
Subject: [RFC][PATCH 1/2] r/o bind mounts: NUMA-friendly writer count
Posted by Dave Hansen on Wed, 21 Feb 2007 02:03:52 GMT
View Forum Message <> Reply to Message

I've been working on the read-only bind mount patches, and
one of their requirements is that we track the number of
writers to a particular filesystem. This allows us to
quickly determine whether it is OK to make rw->ro
transitions.

It was noted that the previous approach of using a spinlock
to protect the per-mount write count caused some pretty
serious scaling problems on NUMA machines. The same kinds
of problems would very likely occur if we just used atomic_ts
as well.

This patch should take global locks out of the fast path
acquiring and dropping writes for mounts. It uses per-cpu
atomic_ts (it could be per-node, but we don't have a nice
alloc_pernode()) to track writers.

All cpus start out in a "denied write" state, and must grab
a spinlock and set it bit before they can go into the
"allowed to write" state. They stay in this state until
somebody goes and tries to remount the mount read-only,
which also requires the spinlock.

There is also a slow path in the mnt_drop_write() case.
If a write is acquired on one cpu, then dropped on another,
the write count could be imbalanced. So, the code grabs
the spinlock, and goes looking for another cpu's writecount
to decrement. During a kernel-compile on a 4-way non-NUMA
machine, these "misses" happened about 400 times, but all
from __fput(). The next patch will show a little hack to
greatly reduce their frequency.

Note that these apply on top of the r/o bind mount patches
that I have. If anyone wants to actually try them, I'll
send you the entire set.

 lxc-dave/fs/namespace.c | 118 +++++++++++++++++++++++++++++++++++++++--
 lxc-dave/include/linux/mount.h | 10 +++
 2 files changed, 125 insertions(+), 3 deletions(-)

diff -puN fs/namespace.c~numa_mnt_want_write fs/namespace.c

Page 1 of 8 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=90
https://new-forum.openvz.org/index.php?t=rview&th=3419&goto=17490#msg_17490
https://new-forum.openvz.org/index.php?t=post&reply_to=17490
https://new-forum.openvz.org/index.php

--- lxc/fs/namespace.c~numa_mnt_want_write	2007-02-20 17:50:32.000000000 -0800
+++ lxc-dave/fs/namespace.c	2007-02-20 17:58:54.000000000 -0800
@@ -51,8 +51,11 @@ static inline unsigned long hash(struct
 	return tmp & hash_mask;
 }

+static int MNT_DENIED_WRITE = -1;
+
 struct vfsmount *alloc_vfsmnt(const char *name)
 {
+	int cpu;
 	struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
 	if (mnt) {
 		atomic_set(&mnt->mnt_count, 1);
@@ -64,6 +67,13 @@ struct vfsmount *alloc_vfsmnt(const char
 		INIT_LIST_HEAD(&mnt->mnt_share);
 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
 		INIT_LIST_HEAD(&mnt->mnt_slave);
+		mnt->writers = alloc_percpu(atomic_t);
+		if (!mnt->writers) {
+			kmem_cache_free(mnt_cache, mnt);
+			return NULL;
+		}
+		for_each_possible_cpu(cpu)
+			atomic_set(per_cpu_ptr(mnt->writers, cpu), -1);
 		if (name) {
 			int size = strlen(name) + 1;
 			char *newname = kmalloc(size, GFP_KERNEL);
@@ -78,17 +88,118 @@ struct vfsmount *alloc_vfsmnt(const char

 int mnt_want_write(struct vfsmount *mnt)
 {
-	if (__mnt_is_readonly(mnt))
-		return -EROFS;
-	return 0;
+	int ret = 0;
+	atomic_t *cpu_writecount;
+	int cpu = get_cpu();
+retry:
+	/*
+	 * Not strictly required, but quick and cheap
+	 */
+	if (__mnt_is_readonly(mnt)) {
+		ret = -EROFS;
+		goto out;
+	}
+	cpu_writecount = per_cpu_ptr(mnt->writers, cpu);
+	if (atomic_add_unless(cpu_writecount, 1, MNT_DENIED_WRITE))

