Subject: Re: How to query mount propagation state?
Posted by Ram Pai on Mon, 16 Apr 2007 17:39:46 GMT

View Forum Message <> Reply to Message

On Mon, 2007-04-16 at 12:34 +0200, Miklos Szeredi wrote:

> Currently one of the difficulties with mount propagations is that
> there's no way to know the current state of the propagation tree.
>

> Has anyone thought about how this info could be queried from
> userspace?

| am attaching two patches that | had done way back in Oct 2006
with Al Viro. | had sent these patches to Al Viro. But | forgot to
follow them up, | guess so did Al Viro.

The first patch disambiguates multiple mount-instances of the same
filesystem (or part of the same filesystem), by introducing a new
interface /proc/mounts_new.

The second patch introduces a new proc interface that exposes all the
propagation trees within a namespace. It does not show propagated
mounts residing in a different namespace (for privacy reasons). Maybe
one could modify the patch a little, to allow it; if the user has

root priviledges.

RP

PS: Sorry these are attachments instead of inline patches. | am scared
of inlining in evolution. If needed | can send inline patches through
mutt.

>
> Thanks,
> Miklos

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

File Attachnents

1) nounts. patch, downl oaded 260 tines
2) propagation. patch, downl oaded 288 ti nes

Subject: Re: How to query mount propagation state?
Posted by serue on Mon, 16 Apr 2007 19:16:00 GMT

Page 1 of 23 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1364
https://new-forum.openvz.org/index.php?t=rview&th=3571&goto=18234#msg_18234
https://new-forum.openvz.org/index.php?t=post&reply_to=18234
https://new-forum.openvz.org/index.php?t=getfile&id=408
https://new-forum.openvz.org/index.php?t=getfile&id=409
https://new-forum.openvz.org/index.php?t=usrinfo&id=204
https://new-forum.openvz.org/index.php

View Forum Message <> Reply to Message

Quoting Ram Pai (linuxram@us.ibm.com):

> On Mon, 2007-04-16 at 12:34 +0200, Miklos Szeredi wrote:

> > Currently one of the difficulties with mount propagations is that

> > there's no way to know the current state of the propagation tree.

> >

> > Has anyone thought about how this info could be queried from

> > userspace?

>

> | am attaching two patches that | had done way back in Oct 2006

> with Al Viro. | had sent these patches to Al Viro. But | forgot to

> follow them up, | guess so did Al Viro.

>

> The first patch disambiguates multiple mount-instances of the same

> filesystem (or part of the same filesystem), by introducing a new

> interface /proc/mounts_new.

>

> The second patch introduces a new proc interface that exposes all the
> propagation trees within a namespace. It does not show propagated
> mounts residing in a different namespace (for privacy reasons). Maybe
> one could modify the patch a little, to allow it; if the user has

> root priviledges.

>

>RP

>

> PS: Sorry these are attachments instead of inline patches. | am scared
> of inlining in evolution. If needed | can send inline patches through

> multt.

>

> >
> > Thanks,
> > Miklos

> This patch disambiguates multiple mount-instances of the same
> filesystem (or part of the same filesystem), by introducing a new
> interface /proc/mounts_new. The interface has the following format.

> NOTE: root-dentry is the path to the dentry w.r.t to the root dentry of the
> same filesystem.

>

> for example: lets say we attempt the following commands

> mount --bind /var /mnt

> mount --bind /mnt/tmp /tmpl
>

Page 2 of 23 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=rview&th=3571&goto=18251#msg_18251
https://new-forum.openvz.org/index.php?t=post&reply_to=18251
https://new-forum.openvz.org/index.php

> 'cat /proc/mounts' shows the following:

> /dev/root /mnt ext2 rw 0 O

> /dev/root /tmpl ext2 rw 0 0

>

> NOTE: The above mount entries, do not indicate that /tmpl1 contains the same
> directory tree as /var/tmp.

>

> But 'cat /proc/mounts_new' shows us the following:

> 0x6200 /mnt /var ext2 rw 0 O

> 0x6200 /tmp1 /vartmp ext2 rw 0 O

>

> The above entries clearly indicates that /var/tmp directory of the ext2

> filesystem with fsid=0x6200 is the directory tree that resides under /tmp1l
>

> Signed-off-by: Ram Pai <linuxram@us.ibm.com>

>
R

> fs/dcache.c | 53 ++++++++++++++t+Ht b+

> fs/namespace.c | 35 ++++++++Htttt bttt

> fs/proc/base.c | 32 +++++++++++Httttt-

> fs/proc/proc_misc.c | 1

> fs/seq_file.c | 77 +++++++++H+ e
> include/linux/dcache.h | 1

> include/linux/seq_file.h| 1

> 7 files changed, 172 insertions(+), 28 deletions(-)

>

> Index: linux-2.6.17.10/fs/proc/base.c

> --- linux-2.6.17.10.orig/fs/proc/base.c

> +++ linux-2.6.17.10/fs/proc/base.c

> @@ -104,6 +104,7 @@ enum pid_directory_inos {

> PROC_TGID_MAPS,

> PROC_TGID_NUMA_MAPS,

> PROC_TGID_MOUNTS,

>+ PROC_TGID_MOUNTS_NEW,

> PROC_TGID_MOUNTSTATS,

> PROC_TGID_WCHAN,

> #ifdef CONFIG_MMU

> @@ -145,6 +146,7 @@ enum pid_directory_inos {

> PROC_TID_MAPS,

> PROC_TID_NUMA_MAPS,

> PROC_TID_MOUNTS,

>+ PROC_TID_MOUNTS_NEW,

> PROC_TID_MOUNTSTATS,

> PROC_TID_WCHAN,

> tifdef CONFIG_MMU

> @@ -203,6 +205,7 @@ static struct pid_entry tgid_base_stuff]
> E(PROC_TGID ROOT, ‘'root", S_IFLNK|S_IRWXUGO),

