Subject: Re: [ckrm-tech] [RFC] [PATCH 0/3] Add group fairness to CFS
Posted by William Lee Irwin Il on Wed, 30 May 2007 20:13:59 GMT

View Forum Message <> Reply to Message

On Sat, May 26, 2007 at 08:41:12AM -0700, William Lee Irwin Il wrote:
>> The smpnice affair is better phrased in terms of task weighting. It's

>> simple to honor nice in such an arrangement. First unravel the

>> grouping hierarchy, then weight by nice. This looks like

[...]

>> conveniently collapse to 1). Now that the hierarchy is flattened,

>> nice numbers can be factored in for t_1's final weight being

>> 0.7*0.36/(0.7*0.36+0.3*0.24+0.7*0.24+0.3*0.16) = 0.252/0.54 = 0.467..
>> and the others being 0.133.. (t_2), 0.311.. (t_3), and 0.0889.. (t_4).

On Wed, May 30, 2007 at 10:44:05PM +0530, Srivatsa Vaddagiri wrote:

> Hmm ..so do you think this weight decomposition can be used to flatten

> the tree all the way to a single level in case of cfs? That would mean we can
> achieve group fairness with single level scheduling in cfs ..I am

> somewhat skeptical that we can achieve group fairness with a single

> level rb-tree (and w/o substantial changes to pick_next_task logic in cfs

> that is), but if it can be accomplished would definitely be a great win.

Yes, the hierarchy can be flattened completely and global task weights
computed and used to achieve group fairness. The changes aren't to
pick_next_task() but rather to the ->fair_key computations. In fact, |
went a step beyond that.

On Sat, May 26, 2007 at 08:41:12AM -0700, William Lee Irwin IIl wrote:
>> In such a manner nice numbers obey the principle of least surprise.

The step beyond was to show how nice numbers can be done with all that
hierarchical task grouping so they have global effects instead of

effects limited to the scope of the narrowest grouping hierarchy
containing the task. | had actually assumed the weighting and

flattening bits were already in your plans from some other post you

made and was building upon that.

-- Wli

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: [ckrm-tech] [RFC] [PATCH 0/3] Add group fairness to CFS

Page 1 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1339
https://new-forum.openvz.org/index.php?t=rview&th=3615&goto=18716#msg_18716
https://new-forum.openvz.org/index.php?t=post&reply_to=18716
https://new-forum.openvz.org/index.php

Posted by Srivatsa Vaddagiri on Thu, 31 May 2007 03:26:57 GMT

View Forum Message <> Reply to Message

On Wed, May 30, 2007 at 01:13:59PM -0700, William Lee Irwin Il wrote:

> On Wed, May 30, 2007 at 10:44:05PM +0530, Srivatsa Vaddagiri wrote:
> > Hmm ..so do you think this weight decomposition can be used to flatten
> > the tree all the way to a single level in case of cfs? That would mean we can
> > achieve group fairness with single level scheduling in cfs ..l am

> > somewhat skeptical that we can achieve group fairness with a single

> > |evel rb-tree (and w/o substantial changes to pick_next_task logic in cfs
> > that is), but if it can be accomplished would definitely be a great win.

>

> Yes, the hierarchy can be flattened completely and global task weights

> computed and used to achieve group fairness.

ok, lets say we are are considering a hierarchy of user->process->thread as
below:

Users ={U1, U2, U3}

where process in a user are:
Ul ={PO, P1, P2, P3, P4}
U2 = {P5, P6}

U3 ={P7}

and where threads/tasks in a process are:

PO = {TO, T1}
P1={T2}

P2 = {T3, T4, T5}
P3 = {T6}

P4 = {T8}

P5 = {T9, T10}
P6 = {T11)}

P7 ={T14, T15, T16}

If we need to achieve group fairness given single-level hierarchy,
then tasks need to be spread out in rb-tree like something below?

[t0, t1 ..tN are equally spaced points intime. t1 =t0 + K, t2=1t1 + K ..]

Viewed at the top hierarchy level (users) tasks are spread such that each user
gets "equal" execution over some interval (lets say b/n t0-t3).

Page 2 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=667
https://new-forum.openvz.org/index.php?t=rview&th=3615&goto=18724#msg_18724
https://new-forum.openvz.org/index.php?t=post&reply_to=18724
https://new-forum.openvz.org/index.php

When viewed at the next lower hierarchy level (processes), it should look like:

| UL | U2 | U3 | Ul | U2 | U3 |

| | | I | |
|PO P1 P2|P5 P6| P7 |P3 PAPO|P5 P6| P7 |

t0 t1 t2 t3t3' t4 t5 t6

[contd below ..]

| Ul | U2 | U3 | UL | U2 | U3 |

|| | | I I |
|P1 P2 P3|P5 P6| P7 |P4 PO P1P5 P6| P7 |

e e e e e e e v
t6 t7 t8 19 110 t11 t12

The available bandwidth to a user is dividided "equally" between various
processes of the user over some time (say between t0 - t3").

When viewed at the next lower hierarchy level (threads), it should look like:

| Ul | U2 | U3 | Ul | U2 | U3 |

| | I | I I |

| PO| P1|P2|P5| P6| P7 |P3|P4|PO|P5| P6| P7 |
I T I T A O

| TO| T2| T3| T9 | T11 | T14| T15 | T6| T8| T1| T10| T11 | T16| T14 |
s e et It el e It Il e

0 t1 t2t3 4 5 6

(continuting below)

| UL | U2 | U3 | Ul | U2 | U3 |
| I I I I I
| P1| P2| P3| P5| P6| P7 |P4|PO|P1/P5| P6| P7 |
1 T Y Y Y O
| T2| T4| T6| T9 | T11 | T15| T16 | T8| TO|T2 | T10| T11 | T14| T14 |
a0 R B R B e B e e I o e Rl
t6 t7 t8t9 t10 t11 t12

Available bandwidth to a process is divided "equally” between threads of
the process.

Although I have been using "equally” everywhere above, it needs to take

Page 3 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

into account relative importance of tasks/processes/users.

> The changes aren't to pick_next_task() but rather to the ->fair_key
> computations.

Thats the $$ question | guess :) What computation of ->fair_key can we use
such that task execution sequence is (from the above example):

T0, T2, T3, T9, T11, T14, T15,T6, T8, T1, T10, T11, T16, T14 ...

?

Of course, this ->fair_key computation should default to what it is
today when hierarchical res mgmt is disabled?

> In fact, | went a step beyond that.
>

>

> On Sat, May 26, 2007 at 08:41:12AM -0700, William Lee Irwin Il wrote:

> >> |n such a manner nice numbers obey the principle of least surprise.

>

> The step beyond was to show how nice humbers can be done with all that
> hierarchical task grouping so they have global effects instead of

> effects limited to the scope of the narrowest grouping hierarchy

> containing the task. | had actually assumed the weighting and

> flattening bits were already in your plans from some other post you

> made and was building upon that.

| would definitely be willing to try out any experiments you think of,
esp those that allow the hierarchy to be flattened. atm fair_key
calculation (in the context of cfs) seem to be the biggest challenge to
surmount for this to work.

Regards,
vatsa

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 4 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

