Subject: [IPC]: Logical refcount loop in ipc ns -> massive leakage
Posted by dev on Wed, 31 Jan 2007 16:48:49 GMT

View Forum Message <> Reply to Message

Guys,

Though | have no patch in the hands for mainstream,
| feel a responsibility to report one majore problem
related to IPC namespace design.

The problem is about refcounting scheme which is used.

There is a leak in IPC namespace due to refcounting loop:

shm segment holds a file, file holds namespace,

namespace holds shm segment. Loop.

| suppose the problem is not only IPC-related

and will happen with some other namespaces as well so should
be a good lesson for us.

The question is how to fix this.

In OpenVZ we always used 2 different refcounters exactly for this purposes:
process counter and reference counter.

When the process counter becomes zero (i.e. the last process from the
namespace dies) nhamespace objects are destroyed and cleanuped.

And the reference counter on the namespace as always protects the structure
memory only.

How to fix this in mainstream?

Sure the same approach as above can be used. However, | dislike
the idea of adding process-counter to each namespace requiring this.
Any ideas?

The relevant OpenVZ patch can be found here:
http://git.openvz.org/?p=linux-2.6.18-openvz;a=commit;h=b11c6ed6e92f0f2291217751596d7d764
6b3eal7

Thanks,
Kirill

Containers mailing list
Containers@lists.osdl.org
https://lists.osdl.org/mailman/listinfo/containers

Subject: Re: [IPC]: Logical refcount loop in ipc ns -> massive leakage
Posted by ebiederm on Sat, 03 Feb 2007 02:47:00 GMT

View Forum Message <> Reply to Message

Page 1 of 14 ---- Cenerated from OpenVZ Forum


https://new-forum.openvz.org/index.php?t=usrinfo&id=19
https://new-forum.openvz.org/index.php?t=rview&th=3406&goto=17425#msg_17425
https://new-forum.openvz.org/index.php?t=post&reply_to=17425
https://new-forum.openvz.org/index.php?t=usrinfo&id=220
https://new-forum.openvz.org/index.php?t=rview&th=3406&goto=17436#msg_17436
https://new-forum.openvz.org/index.php?t=post&reply_to=17436
https://new-forum.openvz.org/index.php

Kirill Korotaev <dev@sw.ru> writes:

> Guys,

>

> Though | have no patch in the hands for mainstream,

> | feel a responsibility to report one majore problem

> related to IPC namespace design.

>

> The problem is about refcounting scheme which is used.
> There is a leak in IPC namespace due to refcounting loop:
> shm segment holds a file, file holds namespace,

> namespace holds shm segment. Loop.

> | suppose the problem is not only IPC-related

> and will happen with some other namespaces as well so should
> be a good lesson for us.

>

> The question is how to fix this.

>

> In OpenVZ we always used 2 different refcounters exactly for this purposes:
> process counter and reference counter.

> When the process counter becomes zero (i.e. the last process from the

> namespace dies) namespace objects are destroyed and cleanuped.

> And the reference counter on the namespace as always protects the structure
> memory only.

>

> How to fix this in mainstream?

> Sure the same approach as above can be used. However, | dislike

> the idea of adding process-counter to each namespace requiring this.

> Any ideas?

I'm slowly beginning to digest this, | don't quite follow what the
loop really is yet.

If we don't get to the point where we need multiple counters process
counter's are not quite the right concept. We need counters from things
that keep the namespace alive.

An open file descriptor to a shm segment needs to keep the namespace
alive.

A process attached to the ipc namespace needs to keep the namespace
alive.

| will have to look at the code closely to see how what you are
describing can occur, and what we can do to preserve the previous
two properties.