Page 3 of 23 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> E(PROC_TGID_EXE, "exe", S_IFLNK|S_IRWXUGO),

> E(PROC_TGID_MOUNTS, "mounts", S_IFREG|S_IRUGO),

>+ E(PROC_TGID_MOUNTS_NEW,"mounts_new", S_IFREG|S_IRUGO),
> E(PROC_TGID_MOUNTSTATS, "mountstats”, S_IFREG|S_IRUSR),

> #ifdef CONFIG_MMU

> E(PROC_TGID_SMAPS, "smaps", S_IFREG|S_IRUGO),

> @@ -246,6 +249,7 @@ static struct pid_entry tid_base_stuff[]

> E(PROC_TID_ROOT, ‘"root", S_IFLNK|S_IRWXUGO),

> E(PROC_TID_EXE, "exe", S_IFLNK|S_IRWXUGO),

> E(PROC_TID_MOUNTS, "mounts", S_IFREG|S_IRUGO),

>+ E(PROC_TID_MOUNTS_NEW, "mounts_new", S_IFREG|S_IRUGO),
> #ifdef CONFIG_MMU

> E(PROC_TID_SMAPS, ‘"smaps", S _IFREG|S_IRUGO),

> #endif

> @@ -692,13 +696,13 @@ static struct file_operations proc_smaps

h
#endif

-extern struct seq_operations mounts_op;
struct proc_mounts {

struct seq_file m;
int event;

J§

VVVVYVYVYVYV

>

> -static int mounts_open(struct inode *inode, struct file *file)

> +static int __mounts_open(struct inode *inode, struct file *file,
>+ struct seq_operations *mounts_op)

> {

> struct task_struct *task = proc_task(inode);

> struct namespace *namespace;

> @@ -716,7 +720,7 @@ static int mounts_open(struct inode *ino
> p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);

> if (p){

> file->private_data = &p->m;

> - ret = seq_open(file, &mounts_op);

>+ ret = seq_open(file, mounts_op);

> if (Iret) {

> p->m.private = namespace,

> p->event = namespace->event;

>@@ -729,6 +733,16 @@ static int mounts_open(struct inode *ino
> return ret;

> }

>

> +extern struct seq_operations mounts_op, mounts_new_op;
> +static int mounts_open(struct inode *inode, struct file *file)

> +{

> + return (__mounts_open(inode, file, &mounts_op));

> +}

Page 4 of 23 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> +static int mounts_new_open(struct inode *inode, struct file *file)
> +{

>+ return __mounts_open(inode, file, &mounts_new_op);

> +}

>+

> static int mounts_release(struct inode *inode, struct file *file)
>{

> struct seq_file *m = file->private_data;

> @@ -763,6 +777,14 @@ static struct file_operations proc_mount
> .poll = mounts_poll,

>}

>

> +static struct file_operations proc_mounts_new_operations = {
>+ .0pen = mounts_new_open,

>+ read =seq_read,

> + llseek = seq_Iseek,

> + release = mounts_release,

>+ .poll = mounts_poll,

> +};

>+

> extern struct seq_operations mountstats_op;

> static int mountstats_open(struct inode *inode, struct file *file)
>

>@@ -1799,6 +1821,10 @@ static struct dentry *proc_pident_lookup
> case PROC_TGID_MOUNTS:

> inode->i_fop = &proc_mounts_operations;

> Dbreak;

>+ case PROC_TID_MOUNTS_NEW:

>+ case PROC_TGID_MOUNTS_NEW:

>+ inode->i_fop = &proc_mounts_new_operations;

>+ break;

> #ifdef CONFIG_MMU

> case PROC _TID_SMAPS:

> case PROC_TGID_SMAPS:

> Index: linux-2.6.17.10/fs/dcache.c

> --- linux-2.6.17.10.orig/fs/dcache.c

> +++ linux-2.6.17.10/fs/dcache.c

> @@ -1477,6 +1477,59 @@ char * d_path(struct dentry *dentry, str
> returnres;

> }

>

> +static inline int prepend(char **buffer, int *buflen, const char *str,
>+ int namelen)

> +{

> + if ((*buflen -= namelen) < 0)

>+ return 1;

> + *puffer -= namelen;

Page 5 of 23 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> + memcpy(*buffer, str, namelen);

> + return O;

> +}

>+

> +[*

> + * write full pathname into buffer and return start of pathname.
>+ * |f @vfsmnt is not specified return the path relative to the
> + * jts filesystem's root.

