - it may be. In case, [*] condition (see
> above) comes into play (and these 'inactive' ticks were not really
> inactive as described above).

Yes sure, we need to fix that assumption that exec_delta64 can't be
greater than TICK_NSEC. And I assume you will fix that?

> >If there is any bug in 'replay lost ticks' loop in the patch I posted, then
> >it should already be present in current (i.e v16) implementation of
> >update_load_fair()?
>
> I think, you are right.

good :)

> >Yes, patch #5 introduces group-aware load-balance. It is two-step:
> >
> >First, we identify busiest group and busiest queue, based on
> >rq->raw_weighted_load/cpu_load (which is accumulation of weight from all
> >clases on a CPU). This part of the code is untouched.
>
> I'll take a look (e.g. I guess, we have got a notion of "user's
> weght"... so does/how a user's weight contribute to his tasks weight..

Page 158 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

A user's weight controls fraction of CPU the user's tasks as a whole receive.

A task's weight controls fraction of CPU the task will receive -within-
the fraction alloted to that user.

Strictly speaking, a task's weight need not have to depend on its user's
weight. This is true if scheduler core recognizes both user and task levels of
scheduling in the hierarchy. If the scheduler were to recognize fewer
levels of hierarchy, then we will have to take into account a user's
weight in calculation task weight. See thread anchored at
http://lkml.org/lkml/2007/5/26/81 for a description of this idea.

> otherwise, I think, the approach of determining
> the busiest CPU based only on pure tasks' weight would be wrong.. will
> look at it first).

The load considered for determining busiest group/queue is the summation
of -all- task's load on a CPU. That's why I introduced update_load() in
Patch #4 which captures load from real-time tasks as well as
SCHED_NORMAL tasks. When you are changing that update_load() function
(based on class->update_load callback), it would be nice to keep this in
mind (that I need a weight field representing summation of all tasks
weights).

> >> If it's user's lrq :: cpu_load[] .. then it _still_ shows the load at
> >> the moment of T1 while we are at the moment T2 (and user1 was not
> >> active during dT)..
> >
> >Good point. So how do we solve this? I really really want to avoid
> >running update_load_fair() on all lrq's every tick (it will be a massive
> >overhead).
>
> yeahh.. have to think about it.
> btw, I recall the patch #4 adds some light but noticeable overhead,
> right? did you look at where exactly the overhead comes from?

This probably comes from the split up raw_weighted_load/nr_running
fields. Although I don't know if the overhead is that noticeable in
practice. Let me know if you feel any difference with Patch #4 applied!

> > I am assuming that lrqs don't remain inactive for a long time
> >(given CFS's fairness promise!) and hence probably their cpu_load[] also
> >won't be -that- stale in practice?
>
> I guess, it's not only about CFS but about the users' behavior, which
> is something
> we can't control and so can't rely on it.

Page 159 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> Say, a user was active till the moment T1 and then just gone.. - all
> his tasks are really inactive.
> So at the moment T2 user's Irq :: cpu_load will still express the
> situation at the moment T1?
> As long as user's lrq is not involved in 'load balancing', this
> inaccuracy can be revealed only if the info is exported via /proc.
>
> But say, user's task becomes finally active after _a lot_ of inactive
> ticks (the user came back).. now it's in the rq and waiting for its
> turn (which can be easily > 1 tick).. in the mean time 'load
> balancing' is triggered.. and it considers the old lrq :: cpu_load[]

I still think that this 'stale' cpu_load data won't last long enough to
serious affect load balance decisions. But something I agree definitely to
watch for during tests. Thanks for the heads up on this possibility!

> P.S.
>
> just a personal impression.. I'm quite confused by this 'lrq' name...
> it looks pretty similar to 'Irq' (with a big 'i') and I can't stop
> reading it as 'IRQ' [chores: so stop it!]

:-)

> would be smth like 'cfs_rq' or even 'sched_rq' better? :-)

I chose lrq to mean local run queue. Other names I can think of are
entity_rq or ...actually cfs_rq (as you suggest) sounds better. I will
make this change unless Ingo thinks otherwise.

--
Regards,
vatsa

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC][PATCH 5/6] core changes for group fairness
Posted by Srivatsa Vaddagiri on Thu, 14 Jun 2007 12:06:05 GMT
View Forum Message <> Reply to Message

On Wed, Jun 13, 2007 at 10:56:06PM +0200, Dmitry Adamushko wrote:
> >+static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq
> >*busiest,
> >+ unsigned long max_nr_move, unsigned long
> >max_load_move,

Page 160 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=667
https://new-forum.openvz.org/index.php?t=rview&th=3679&goto=18923#msg_18923
https://new-forum.openvz.org/index.php?t=post&reply_to=18923
https://new-forum.openvz.org/index.php

> >+ struct sched_domain *sd, enum idle_type idle,
> >+ int *all_pinned, unsigned long *load_moved,
> >+ int this_best_prio, int best_prio, int
> >best_prio_seen,
> >+ void *iterator_arg,
> >+ struct task_struct *(*iterator_start)(void *arg),
> >+ struct task_struct *(*iterator_next)(void *arg));
>
> IMHO, it looks a bit frightening :)

I agree :) It is taking (ooops) 15 args (8 perhaps was the previous record
in sched.c (move_tasks)!

