Subject: Re: [RFC] kernel/pid.c pid allocation wierdness
Posted by Eric Dumazet on Fri, 16 Mar 2007 11:37:47 GMT

View Forum Message <> Reply to Message

On Friday 16 March 2007 11:57, Pavel Emelianov wrote:

> Oleg Nesterov wrote:

> > On 03/14, Eric W. Biederman wrote:

> >> Pavel Emelianov <xemul@sw.ru> writes:

> >>> Hi.

> >>>

> >>> |'m looking at how alloc_pid() works and can't understand
> >>> one (simple/stupid) thing.

> >>>

> >>> |t first kmem_cache_alloc()-s a strct pid, then calls

> >>> alloc_pidmap() and at the end it taks a global pidmap_lock()
> >>>to add new pid to hash.

> >

> > We need some global lock. pidmap_lock is already here, and it is
> > only used to protect pidmap->page allocation. low, it is almost
> > unused. So it was very natural to re-use it while implementing
> > pidrefs.

> >

> >>> The question is - why does alloc_pidmap() use at least

> >>> two atomic ops and potentially loop to find a zero bit

> >>> in pidmap? Why not call alloc_pidmap() under pidmap_lock
> >>> and find zero pid in pidmap w/o any loops and atomics?

> >

> > Currently we search for zero bit lockless, why do you want

> > to do it under spin_lock ?

>

> Search isn't lockless. Look:

>

> while (1) {

> if (test_and_set_bit(...)) {

atomic_dec(&nr_free);

return pid;

}
-

> we use two atomic operations to find and set a bit in a map.

>
>
>
>
>
>

The finding of the zero bit is done without lock. (Search/lookup)

Then , the reservation of the found bit (test_and_set_bit) is done, and
decrement of nr_free. It may fail because the search was done lockless.

Finding a zero bit in a 4096 bytes array may consume about 6000 cycles on

Page 1 of 3 ---- Generated from OpenVZ Forum


https://new-forum.openvz.org/index.php?t=usrinfo&id=580
https://new-forum.openvz.org/index.php?t=rview&th=3511&goto=17851#msg_17851
https://new-forum.openvz.org/index.php?t=post&reply_to=17851
https://new-forum.openvz.org/index.php

modern hardware. Much more on SMP/NUMA machines, or on machines where
PAGE_SIZE is 64K instead of 4K )

You don't want to hold pidmad_lock for so long period.

Containers mailing list
Containers@lists.osdl.org
https://lists.osdl.org/mailman/listinfo/containers

Subject: Re: [RFC] kernel/pid.c pid allocation wierdness
Posted by xemul on Fri, 16 Mar 2007 11:58:57 GMT

View Forum Message <> Reply to Message

Eric Dumazet wrote:

> On Friday 16 March 2007 11:57, Pavel Emelianov wrote:

>> Oleg Nesterov wrote:

>>> On 03/14, Eric W. Biederman wrote:

>>>> Pavel Emelianov <xemul@sw.ru> writes:

>>>>> Hi.

>>>>>

>>>>> |'m looking at how alloc_pid() works and can't understand
>>>>> one (simple/stupid) thing.

>S>5>>>

>>>>> |t first kmem_cache_alloc()-s a strct pid, then calls

>>>>> alloc_pidmap() and at the end it taks a global pidmap_lock()
>>>>> to add new pid to hash.

>>> \We need some global lock. pidmap_lock is already here, and it is
>>> only used to protect pidmap->page allocation. low, it is almost
>>> ynused. So it was very natural to re-use it while implementing
>>> pidrefs.

>>>

>>>>> The question is - why does alloc_pidmap() use at least
>>>>> two atomic ops and potentially loop to find a zero bit

>>>>> in pidmap? Why not call alloc_pidmap() under pidmap_lock
>>>>> and find zero pid in pidmap w/o any loops and atomics?
>>> Currently we search for zero bit lockless, why do you want
>>> to do it under spin_lock ?

>> Search isn't lockless. Look:

>>

>> while (1) {

>> jf ('test_and_set_bit(...)) {
>> atomic_dec(&nr_free);
>> return pid;

>>

>> .

>>}

Page 2 of 3 ---- Generated from OpenVZ Forum


https://new-forum.openvz.org/index.php?t=usrinfo&id=114
https://new-forum.openvz.org/index.php?t=rview&th=3511&goto=17860#msg_17860
https://new-forum.openvz.org/index.php?t=post&reply_to=17860
https://new-forum.openvz.org/index.php

>>
>> we use two atomic operations to find and set a bit in a map.

>

> The finding of the zero bit is done without lock. (Search/lookup)

>

> Then , the reservation of the found bit (test_and_set_bit) is done, and

> decrement of nr_free. It may fail because the search was done lockless.

:\ I do understand how this algorithm works. What | don't
understand is why it is done so, if we take a global lock anyway.

> Finding a zero bit in a 4096 bytes array may consume about 6000 cycles on

> modern hardware. Much more on SMP/NUMA machines, or on machines where
> PAGE_SIZE is 64K instead of 4K :)

>

> You don't want to hold pidmad_lock for so long period.
OK, thanks. That's explanations looks good.

> -
> To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
> the body of a message to majordomo@vger.kernel.org

> More majordomo info at http://vger.kernel.org/majordomo-info.html

> Please read the FAQ at http://www.tux.org/lkml/
>

Containers mailing list
Containers@lists.osdl.org
https://lists.osdl.org/mailman/listinfo/containers

Page 3 of 3 ---- Generated from OpenVZ Forum


https://new-forum.openvz.org/index.php