>+ %/

> +char * dentry_path(struct dentry *dentry, char *buf, int buflen)
> +{

> + char * end = buf+buflen;

> + char * retval;

>+

> + spin_lock(&dcache_lock);

> + prepend(&end, &buflen, "\0", 1);

> + if (IIS_ROOT(dentry) && d_unhashed(dentry)) {

> + if (prepend(&end, &buflen, "//deleted”, 10))

>+ goto Elong;

>+}

>+ [* Get /' right */

> + retval = end-1;

> + *retval = '/,

>+

>+ for (;;) {

>+ struct dentry * parent;

>+ if (IS_ROOT(dentry))

>+ break;

>+

>+ parent = dentry->d_parent;

>+ prefetch(parent);

>+

> + if (prepend(&end, &buflen, dentry->d_name.name,
>+ dentry->d_name.len) ||

>+ prepend(&end, &buflen, "/*, 1))
>+ goto Elong;
>+

>+ retval = end;

>+ dentry = parent;

>+}

> + spin_unlock(&dcache_lock);
> + return retval;

> +Elong:

> + spin_unlock(&dcache_lock);
> + return ERR_PTR(-ENAMETOOLONG);
> +}

>+

> [*

Page 6 of 23 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> * NOTE! The user-level library version returns a
> * character pointer. The kernel system call just
> Index: linux-2.6.17.10/fs/seq_file.c

> --- [inux-2.6.17.10.orig/fs/seq_file.c
> +++ linux-2.6.17.10/fs/seq_file.c
> @@ -338,38 +338,75 @@ int seq_printf(struct seq_file *m, const

>}
> EXPORT_SYMBOL(seq_printf);

>

> -int seq_path(struct seq_file *m,

> - struct vismount *mnt, struct dentry *dentry,

> +static inline char *mangle_path(char *s, char *p, char *esc)
> +{

> + while (s <=p) {

>+ char ¢ = *p++;

>+ if (Ic) {

>+ returns;

>+ } else if (!strchr(esc, ¢)) {

>+ *s++ =(C;

>+ }elseif(s+4>p){

>+ Dreak;

>+ }else

>+ *s++ ="\\"

>+ *s++='0"+ ((c & 0300) >> 6);

>+ *s++="0"+ ((c & 070) >> 3);

>+ *s++="0"+ (c & 07);

>+ }

>+}

> + return NULL;

> +}

>+

> +[*

> + * return the absolute path of 'dentry’ residing in mount 'mnt'.
>+ %/

> +int seq_path(struct seq_file *m, struct vismount *mnt, struct dentry *dentry,
> char *esc)

>{

> + char *p = NULL;

> if (m->count < m->size) {

> char *s = m->buf + m->count;

> - char *p = d_path(dentry, mnt, s, m->size - m->count);
>+ p =d_path(dentry, mnt, s, m->size - m->count);
> if (IS_ERR(p)) {

> - while (s <=p) {

> - char c =*p++;

>- if(lc){

> - p=m->buf + m->count;

Page 7 of 23 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>- m->count = s - m->buf;

>- returns - p;

> - }elseif (Istrchr(esc, c)) {

>- *s++ =

>- lelseif(s+4>p){

> - break;

>- }else{

> - *s++ =\

>- *s++="0"+ ((c & 0300) >> 6);
>- *s++="0"+ ((c & 070) >> 3);
>- *s++="0"+(c & 07);

>-)
>+ s =mangle_path(s, p, esc);
>+ if(s){

>+ p = m->buf + m->count;

>+ m->count = s - m->buf;

>+ returns-p;

>}

>}

>}

> m->count = m->size;

> - return -1,

>+ return p == ERR_PTR(-ENAMETOOLONG) ? 0: -1;
>}

>+

> EXPORT_SYMBOL(seq_path);

>

> +[*

> + * returns the path of the 'dentry’ from the root of its filesystem.
>+ %/

> +int seq_dentry(struct seq_file *m, struct dentry *dentry, char *esc)
> +{

> + char *p = NULL;

> + if (m->count < m->size) {

>+ char *s = m->buf + m->count;

>+ p =dentry_path(dentry, s, m->size - m->count);

>+ if (IS_ERR(p)) {

>+ s =mangle_path(s, p, esc);

>+ if (s){

>+ p=m->buf + m->count;

>+ m->count =s - m->buf;

>+ returns - p;

>+ }

>+ }

>+}

> + m->count = m->size;

> + return p == ERR_PTR(-ENAMETOOLONG) ? 0 : -1;
> +}

Page 8 of 23 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> +
> +EXPORT_SYMBOL(seq_dentry);

>+

> static void *single_start(struct seq_file *p, loff _t *pos)
>{

> return NULL + (*pos == 0);

> Index: linux-2.6.17.10/fs/proc/proc_misc.c

> --- linux-2.6.17.10.orig/fs/proc/proc_misc.c

> +++ linux-2.6.17.10/fs/proc/proc_misc.c

> @@ -675,6 +675,7 @@ void __init proc_misc_init(void)

> create_proc_read_entry(p->name, 0, NULL, p->read_proc, NULL);
>

> proc_symlink("mounts”, NULL, "self/mounts");

> + proc_symlink("mounts_new", NULL, "self/mounts_new");
>

> [* And now for trickier ones */

> entry = create_proc_entry("kmsg", S_IRUSR, &proc_root);
> Index: linux-2.6.17.10/fs/namespace.c

> --- linux-2.6.17.10.orig/fs/namespace.c

> +++ linux-2.6.17.10/fs/namespace.c

> @@ -349,7 +349,7 @@ static inline void mangle(struct seq_fil

> seq_escape(m, s, " \t\n\\");

>}

>

> -static int show_vfsmnt(struct seq_file *m, void *v)

> +static int show_options(struct seq_file *m, void *v)

> {

> struct vfsmount *mnt = v;

> interr=0;

>@@ -372,10 +372,6 @@ static int show_vfsmnt(struct seq_file *
> }

> struct proc_fs_info *fs_infop;