> maybe it would be possible to
> create a structure that combines some relevant argumens .. at least,
> the last 3 ones.

How does this look?

struct balance_tasks_args {
	struct rq *this_rq, struct rq *busiest;
	unsigned long max_nr_move, unsigned long max_load_move;
	struct sched_domain *sd, enum idle_type idle;
	int this_best_prio, best_prio, best_prio_seen;
	int *all_pinned;
	unsigned long *load_moved;
	void *iterator_arg;
	struct task_struct *(*iterator_start)(void *arg);
	struct task_struct *(*iterator_next)(void *arg));
};

static int balance_tasks(struct balance_tasks_args *arg);

[down to one argument now!]

?

I will try this in my next iteration ..

> >-static int move_tasks(struct rq *this_rq, int this_cpu, struct rq
> >*busiest,
> >+static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq
> >*busiest,
> > unsigned long max_nr_move, unsigned long
> > max_load_move,
> > struct sched_domain *sd, enum idle_type idle,
> >- int *all_pinned)

Page 161 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> >+ int *all_pinned, unsigned long *load_moved,
> >+ int this_best_prio, int best_prio, int
> >best_prio_seen,
> >+ void *iterator_arg,
> >+ struct task_struct *(*iterator_start)(void *arg),
> >+ struct task_struct *(*iterator_next)(void *arg))
>
> I think, there is a possible problem here. If I'm not complete wrong,
> this function (move_tasks() in the current mainline) can move more
> 'load' than specified by the 'max_load_move'..

Yes I think you are right. I will tackle this in next iteration.

Thanks for all your review so far!

--
Regards,
vatsa

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC][PATCH 0/6] Add group fairness to CFS - v1
Posted by dev on Fri, 15 Jun 2007 12:46:13 GMT
View Forum Message <> Reply to Message

Ingo Molnar wrote:

> i'd still like to hear back from Kirill & co whether this framework is
> flexible enough for their work (OpenVZ, etc.) too.

My IMHO is that so far the proposed group scheduler doesn't look ready/suitable.
We need to have a working SMP version before it will be clear
whether the whole approach is good and works correct on variety of load patterns.

Thanks,
Kirill

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [RFC][PATCH 0/6] Add group fairness to CFS - v1

Page 162 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=19
https://new-forum.openvz.org/index.php?t=rview&th=3679&goto=18924#msg_18924
https://new-forum.openvz.org/index.php?t=post&reply_to=18924
https://new-forum.openvz.org/index.php

Posted by Srivatsa Vaddagiri on Fri, 15 Jun 2007 14:06:45 GMT
View Forum Message <> Reply to Message

On Fri, Jun 15, 2007 at 04:46:13PM +0400, Kirill Korotaev wrote:
> Ingo Molnar wrote:
>
> > i'd still like to hear back from Kirill & co whether this framework is
> > flexible enough for their work (OpenVZ, etc.) too.
>
> My IMHO is that so far the proposed group scheduler doesn't look ready/suitable.

Hi Kirill,
	Yes its work-in-progress and hence is not ready/fully-functional
(yet). The patches I posted last gives an idea of the direction it is
heading. For ex: http://lkml.org/lkml/2007/6/11/162 and
http://lkml.org/lkml/2007/5/25/146 gives an idea of how SMP load balance will
works.

IMHO the nice thing about this approach is it (re)uses lot of code in
scheduler which is there already to achieve fairness between tasks and
higher schedulable elements (users/containers etc).

Also with CFS engine's precise nanosecond accurate accounting and time-sorted
list of tasks/entities, I feel we will get much tighter control over
distribution of CPU between tasks/users/containers.

> We need to have a working SMP version before it will be clear
> whether the whole approach is good and works correct on variety of load patterns.

If you have any headsup thoughts on areas/workloads where this may pose problems
for container/user scheduling, I would be glad to hear them. Otherwise I would
greatly wellcome any help in developing/reviewing these patches which meets
both our goals!

--
Regards,
vatsa

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 163 of 163 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=667
https://new-forum.openvz.org/index.php?t=rview&th=3679&goto=18925#msg_18925
https://new-forum.openvz.org/index.php?t=post&reply_to=18925
https://new-forum.openvz.org/index.php