Eric

Page 2 of 14 ---- Cenerated from OpenVZ Forum


https://new-forum.openvz.org/index.php

Containers mailing list
Containers@lists.osdl.org
https://lists.osdl.org/mailman/listinfo/containers

Subject: Re: [IPC]: Logical refcount loop in ipc ns -> massive leakage
Posted by ebiederm on Sun, 04 Feb 2007 08:28:37 GMT

View Forum Message <> Reply to Message

Kirill Korotaev <dev@sw.ru> writes:

> Guys,

>

> Though | have no patch in the hands for mainstream,

> | feel a responsibility to report one majore problem

> related to IPC namespace design.

>

> The problem is about refcounting scheme which is used.
> There is a leak in IPC namespace due to refcounting loop:
> shm segment holds a file, file holds namespace,

> namespace holds shm segment. Loop.

> | suppose the problem is not only IPC-related

> and will happen with some other namespaces as well so should
> be a good lesson for us.

>

> The question is how to fix this.

>

> In OpenVZ we always used 2 different refcounters exactly for this purposes:
> process counter and reference counter.

> When the process counter becomes zero (i.e. the last process from the

> namespace dies) namespace objects are destroyed and cleanuped.

> And the reference counter on the namespace as always protects the structure
> memory only.

>

> How to fix this in mainstream?

> Sure the same approach as above can be used. However, | dislike

> the idea of adding process-counter to each namespace requiring this.

> Any ideas?

I'm still looking and refining, but here is what | have so far:

The struct file that is used appears impossible for user space

to get at directly. Therefore | believe we can instead increment

and decrement the namespace count at the same places we increment
and decrement shm_nattach. Ideally we would only increment the
namespace count when shm_nattach goes from 0 to 1 and we would

only decrement the namespace count when shm_nattach goes from 1 to O.

Page 3 of 14 ---- Cenerated from OpenVZ Forum


https://new-forum.openvz.org/index.php?t=usrinfo&id=220
https://new-forum.openvz.org/index.php?t=rview&th=3406&goto=17438#msg_17438
https://new-forum.openvz.org/index.php?t=post&reply_to=17438
https://new-forum.openvz.org/index.php

Does that make sense?

Eric

Containers mailing list
Containers@lists.osdl.org
https://lists.osdl.org/mailman/listinfo/containers

Subject: Re: [IPC]: Logical refcount loop in ipc ns -> massive leakage
Posted by Alexey Kuznetsov on Mon, 05 Feb 2007 10:14:02 GMT

View Forum Message <> Reply to Message

Hello!

> The struct file that is used appears impossible for user space

> to get at directly. Therefore | believe we can instead increment

> and decrement the namespace count at the same places we increment

> and decrement shm_nattach. Ideally we would only increment the

> namespace count when shm_nattach goes from 0 to 1 and we would

> only decrement the namespace count when shm_nattach goes from 1 to 0.
>

> Does that make sense?
Yes, this would save the day.

Indeed, shm_file_ns() is required only when the segment is already mapped,
except for shm_mmap() and even there shm_nattch is incremented before
do_mmap() is used. It will work.

Possibility to use this file directly will be lost. It is a little unpleasant;

openvz checkpointing used it to restore sysv shm mappings like another file
mappings, it was nice, but this code can be a little uglified to treat

those mapping specially. No harm either.

Alexey

Containers mailing list
Containers@lists.osdl.org
https://lists.osdl.org/mailman/listinfo/containers

Subject: Re: [IPC]: Logical refcount loop in ipc ns -> massive leakage
Posted by ebiederm on Mon, 05 Feb 2007 18:23:06 GMT

View Forum Message <> Reply to Message

Page 4 of 14 ---- Cenerated from OpenVZ Forum


https://new-forum.openvz.org/index.php?t=usrinfo&id=207
https://new-forum.openvz.org/index.php?t=rview&th=3406&goto=17441#msg_17441
https://new-forum.openvz.org/index.php?t=post&reply_to=17441
https://new-forum.openvz.org/index.php?t=usrinfo&id=220
https://new-forum.openvz.org/index.php?t=rview&th=3406&goto=17439#msg_17439
https://new-forum.openvz.org/index.php?t=post&reply_to=17439
https://new-forum.openvz.org/index.php

Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> writes:

> Yes, this would save the day.