>

> - mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
> - seq_putc(m, ' ";

> - seq_path(m, mnt, mnt->mnt_root, " \t\n\\");

> - seq_putc(m, ' ";

> mangle(m, mnt->mnt_sb->s_type->name);

> seq_puts(m, mnt->mnt_sb->s flags & MS_RDONLY ? " ro" : " rw");
> for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {

> @@ -392,6 +388,28 @@ static int show_vfsmnt(struct seq_file *
> return err;

>}

>

> +static int show_vfsmnt(struct seq_file *m, void *v)

> +{

Page 9 of 23 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> + struct vismount *mnt = v;

> + mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
>+ seq_putc(m, ' ");

> + seq_path(m, mnt, mnt->mnt_root, " \t\n\\");

>+ seq_putc(m, ' ");

> + return show_options(m, v);

> +}

>+

> +static int show_vfsmnt_new(struct seq_file *m, void *v)
> +{

> + struct vfsmount *mnt = v;

> + seq_printf(m, "0x%x", new_encode_dev(mnt->mnt_sb->s_dev));
>+ seq_putc(m, ');

> + seq_path(m, mnt, mnt->mnt_root, " \t\n\\");

>+ seq_putc(m, ');

> + seq_dentry(m, mnt->mnt_root, " \t\in\\");

>+ seq_putc(m, ');

> + return show_options(m, v);

> +}

>+

> struct seq_operations mounts_op = {

> .start = m_start,

> .next=m_next,

> @@ -399,6 +417,13 @@ struct seq_operations mounts_op = {
> .show = show_vfsmnt

>}

>

> +struct seq_operations mounts_new_op = {

> + .start = m_start,

> + .next = m_next,

> + .stop = m_stop,

> + .show = show_vfsmnt_new

> +};

>+

> static int show_vfsstat(struct seq_file *m, void *v)

>

> struct vismount *mnt = v;

> Index: linux-2.6.17.10/include/linux/dcache.h

> --- [inux-2.6.17.10.orig/include/linux/dcache.h

> +++ linux-2.6.17.10/include/linux/dcache.h

> @@ -281,6 +281,7 @@ extern struct dentry * d_hash_and_lookup
> extern int d_validate(struct dentry *, struct dentry *);

>

> extern char * d_path(struct dentry *, struct vismount *, char *, int);
> +extern char * dentry_path(struct dentry *, char *, int);

>

> [* Allocation counts.. */

Page 10 of 23 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>
> Index: linux-2.6.17.10/include/linux/seq_file.h

> --- [inux-2.6.17.10.orig/include/linux/seq_file.h

> +++ linux-2.6.17.10/include/linux/seq_file.h

> @@ -43,6 +43,7 @@ int seq_printf(struct seq_file *, const

> attribute__ ((format (printf,2,3)));

>

> int seq_path(struct seq_file *, struct vfsmount *, struct dentry *, char *);
> +int seq_dentry(struct seq_file *, struct dentry *, char *);

>

> int single_open(struct file *, int (*)(struct seq_file *, void *), void *);

> int single_release(struct inode *, struct file *);

> This patch introduces a new proc interface that exposes all the propagation
> trees within the namespace.
>

> |t walks through each off the mounts in the namespace, and prints the following information.
>

> mount-id: a unique mount identifier

> dev-id : the unique device used to identify the device containing the filesystem
> path-from-root: mount point of the mount from /

> path-from-root-of-its-sb: path from its own root dentry.

> propagation-flag: SHARED, SLAVE, UNBINDABLE, PRIVATE

> peer-mount-id: the mount-id of its peer mount (if this mount is shared)

> master-mount-id: the mount-id of its master mount (if this mount is slave)
>

> Using the above information one could easily write a script that can

> draw all the propagation trees in the namespace.

>

>

> Example:

> Here is a sample output of cat /proc/$$/mounts_propagation

>

> 0xa917800 0x1 // PRIVATE

> 0xa917200 0x6200 / / PRIVATE

> 0xa917180 0x3 /proc / PRIVATE

> 0xa917f80 Oxa /dev/pts / PRIVATE

> 0xa917100 0x6210 /mnt / SHARED peer:0xa917100

> 0xa917f00 0x6210 /tmp /1 SLAVE master:0xa917100

> 0xa917900 0x6220 /mnt/2 / SHARED peer:0xa917900

>

> line 5 indicates that the mount with id 0xa917100 is mounted at /mnt is shared
> and it is the only mount in its peer group.

>

> line 6 indicates that the mount with id 0xa917f00 is mounted at /tmp, its
> root is the dentry 1 present under its root directory. This mount is a

> slave mount and its master is the mount with id 0xa917100.

Page 11 of 23 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>

> line 7 indicates that the mount with id 0xa917900 is mounted at /mnt/2, its

> root is the dentry / of its filesystem. This mount is a

> shared and it is the only mount in its peer group.

>

> one could write a script which runs through these lines and draws 4

> individual satellite mounts and two propagation trees, the first propagation

> tree has a shared mount and a slave mount. and the second propagation tree has
> just one shared mount.