Page 2 of 8 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+		goto out;
+	spin_lock(&vfsmount_lock);
+	if (cpu_isset(cpu, mnt->cpus_that_might_write)) {
+		/*
+		 * Somebody is attempting to deny writers to this
+		 * mnt and we raced with them.
+		 */
+		spin_unlock(&vfsmount_lock);
+		goto retry;
+	}
+	cpu_set(cpu, mnt->cpus_that_might_write);
+	/*
+	 * actually allow the cpu to get writes
+	 */
+	atomic_set(cpu_writecount, 0);
+	spin_unlock(&vfsmount_lock);
+	goto retry;
+out:
+	put_cpu();
+	return ret;
 }
 EXPORT_SYMBOL_GPL(mnt_want_write);

 void mnt_drop_write(struct vfsmount *mnt)
 {
+	static int miss = 0;
+	atomic_t *cpu_writecount;
+	int cpu;
+	int borrowed = 0;
+	int retries = 0;
+retry:
+	cpu = get_cpu();
+	cpu_writecount = per_cpu_ptr(mnt->writers, cpu);
+	if (atomic_add_unless(cpu_writecount, -1, 0)) {
+		put_cpu();
+		return;
+	}
+	spin_lock(&vfsmount_lock);
+	/*
+	 * Holding the spinlock, and only checking cpus that
+	 * have cpus_that_might_write set means that we should
+	 * only be checking values that are positive here.
+	 *
+	 * The spinlock won't help us catch an elevated
+	 * write count on the first run through because other
+	 * cpus are free to do inc/dec without taking that lock
+	 * We might have to try this loop more than once.
+	 */

Page 3 of 8 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+	for_each_cpu_mask(cpu, mnt->cpus_that_might_write) {
+		cpu_writecount = per_cpu_ptr(mnt->writers, cpu);
+		WARN_ON(atomic_read(cpu_writecount) < 0);
+		if (atomic_add_unless(cpu_writecount, -1, 0)) {
+			borrowed = 1;
+			break;
+		}
+	}
+	spin_unlock(&vfsmount_lock);
+	miss++;
+	retries++;
+	if (printk_ratelimit()) {
+		printk("%s() retries: %d misses: %d\n", __func__, retries, miss);
+		dump_stack();
+	}
+	if (!borrowed)
+		goto retry;
 }
 EXPORT_SYMBOL_GPL(mnt_drop_write);

+/*
+ * Must hold vfsmount_lock
+ */
+int __mnt_deny_writers(struct vfsmount *mnt)
+{
+	int ret = 0;
+	int cpu;
+
+	for_each_cpu_mask(cpu, mnt->cpus_that_might_write) {
+		atomic_t *cpu_writecount = per_cpu_ptr(mnt->writers, cpu);
+		/*
+		 * This could leave us with a temporarily
+		 * over-decremented cpu_writecount.
+		 *
+		 * mnt_drop_write() is OK with this because
+		 * it will just force it into the slow path.
+		 *
+		 * The only users who care about it being
+		 * decremented either hold vfsmount_lock
+		 * to look at it.
+		 */
+		if (atomic_dec_return(cpu_writecount) != MNT_DENIED_WRITE) {
+			atomic_inc(cpu_writecount);
+			ret = -EBUSY;
+			break;
+		}
+		cpu_clear(cpu, mnt->cpus_that_might_write);
+	}