>

> Indeed, shm_file_ns() is required only when the segment is already mapped,
> except for shm_mmap() and even there shm_nattch is incremented before
> do_mmap() is used. It will work.

>

> Possibility to use this file directly will be lost. It is a little unpleasant;

> openvz checkpointing used it to restore sysv shm mappings like another file
> mappings, it was nice, but this code can be a little uglified to treat

> those mapping specially. No harm either.

>

> Alexey

So | don't know if this will solve the checkpoint problem. However
| find a slightly cleaner way to handle this that should be a little
more maintainable. I'm still testing this patch so there might

be a stupid bug but the general idea remains.

Subject: [PATCH] shm: Make sysv ipc shared memory use stacked files.

The current ipc shared memory code runs into several problems

because it does not quiet use files like the rest of the kernel.

With the option of backing ipc shared memory with either hugetlbfs

or ordinary shared memory the problems got worse. With the added
support for ipc namespaces things behaved so unexpected that

we now have several bad namespace reference counting bugs when using
what appears at first glance to be a reasonable idiom.

So to attack these problems and hopefully make the code more
maintainable this patch simply uses the files provided but

other parts of the kernel and builds it's own files out of them.

The shm files are allocated in do_shmat and freed with their last
unmap. The file and vm operations that we don't want to implement
or we don't implement completely we just delegate to the operations
of our backing file.

This means that we now get an accurate shm_nattch count for
we have a hugetlbfs inode for backing store, and the shm accounting
of last attach and last detach time work as well.

This means that getting a reference to the ipc namespace when we
create the file and dropping the referenece in the release method
is now safe and correct.

This means we no longer need a special case for clearing VM_MAYWRITE
as our file descriptor now only has write permissions when we have

Page 5 of 14 ---- Cenerated from OpenVZ Forum


https://new-forum.openvz.org/index.php

requested write access when calling shmat. Although VM_SHARED is now
cleared as well which | believe is harmless and is mostly likely a minor
bug fix.

By using the same set of operations for both the hugetlb case and
regular shared memory case shmdt is not simplified and made slightly
more correct as now the test "vma->vm_ops == &shm_vm_ops" is 100%
accurate in spotting all shared memory regions generated from sysvipc
shared memory.

Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>

ipc/shm.c | 204 ++++++++++++++++++++H++tttt bttt bbb
1 files changed, 133 insertions(+), 71 deletions(-)

diff --git a/ipc/shm.c b/ipc/shm.c
index f8e10a2..e0b6544 100644
--- alipc/shm.c

+++ b/ipc/shm.c

@@ -37,11 +37,21 @@
#include <linux/seq_file.h>
#include <linux/mutex.h>
#include <linux/nsproxy.h>
+#include <linux/mount.h>

#include <asm/uaccess.h>
#include "util.h"

+struct shm_file_data {

+int id;

+ struct ipc_namespace *ns;

+ struct file *file;

+ const struct vm_operations_struct *vm_ops;

+};

+

+#define shm_file_data(file) (*((struct shm_file_data **)&(file)->private_data))
+

static struct file_operations shm_file_operations;
static struct vm_operations_struct shm_vm_ops;

@@ -60,8 +70,8 @@ static struct ipc_ids init_shm_ids;

static int newseg (struct ipc_namespace *ns, key_t key,
int shmflg, size_t size);

-static void shm_open (struct vm_area_struct *shmd);

-static void shm_close (struct vm_area_struct *shmd);

+static void shm_open (struct vm_area_struct *vma);

Page 6 of 14 ---- Cenerated from OpenVZ Forum


https://new-forum.openvz.org/index.php

+static void shm_close (struct vm_area_struct *vma);

static void shm_destroy (struct ipc_namespace *ns, struct shmid_kernel *shp);

#ifdef CONFIG_PROC_FS

static int sysvipc_shm_proc_show(struct seq_file *s, void *it);