>
>

> Signed-off-by: Ram Pai <linuxram@us.ibm.com>

> e

> fs/namespace.C | 42 ++++++++++++tttttttttt bbb

fs/lpnode.c | 6 -----
fs/pnode.h | 6 ++++++
fs/proc/base.c | 22 +++++++++++++++++t+++-

>
>
>
> 4 files changed, 69 insertions(+), 7 deletions(-)
>
> Index: linux-2.6.17.10/fs/namespace.c

> --- [inux-2.6.17.10.orig/fs/namespace.c

> +++ linux-2.6.17.10/fs/namespace.c

> @@ -410,6 +410,41 @@ static int show_vfsmnt_new(struct seq_fi
> return show_options(m, v);

>}

>

> +static int show_vfsmnt_propagation(struct seq_file *m, void *v)
> +{

> + struct vfsmount *mnt = v;

> + seq_printf(m, "0x%x", (int)mnt);

> + seq_putc(m, ');

> + seq_printf(m, "0x%x", new_encode_dev(mnt->mnt_sb->s_dev));
>+ seq_putc(m, ');

> + seq_path(m, mnt, mnt->mnt_root, " \t\n\\");

>+ seq_putc(m, ');

> + seq_dentry(m, mnt->mnt_root, " \t\n\\");

>+ seq_putc(m, ');

>+

>+ if (IS_MNT_SHARED(mnt)) {

>+ seq_printf(m, "%s ", "SHARED");

>+ if IS_MNT_SLAVE(mnt)) {

>+ seq_printf(m, "%s ", "SLAVE");

>+ }

>+ }else if (IS_MNT_SLAVE(mnt)) {

>+ seq_printf(m, "%s ", "SLAVE");

> +}else if (IS_MNT_UNBINDABLE(mMnNt)) {

>+ seq_printf(m, "%s ", "UNBINDABLE");

Page 12 of 23 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>+ }else{

>+ seq_printf(m, "%s ", "PRIVATE");

>+}

>+

>+ if IS_MNT_SHARED(mnt)) {

>+ seq_printf(m, "peer:0x%x ", (int)next_peer(mnt));

Ok, so if the sequence of events was

mount --make-shared /mnt

(some user logs in and gets a cloned namespace, so his /mnt
becomes the next peer of /mnt)

mount --bind /mnt /tmp

(some other user logs in and gets cloned namespace...)

or some such sequence of events, we could lose all information
about /mnt and /tmp being peers, right? Should a new
next_peer_in_same_namespace(mnt) be used rather than next_peer()?

Somewhat similarly,

>+}
>+ if (IS_MNT_SLAVE(mnt)) {
>+ seq_printf(m, "master:0x%x ", (int)mnt->mnt_master);

Should we for privacy reasons not print out the address mnt->mnt_master
is in a different namespace (perhaps if ICAP_SYS_ADMIN)?

Otherwise | like this.

thanks,
-serge

>+}

> + seq_puts(m, "\n");

>+ return O;

> +}

>+

> struct seq_operations mounts_op = {

> .start = m_start,

> .next=m_next,

> @@ -424,6 +459,13 @@ struct seq_operations mounts_new_op ={
> .show = show_vfsmnt_new

>}

>

> +struct seq_operations mounts_propagation_op = {
> + .start = m_start,

>+ .next = m_next,

Page 13 of 23 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> + .stop = m_stop,

> + .show = show_vfsmnt_propagation

> +};

>+

> static int show_vfsstat(struct seq_file *m, void *v)
>{

> struct vfsmount *mnt = v;

> Index: linux-2.6.17.10/fs/proc/base.c

> --- linux-2.6.17.10.orig/fs/proc/base.c

> +++ linux-2.6.17.10/fs/proc/base.c

> @@ -105,6 +105,7 @@ enum pid_directory_inos {

> PROC_TGID_NUMA_MAPS,

> PROC_TGID_MOUNTS,

> PROC_TGID_MOUNTS_NEW,

>+ PROC_TGID_MOUNTS_ PROPAGATION,

> PROC_TGID_MOUNTSTATS,

> PROC_TGID_WCHAN,

> #ifdef CONFIG_MMU

> @@ -146,6 +147,7 @@ enum pid_directory_inos {

> PROC_TID_MAPS,

> PROC_TID_NUMA_MAPS,

> PROC_TID_MOUNTS,

>+ PROC_TID_MOUNTS_PROPAGATION,

> PROC_TID_MOUNTS_NEW,

> PROC_TID _MOUNTSTATS,

> PROC_TID_WCHAN,

> @@ -206,6 +208,7 @@ static struct pid_entry tgid_base_stuff]

> E(PROC_TGID EXE, ‘"exe", S_IFLNK|S_IRWXUGO),

> E(PROC_TGID_MOUNTS, "mounts", S IFREG|S_IRUGO),

> E(PROC_TGID_MOUNTS_NEW,"mounts_new", S_IFREGI|S_IRUGO),
>+ E(PROC_TGID_MOUNTS_PROPAGATION,"mounts_propagation”, S_IFREG|S_IRUGO),
> E(PROC_TGID_MOUNTSTATS, "mountstats”, S_IFREG|S_IRUSR),
> #ifdef CONFIG_MMU

> E(PROC_TGID_SMAPS, "smaps", S_IFREG|S_IRUGO),

> @@ -250,6 +253,7 @@ static struct pid_entry tid_base_stuff[]

> E(PROC_TID_EXE, "exe", S_IFLNK|S_IRWXUGO),

> E(PROC_TID_MOUNTS, "mounts", S_IFREG|S_IRUGO),

> E(PROC_TID_MOUNTS_NEW, "mounts_new", S_IFREG|S_IRUGO),
>+ E(PROC_TID_MOUNTS_PROPAGATION,"mounts_propagation”, S_IFREG|S_IRUGO),
> #ifdef CONFIG_MMU