Page 4 of 8 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+	return ret;
+}
+
 void add_mount_to_sb_list(struct vfsmount *mnt, struct super_block *sb)
 {
 	spin_lock(&vfsmount_lock);
@@ -113,6 +224,7 @@ void free_vfsmnt(struct vfsmount *mnt)
 		list_del(&mnt->mnt_sb_list);
 	spin_unlock(&vfsmount_lock);
 	kfree(mnt->mnt_devname);
+	free_percpu(mnt->writers);
 	kmem_cache_free(mnt_cache, mnt);
 }

diff -puN include/linux/mount.h~numa_mnt_want_write include/linux/mount.h
--- lxc/include/linux/mount.h~numa_mnt_want_write	2007-02-20 17:50:32.000000000 -0800
+++ lxc-dave/include/linux/mount.h	2007-02-20 17:53:28.000000000 -0800
@@ -62,6 +62,16 @@ struct vfsmount {
 	atomic_t mnt_count;
 	int mnt_expiry_mark;		/* true if marked for expiry */
 	int mnt_pinned;
+	/*
+	 * These are per-cpu, but should be per-NUMA node.
+	 * >0 - has an active writer
+	 * 0 - has no active writers, but doesn't need to set
+	 * cpus_that_might_write before getting one
+	 * -1 - has no active writers, and must set its bit
+	 * in cpus_that_might_write before going to 0
+	 */
+	atomic_t *writers;
+	cpumask_t cpus_that_might_write;
 };

 static inline struct vfsmount *mntget(struct vfsmount *mnt)
_

Containers mailing list
Containers@lists.osdl.org
https://lists.osdl.org/mailman/listinfo/containers

Subject: [RFC][PATCH 2/2] record cpu hint for future fput()
Posted by Dave Hansen on Wed, 21 Feb 2007 02:03:53 GMT
View Forum Message <> Reply to Message

Most mnt_want/drop_write() pairs are really close in
the code; they aren't held for very long. So, in
practice is hard to get bounced between cpus between

Page 5 of 8 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=90
https://new-forum.openvz.org/index.php?t=rview&th=3419&goto=17491#msg_17491
https://new-forum.openvz.org/index.php?t=post&reply_to=17491
https://new-forum.openvz.org/index.php

when you mnt_want_write() and mnt_drop_write().

The exception to this is the pair in may_open() and
__fput(). Between those two it is pretty common to
move between cpus. During a kernel compile of around
900 files on a 4-way, I saw it happen ~400 times.

This patch assumes that the cpu doing the allocating of
the 'struct file' is also the one doing the
mnt_want_write(). It is OK that it is wrong sometimes,
it just means that we regress back to the
spinlock-protected search of all of the cpus' counts.

My kernel compile from before went from 400 misses
during a compile to just 20 with this patch.

It might also be helpful to do the writer count per-node
which would _greatly_ decrease the number of migrations
that we see.

 lxc-dave/fs/file_table.c | 2 +-
 lxc-dave/fs/namespace.c | 17 +++++++++--------
 lxc-dave/fs/open.c | 4 ++++
 lxc-dave/include/linux/fs.h | 1 +
 lxc-dave/include/linux/mount.h | 1 +
 5 files changed, 16 insertions(+), 9 deletions(-)

diff -puN fs/file_table.c~fput-cpu fs/file_table.c
--- lxc/fs/file_table.c~fput-cpu	2007-02-20 17:59:48.000000000 -0800
+++ lxc-dave/fs/file_table.c	2007-02-20 17:59:49.000000000 -0800
@@ -215,7 +215,7 @@ void fastcall __fput(struct file *file)
 	if (file->f_mode & FMODE_WRITE) {
 		put_write_access(inode);
 		if(!special_file(inode->i_mode))
-			mnt_drop_write(mnt);
+			__mnt_drop_write(mnt, file->f_write_cpu);
 	}
 	put_pid(file->f_owner.pid);
 	file_kill(file);
diff -puN fs/namespace.c~fput-cpu fs/namespace.c
--- lxc/fs/namespace.c~fput-cpu	2007-02-20 17:59:48.000000000 -0800
+++ lxc-dave/fs/namespace.c	2007-02-20 18:00:27.000000000 -0800
@@ -89,8 +89,8 @@ struct vfsmount *alloc_vfsmnt(const char
 int mnt_want_write(struct vfsmount *mnt)
 {