@@ -150,11 +160,14 @@ static inline int shm_addid(struct ipc_namespace *ns, struct
shmid_kernel *shp)

-static inline void shm_inc(struct ipc_namespace *ns, int id)
+/* This is called by fork, once for every shm attach. */
+static void shm_open(struct vm_area_struct *vma)

{
+ struct file *file = vma->vm_file;
+ struct shm_file_data *sfd = shm_file_data(file);

struct shmid_kernel *shp;

- shp = shm_lock(ns, id);
+ shp = shm_lock(sfd->ns, sfd->id);
BUG_ON(!shp);
shp->shm_atim = get_seconds();
shp->shm_lprid = current->tgid;
@@ -162,15 +175,6 @@ static inline void shm_inc(struct ipc_namespace *ns, int id)
shm_unlock(shp);

}

-#define shm_file_ns(file) (*((struct ipc_namespace **)&(file)->private_data))
-/* This is called by fork, once for every shm attach. */
-static void shm_open(struct vm_area_struct *shmd)
-{
- shm_inc(shm_file_ns(shmd->vm_file),
- shmd->vm_file->f_path.dentry->d_inode->i_ino);
-}
_/*
* shm_destroy - free the struct shmid_kernel
*
@@ -195,23 +199,21 @@ static void shm_destroy(struct ipc_namespace *ns, struct
shmid_kernel *shp)

}

/~k

- * remove the attach descriptor shmd.

+ * remove the attach descriptor vma.
* free memory for segment if it is marked destroyed.
* The descriptor has already been removed from the current->mm->mmap list
* and will later be kfree()d.

Page 7 of 14 ---- Cenerated from OpenVZ Forum


https://new-forum.openvz.org/index.php

*/
-static void shm_close (struct vm_area_struct *shmd)
+static void shm_close (struct vm_area_struct *vma)
{
- struct file * file = shmd->vm_file;
- int id = file->f_path.dentry->d_inode->i_ino;
+ struct file * file = vma->vm_file;
+ struct shm_file_data *sfd = shm_file_data(file);
struct shmid_kernel *shp;
- struct ipc_namespace *ns;
- ns = shm_file_ns(file);
+ struct ipc_namespace *ns = sfd->ns;

mutex_lock(&shm_ids(ns).mutex);
/* remove from the list of attaches of the shm segment */
- shp = shm_lock(ns, id);
+ shp = shm_lock(ns, sfd->id);
BUG_ON(!shp);
shp->shm_lprid = current->tgid;
shp->shm_dtim = get_seconds();
@@ -224,46 +226,90 @@ static void shm_close (struct vm_area_struct *shmd)
mutex_unlock(&shm_ids(ns).mutex);

}

+struct page *shm_nopage(struct vm_area_struct *vma, unsigned long address, int *type)
gl

+ struct file *file = vma->vm_file;

+ struct shm_file_data *sfd = shm_file_data(file);

+

+ return sfd->vm_ops->nopage(vma, address, type);

+}

+

+#ifdef CONFIG_NUMA

+int shm_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
H

+ struct file *file = vma->vm_file;

+ struct shm_file_data *sfd = shm_file_data(file);

+interr=0;

+ if (sfd->vm_ops->set_policy)

+ err = sfd->vm_ops->set_policy(vma, new);

+ return err;

+}

+

+struct mempolicy *shm_get_policy(struct vm_area_struct *vma, unsigned long addr)
+

+ struct file *file = vma->vm_file;

+ struct shm_file_data *sfd = shm_file_data(file);

Page 8 of 14 ---- Cenerated from OpenVZ Forum


https://new-forum.openvz.org/index.php

+ struct mempolicy *pol = NULL,;

+

+ if (sfd->vm_ops->get_policy)

+ pol = sfd->vm_ops->get_policy(vma, addr);

+ else

+ pol = vma->vm_policy;

+ return pol;

+}

+#endif

+

static int shm_mmap(struct file * file, struct vm_area_struct * vma)
{

+ struct shm_file_data *sfd = shm_file_data(file);
int ret;