> E(PROC_TID_SMAPS, ‘"smaps", S_IFREG|S_IRUGO),

> #endif

> @@ -733,7 +737,7 @@ static int __mounts_open(struct inode *i

> return ret;

>}

>

> -extern struct seq_operations mounts_op, mounts_new_op;

Page 14 of 23 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> +extern struct seq_operations mounts_op, mounts_new_op, mounts_propagation_op;
> static int mounts_open(struct inode *inode, struct file *file)

>

> return (__mounts_open(inode, file, &mounts_op));

>@@ -742,6 +746,10 @@ static int mounts_new_open(struct inode
>{

> return __mounts_open(inode, file, &mounts_new_op);

>}

> +static int mounts_propagation_open(struct inode *inode, struct file *file)
> +{

>+ return __mounts_open(inode, file, &mounts_propagation_op);

> +}

>

> static int mounts_release(struct inode *inode, struct file *file)

>

> @@ -785,6 +793,14 @@ static struct file_operations proc_mount
> .poll = mounts_poll,

>}

>

> +static struct file_operations proc_propagation_operations = {

>+ .0pen = mounts_propagation_open,

>+ read =seq_read,

> + llseek = seq_lseek,

> + .release = mounts_release,

>+ .poll = mounts_poll,

> +};

>+

> extern struct seq_operations mountstats_op;

> static int mountstats_open(struct inode *inode, struct file *file)
>{

> @@ -1825,6 +1841,10 @@ static struct dentry *proc_pident_lookup
> case PROC_TGID_MOUNTS_NEW:

> inode->i_fop = &proc_mounts_new_operations;

> break;

>+ case PROC_TID_MOUNTS_PROPAGATION:

>+ case PROC_TGID_MOUNTS_ PROPAGATION:

>+ inode->i_fop = &proc_propagation_operations;

>+ break;

> #ifdef CONFIG_MMU

> case PROC_TID_SMAPS:

> case PROC_TGID_SMAPS:

> Index: linux-2.6.17.10/fs/pnode.c

> --- linux-2.6.17.10.orig/fs/pnode.c
> +++ linux-2.6.17.10/fs/pnode.c
>@@ -11,12 +11,6 @@

> #include <linux/fs.h>

> #include "pnode.h"

Page 15 of 23 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>
> -/* return the next shared peer mount of @p */

> -static inline struct vfsmount *next_peer(struct vismount *p)

>

> - return list_entry(p->mnt_share.next, struct vfsmount, mnt_share);

> -}

> -

> static inline struct vismount *first_slave(struct vismount *p)

> {

> return list_entry(p->mnt_slave_list.next, struct vismount, mnt_slave);
> Index: linux-2.6.17.10/fs/pnode.h

> --- [inux-2.6.17.10.orig/fs/pnode.h

> +++ linux-2.6.17.10/fs/pnode.h

> @@ -29,6 +29,12 @@ static inline void set_mnt_shared(struct

> mnt->mnt_flags |= MNT_SHARED,;

>}

>

> +/* return the next shared peer mount of @p */

> +static inline struct vfsmount *next_peer(struct vfsmount *p)

> +{

> + return list_entry(p->mnt_share.next, struct vfsmount, mnt_share);
> +}

>+

> void change_mnt_propagation(struct vfsmount *, int);

> int propagate_mnt(struct vfsmount *, struct dentry *, struct vfsmount *,
> struct list_head *);

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: How to query mount propagation state?
Posted by Karel Zak on Mon, 16 Apr 2007 21:07:39 GMT

View Forum Message <> Reply to Message

On Mon, Apr 16, 2007 at 10:39:46AM -0700, Ram Pai wrote:

> This patch disambiguates multiple mount-instances of the same

> filesystem (or part of the same filesystem), by introducing a new

> interface /proc/mounts_new. The interface has the following format.
NNNNNNNNNNNNNN

... odd name. What will be the name for a next generation?

"Iproc/mounts_new_new"? :-)

> 'cat /proc/mounts' shows the following:

Page 16 of 23 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1826
https://new-forum.openvz.org/index.php?t=rview&th=3571&goto=18256#msg_18256
https://new-forum.openvz.org/index.php?t=post&reply_to=18256
https://new-forum.openvz.org/index.php

> /dev/root /mnt ext2 rw 0 O

> /dev/root /tmpl ext2 rw 0 0

>

> NOTE: The above mount entries, do not indicate that /tmpl1 contains the same
> directory tree as /var/tmp.

>

> But 'cat /proc/mounts_new' shows us the following:

> 0x6200 /mnt /var ext2 rw 0 O

> 0x6200 /tmp1 /vartmp ext2 rw 0 O

Can't you purely and simply add the fsid= option to /proc/mounts?

/dev/root /mnt ext2 rw,fsid=0x6200 0 O
/dev/root /mnt ext2 rw,fsid=0x6200 0 O

I think you can do it without a negative impact to userspace.

> This patch introduces a new proc interface that exposes all the propagation
> trees within the namespace.

Good idea.

> |t walks through each off the mounts in the namespace, and prints the following information.
>

> mount-id: a unique mount identifier

> dev-id : the unique device used to identify the device containing the filesystem

NANN\N

Why not major:minor?

> path-from-root: mount point of the mount from /

> path-from-root-of-its-sh: path from its own root dentry.