Page 6 of 8 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 	int ret = 0;
-	atomic_t *cpu_writecount;
 	int cpu = get_cpu();
+	atomic_t *cpu_writecount;
 retry:
 	/*
 	 * Not strictly required, but quick and cheap
@@ -122,22 +122,17 @@ out:
 	put_cpu();
 	return ret;
 }
-EXPORT_SYMBOL_GPL(mnt_want_write);

-void mnt_drop_write(struct vfsmount *mnt)
+void __mnt_drop_write(struct vfsmount *mnt, int cpu)
 {
 	static int miss = 0;
 	atomic_t *cpu_writecount;
-	int cpu;
 	int borrowed = 0;
 	int retries = 0;
 retry:
-	cpu = get_cpu();
 	cpu_writecount = per_cpu_ptr(mnt->writers, cpu);
-	if (atomic_add_unless(cpu_writecount, -1, 0)) {
-		put_cpu();
+	if (atomic_add_unless(cpu_writecount, -1, 0))
 		return;
-	}
 	spin_lock(&vfsmount_lock);
 	/*
 	 * Holding the spinlock, and only checking cpus that
@@ -167,6 +162,12 @@ retry:
 	if (!borrowed)
 		goto retry;
 }
+void mnt_drop_write(struct vfsmount *mnt)
+{
+	int cpu = get_cpu();
+	__mnt_drop_write(mnt, cpu);
+	put_cpu();
+}
 EXPORT_SYMBOL_GPL(mnt_drop_write);

 /*
diff -puN fs/open.c~fput-cpu fs/open.c
--- lxc/fs/open.c~fput-cpu	2007-02-20 17:59:48.000000000 -0800
+++ lxc-dave/fs/open.c	2007-02-20 17:59:49.000000000 -0800

Page 7 of 8 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

@@ -715,6 +715,10 @@ static struct file *__dentry_open(struct
 	f->f_path.mnt = mnt;
 	f->f_pos = 0;
 	f->f_op = fops_get(inode->i_fop);
+	/*
+	 * This is OK to race because it is just a hint
+	 */
+	f->f_write_cpu = smp_processor_id();
 	file_move(f, &inode->i_sb->s_files);

 	if (!open && f->f_op)
diff -puN include/linux/fs.h~fput-cpu include/linux/fs.h
--- lxc/include/linux/fs.h~fput-cpu	2007-02-20 17:59:48.000000000 -0800
+++ lxc-dave/include/linux/fs.h	2007-02-20 17:59:49.000000000 -0800
@@ -766,6 +766,7 @@ struct file {
 	struct fown_struct	f_owner;
 	unsigned int		f_uid, f_gid;
 	struct file_ra_state	f_ra;
+	int f_write_cpu;

 	unsigned long		f_version;
 #ifdef CONFIG_SECURITY
diff -puN include/linux/mount.h~fput-cpu include/linux/mount.h
--- lxc/include/linux/mount.h~fput-cpu	2007-02-20 17:59:49.000000000 -0800
+++ lxc-dave/include/linux/mount.h	2007-02-20 17:59:49.000000000 -0800
@@ -94,6 +94,7 @@ static inline int __mnt_is_readonly(stru

 extern int mnt_want_write(struct vfsmount *mnt);
 extern void mnt_drop_write(struct vfsmount *mnt);
+extern void __mnt_drop_write(struct vfsmount *mnt, int cpu);
 extern void mntput_no_expire(struct vfsmount *mnt);
 extern void mnt_pin(struct vfsmount *mnt);
 extern void mnt_unpin(struct vfsmount *mnt);
_

Containers mailing list
Containers@lists.osdl.org
https://lists.osdl.org/mailman/listinfo/containers

Page 8 of 8 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

