
Subject: Re: [RFC] [PATCH 0/3] Add group fairness to CFS
Posted by Ingo Molnar on Wed, 23 May 2007 18:32:52 GMT
View Forum Message <> Reply to Message

* Srivatsa Vaddagiri <vatsa@in.ibm.com> wrote:

> Here's an attempt to extend CFS (v13) to be fair at a group level,
> rather than just at task level. The patch is in a very premature state
> (passes simple tests, smp load balance not supported yet) at this
> point. I am sending it out early to know if this is a good direction
> to proceed.

cool patch! :-)

> Salient points which needs discussion:
>
> 1. This patch reuses CFS core to achieve fairness at group level also.
>
> To make this possible, CFS core has been abstracted to deal with
> generic schedulable "entities" (tasks, users etc).

yeah, i like this alot.

The "struct sched_entity" abstraction looks very clean, and that's the
main thing that matters: it allows for a design that will only cost us
performance if group scheduling is desired.

If you could do a -v14 port and at least add minimal SMP support: i.e.
it shouldnt crash on SMP, but otherwise no extra load-balancing logic is
needed for the first cut - then i could try to pick all these core
changes up for -v15. (I'll let you know about any other thoughts/details
when i do the integration.)

> 2. The per-cpu rb-tree has been split to be per-group per-cpu.
>
> schedule() now becomes two step on every cpu : pick a group first
> (from group rb-tree) and a task within that group next (from that
> group's task rb-tree)

yeah. It might even become more steps if someone wants to have a
different, deeper hierarchy (at the price of performance). Containers
will for example certainly want to use one more level.

> 3. Grouping mechanism - I have used 'uid' as the basis of grouping for
> timebeing (since that grouping concept is already in mainline
> today). The patch can be adapted to a more generic process grouping
> mechanism (like http://lkml.org/lkml/2007/4/27/146) later.

Page 1 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=122
https://new-forum.openvz.org/index.php?t=rview&th=3606&goto=18627#msg_18627
https://new-forum.openvz.org/index.php?t=post&reply_to=18627
https://new-forum.openvz.org/index.php

yeah, agreed.

> Some results below, obtained on a 4way (with HT) Intel Xeon box. All
> number are reflective of single CPU performance (tests were forced to
> run on single cpu since load balance is not yet supported).
>
>
> 			 uid "vatsa"	 uid "guest"
> 		 (make -s -j4 bzImage) (make -s -j20 bzImage)
>
> 2.6.22-rc1		 772.02 sec		497.42 sec (real)
> 2.6.22-rc1+cfs-v13 	 780.62 sec		478.35 sec (real)
> 2.6.22-rc1+cfs-v13+this patch 776.36 sec		776.68 sec (real)
>
> [An exclusive cpuset containing only one CPU was created and the
> compilation jobs of both users were run simultaneously in this cpuset
>]

looks really promising!

> I also disabled CONFIG_FAIR_USER_SCHED and compared the results with
> cfs-v13:
>
> 					uid "vatsa"
> 					make -s -j4 bzImage
>
> 2.6.22-rc1+cfs-v13			395.57 sec (real)
> 2.6.22-rc1+cfs-v13+this_patch		388.54 sec (real)
>
> There is no regression I can see (rather some improvement, which I
> can't understand atm). I will run more tests later to check this
> regression aspect.

kernel builds dont really push scheduling micro-costs, rather try
something like 'hackbench.c' to measure that. (kernel builds are of
course one of our primary benchmarks.)

> Request your comments on the future direction to proceed!

full steam ahead please! =B-)

	Ingo

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 2 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Subject: Re: [RFC] [PATCH 0/3] Add group fairness to CFS
Posted by Srivatsa Vaddagiri on Fri, 25 May 2007 07:59:36 GMT
View Forum Message <> Reply to Message

On Wed, May 23, 2007 at 08:32:52PM +0200, Ingo Molnar wrote:
> > Here's an attempt to extend CFS (v13) to be fair at a group level,
> > rather than just at task level. The patch is in a very premature state
> > (passes simple tests, smp load balance not supported yet) at this
> > point. I am sending it out early to know if this is a good direction
> > to proceed.
>
> cool patch! :-)

Thanks!

> > 1. This patch reuses CFS core to achieve fairness at group level also.
> >
> > To make this possible, CFS core has been abstracted to deal with
> > generic schedulable "entities" (tasks, users etc).
>
> yeah, i like this alot.
>
> The "struct sched_entity" abstraction looks very clean, and that's the
> main thing that matters: it allows for a design that will only cost us
> performance if group scheduling is desired.
>
> If you could do a -v14 port and at least add minimal SMP support: i.e.
> it shouldnt crash on SMP, but otherwise no extra load-balancing logic is
> needed for the first cut - then i could try to pick all these core
> changes up for -v15. (I'll let you know about any other thoughts/details
> when i do the integration.)

Sure ..I will work on a -v14 port. I would like to target for something which:

1. doesn't break performance/functionality of existing CFS scheduler
 -if- CONFIG_FAIR_USER_SCHEDULER is disabled. This also means load
 balance should work as it works today when the config option is
 disabled.

 Do you recommend a set of tests that I need to run to ensure there
 is no regression? I know that there is a bunch of scheduler
 tests floating around on lkml ..Just need to dig to them (or if
 someone has all these tests handy on a website, I will download from
 that site!)

2. Provides fairness at group (user) level at the cost of missing load
 balance functionaility (missing until I get around to work on it that
 is).

Page 3 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=667
https://new-forum.openvz.org/index.php?t=rview&th=3606&goto=18673#msg_18673
https://new-forum.openvz.org/index.php?t=post&reply_to=18673
https://new-forum.openvz.org/index.php

> kernel builds dont really push scheduling micro-costs, rather try
> something like 'hackbench.c' to measure that. (kernel builds are of
> course one of our primary benchmarks.)

sure i will try that on my next version.

--
Regards,
vatsa

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 4 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