> propagation-flag: SHARED, SLAVE, UNBINDABLE, PRIVATE

> peer-mount-id: the mount-id of its peer mount (if this mount is shared)

> master-mount-id: the mount-id of its master mount (if this mount is slave)

> Example:

> Here is a sample output of cat /proc/$$/mounts_propagation
>

> 0xa917800 0x1 // PRIVATE

> 0xa917200 0x6200 / / PRIVATE

> 0xa917180 0x3 /proc / PRIVATE

> 0xa917f80 Oxa /dev/pts / PRIVATE

> 0xa917100 0x6210 /mnt / SHARED peer:0xa917100

> 0xa917f00 0x6210 /tmp /1 SLAVE master:0xa917100

> 0xa917900 0x6220 /mnt/2 /| SHARED peer:0xa917900

Same thing (although the mounts_propagation makes more sense than
mount_new from my point of view).

Page 17 of 23 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

cat /proc/mounts (or /proc/$$/mounts)

/dev/root /mnt ext2 rw,mid=0xa917100,did=0x6210,prop=SHARED,peer=0xa917100

my $0.02...

Karel

Karel Zak <kzak@redhat.com>

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: How to query mount propagation state?
Posted by Ram Pai on Tue, 17 Apr 2007 06:55:31 GMT

View Forum Message <> Reply to Message

On Mon, 2007-04-16 at 14:16 -0500, Serge E. Hallyn wrote:

> > This patch introduces a new proc interface that exposes all the

> propagation

> > trees within the namespace.

> >

> > |t walks through each off the mounts in the namespace, and prints
> the following information.

> >

> > mount-id: a unigue mount identifier

> > dev-id : the unique device used to identify the device containing

> the filesystem

> > path-from-root: mount point of the mount from /

> > path-from-root-of-its-sb: path from its own root dentry.

> > propagation-flag: SHARED, SLAVE, UNBINDABLE, PRIVATE

> > peer-mount-id: the mount-id of its peer mount (if this mount is

> shared)

> > master-mount-id: the mount-id of its master mount (if this mount is
> slave)

> >

> > Using the above information one could easily write a script that can

> > draw all the propagation trees in the namespace.
> >

> >
> > Example:

> > Here is a sample output of cat /proc/$$/mounts_propagation
> >

Page 18 of 23 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1364
https://new-forum.openvz.org/index.php?t=rview&th=3571&goto=18257#msg_18257
https://new-forum.openvz.org/index.php?t=post&reply_to=18257
https://new-forum.openvz.org/index.php

> > 0xa917800 0x1 // PRIVATE

> > 0xa917200 0x6200 / / PRIVATE

> > 0xa917180 0x3 /proc / PRIVATE

> > 0xa917f80 Oxa /dev/pts / PRIVATE

> > (0xa917100 0x6210 /mnt / SHARED peer:0xa917100
> > 0xa917f00 0x6210 /tmp /1 SLAVE master:0xa917100
> > 0xa917900 0x6220 /mnt/2 /| SHARED peer:0xa917900
> >

> > line 5 indicates that the mount with id 0xa917100 is mounted at /mnt
> is shared

> > and it is the only mount in its peer group.

> >

> > |ine 6 indicates that the mount with id 0xa917f00 is mounted

> at /tmp, its

> > root is the dentry 1 present under its root directory. This mount is
>a

> > slave mount and its master is the mount with id 0xa917100.

> >

> > line 7 indicates that the mount with id 0xa917900 is mounted
> at /mnt/2, its

> > root is the dentry / of its filesystem. This mount is a

> > shared and it is the only mount in its peer group.

> >

> > one could write a script which runs through these lines and draws 4
> > individual satellite mounts and two propagation trees, the first
> propagation

> > tree has a shared mount and a slave mount. and the second
> propagation tree has

> > just one shared mount.

> >

> >

> > Signed-off-by: Ram Pai <linuxram@us.ibm.com>

> > -

> > fs/namespace.c| 42 +++++++++++++++++HH++HH+HH b
>> fs/pnode.c | 6---—---

>> fs/pnode.h | 6 ++++++

> > fs/proc/base.c| 22 ++++++++++++++++H++t+-

> > 4 files changed, 69 insertions(+), 7 deletions(-)

> >

> > |ndex: linux-2.6.17.10/fs/namespace.c

> > --- [inux-2.6.17.10.orig/fs/namespace.c

> > +++ linux-2.6.17.10/fs/namespace.c

>> @@ -410,6 +410,41 @@ static int show_vfsmnt_new(struct seq_fi
> > return show_options(m, v);

>> }

> >

> > +static int show_vfsmnt_propagation(struct seq_file *m, void *v)

Page 19 of 23 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> >+

>>+ struct vismount *mnt = v;

>>+ seq_printf(m, "0x%x", (int)mnt);

>>+ seq_putc(m,'");

>>+ seq_printf(m, "0x%x", new_encode_dev(mnt->mnt_sb->s_dev));
>>+ seqg_putc(m,'");

>>+ seq_path(m, mnt, mnt->mnt_root, " \t\n\\");

>>+ seq_putc(m,'");

>>+ seq_dentry(m, mnt->mnt_root, " \t\n\\");

>>+ seq_putc(m,'");

>>+

>>+ if (IS_MNT_SHARED(mnt)) {

>>+ seq_printf(m, "%s ", "SHARED");

> >+ if IS_MNT_SLAVE(mnt)) {

> >+ seq_printf(m, "%s ", "SLAVE");

> >+ }

>>+ }elseif IS_MNT_SLAVE(mnt)) {

>>+ seq_printf(m, "%s ", "SLAVE");

>>+ }elseif (IS_MNT_UNBINDABLE(mnt)) {

>>+ seq_printf(m, "%s ", "UNBINDABLE");

>>+ l}else{

> >+ seq_printf(m, "%s ", "PRIVATE");

>>+ }

> >+

>>+ if (IS_MNT_SHARED(mnt)) {

>>+ seq_printf(m, "peer:0x%x ", (int)next_peer(mnt));
>

> Ok, so if the sequence of events was

>

> mount --make-shared /mnt

> (some user logs in and gets a cloned namespace, so his /mnt
> becomes the next peer of /mnt)

> mount --bind /mnt /tmp

> (some other user logs in and gets cloned namespace...)

>

> or some such sequence of events, we could lose all information

> about /mnt and /tmp being peers, right? Should a new

> next_peer_in_same_namespace(mnt) be used rather than next_peer()?

you are right. it should print next_peer(mnt) only if CAP_SYS_ADMIN,
else print next_peer_in_same_namespace(mnt).

>

> Somewhat similarly,

>

>>+ }

>>+ if (IS_MNT_SLAVE(mnt)) {

>>+ seq_printf(m, "master:0x%x ", (intymnt->mnt_master);

Page 20 of 23 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>
> Should we for privacy reasons not print out the address

> mnt->mnt_master

> is in a different namespace (perhaps if \CAP_SYS_ADMIN)?

right. it should print mnt->mnt_master if (CAP_SYS_ADMIN), otherwise
print master_in_same_namespace(mnt).

RP

>

> Otherwise | like this.
>

> thanks,

> -serge

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Subject: Re: How to query mount propagation state?
Posted by Ram Pai on Tue, 17 Apr 2007 07:38:46 GMT

View Forum Message <> Reply to Message

On Mon, 2007-04-16 at 23:07 +0200, Karel Zak wrote:

> On Mon, Apr 16, 2007 at 10:39:46AM -0700, Ram Pai wrote:

>

> > This patch disambiguates multiple mount-instances of the same

> > filesystem (or part of the same filesystem), by introducing a new

> > interface /proc/mounts_new. The interface has the following format.
> NNNNNNNNNNNNNN

> ... odd name. What will be the name for a next generation?

> "/proc/mounts_new_new"? :-)
>

that was the name | came up with 6 months back :-). Yes It should be
something more appropriate. Maybe /proc/mounts_1 ? The next generation
one would be /proc/mounts_2 ? Suggestion?

> > 'cat /proc/mounts’ shows the following:

> > /dev/root /mnt ext2 rw 0 O

> > /dev/root /tmpl ext2 rw 0 0

> >

> > NOTE: The above mount entries, do not indicate that /tmpl contains the same
> > directory tree as /var/tmp.

Page 21 of 23 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1364
https://new-forum.openvz.org/index.php?t=rview&th=3571&goto=18258#msg_18258
https://new-forum.openvz.org/index.php?t=post&reply_to=18258
https://new-forum.openvz.org/index.php

> >
> > But 'cat /proc/mounts_new' shows us the following:
> > 0x6200 /mnt /var ext2 rw 0 0
> > 0x6200 /tmpl /var/tmp ext2 rw 0 O
>
Can't you purely and simply add the fsid= option to /proc/mounts?

>
>
> [dev/root /mnt ext2 rw,fsid=0x6200 0 O
> [dev/root /mnt ext2 rw,fsid=0x6200 0 O
>
>

| think you can do it without a negative impact to userspace.
ok.

>

> > This patch introduces a new proc interface that exposes all the propagation

> > trees within the namespace.

>

> Good idea.

>

> > |t walks through each off the mounts in the namespace, and prints the following information.
> >

> > mount-id: a unique mount identifier

> > dev-id : the unique device used to identify the device containing the filesystem

D IRAAUAN

> Why not major:minor?

Thinking about it, | feel we dont need this field at all. Basically we

need a field that can be keyed-upon to find the corresponding record

in /proc/mounts_1. mount-id can be used as the matching field, provided
we add the mount-id field to /proc/mounts_1.

agree?

RP

> > path-from-root: mount point of the mount from /

> > path-from-root-of-its-sb: path from its own root dentry.

> > propagation-flag: SHARED, SLAVE, UNBINDABLE, PRIVATE

> > peer-mount-id: the mount-id of its peer mount (if this mount is shared)
> > master-mount-id: the mount-id of its master mount (if this mount is slave)
>

> > Example:

> > Here is a sample output of cat /proc/$$/mounts_propagation

> >

> > (0xa917800 0x1 // PRIVATE

> > 0xa917200 0x6200 / / PRIVATE

> > 0xa917180 0x3 /proc / PRIVATE

> > 0xa917f80 Oxa /dev/pts / PRIVATE

Page 22 of 23 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> > 0xa917100 0x6210 /mnt / SHARED peer:0xa917100
> > 0xa917f00 0x6210 /tmp /1 SLAVE master:0xa917100
> > 0xa917900 0x6220 /mnt/2 /| SHARED peer:0xa917900
>

Same thing (although the mounts_propagation makes more sense than
mount_new from my point of view).
cat /proc/mounts (or /proc/$$/mounts)

/dev/root /mnt ext2 rw,mid=0xa917100,did=0x6210,prop=SHARED,peer=0xa917100

my $0.02...

Karel

VVVVVVVYVYVYVVYV

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 23 of 23 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