- ret = shmem_mmap(file, vma);

-if (ret ==0) {

- vma->vm_ops = &shm_vm_ops;

- if ({(vma->vm_flags & VM_WRITE))

- vma->vm_flags &= ~VM_MAYWRITE;

- shm_inc(shm_file_ns(file), file->f path.dentry->d_inode->i_ino);
-}

+ ret = sfd->file->f _op->mmap(sfd->file, vma);
+if (ret 1= 0)

+ return ret;

+ sfd->vm_ops = vma->vm_ops;

+ vma->vm_ops = &shm_vm_ops;

+ shm_open(vma);

return ret;

}

static int shm_release(struct inode *ino, struct file *file)
{

- struct ipc_namespace *ns;

+ struct shm_file_data *sfd = shm_file_data(file);

- ns = shm_file_ns(file);
- put_ipc_ns(ns);
- shm_file_ns(file) = NULL;
+ put_ipc_ns(sfd->ns);
+ shm_file_data(file) = NULL,;
+ kfree(sfd);
return O;

}

+#ifndef CONFIG_MMU
+static unsigned long shm_get_unmapped_area(struct file *file,

Page 9 of 14 ---- Cenerated from OpenVZ Forum


https://new-forum.openvz.org/index.php

+ unsigned long addr, unsigned long len, unsigned long pgoff,
+ unsigned long flags)
H
+ struct shm_file_data *sfd = shm_file_data(file);
+ return sfd->file->f_op->get_unmapped_area(sfd->file, addr, len, pgoff,
+  flags);
+)
+#else
+#define shm_get_unmapped_area NULL
+#endif
+
static struct file_operations shm_file_operations = {
.mmap =shm_mmap,
.release = shm_release,
-#ifndef CONFIG_MMU
- .get_unmapped_area = shmem_get_unmapped_area,
-#endif
+.get_unmapped_area = shm_get_unmapped_area,

I3

static struct vm_operations_struct shm_vm_ops = {
.open = shm_open, /* callback for a new vm-area open */
.close = shm_close, /* callback for when the vm-area is released */

- .nopage = shmem_nopage,

-#if defined(CONFIG_NUMA) && defined(CONFIG_SHMEM)

- .set_policy = shmem_set_policy,

- .get_policy = shmem_get_policy,

+ .nopage = shm_nopage,

+#if defined(CONFIG_NUMA)

+ .set_policy = shm_set_policy,

+ .get_policy = shm_get_policy,

#endif

I3

@@ -330,13 +376,6 @@ static int newseg (struct ipc_namespace *ns, key _t key, int shmflg,
size_tsize)
shp->shm_nattch = 0;
shp->id = shm_buildid(ns, id, shp->shm_perm.seq);
shp->shm_file = file;
- file->f_path.dentry->d_inode->i_ino = shp->id;
- shm_file_ns(file) = get_ipc_ns(ns);
- I* Hugetlb ops would have already been assigned. */
- if ({(shmflg & SHM_HUGETLB))
- file->f_op = &shm_file_operations;

ns->shm_tot += numpages;

Page 10 of 14 ---- Cenerated from OpenVZ Forum


https://new-forum.openvz.org/index.php

shm_unlock(shp);
@@ -607,10 +646,7 @@ asmlinkage long sys_shmctl (int shmid, int cmd, struct shmid_ds __user
*buf)
tbuf.shm_ctime = shp->shm_ctim;
tbuf.shm_cpid = shp->shm_cprid;
tbuf.shm_Ipid = shp->shm_Iprid;
- if (tis_file_hugepages(shp->shm_file))
- tbuf.shm_nattch = shp->shm_nattch;
- else
- tbuf.shm_nattch = file_count(shp->shm_file) - 1;
+ tbuf.shm_nattch = shp->shm_nattch;
shm_unlock(shp);
if(copy_shmid_to_user (buf, &tbuf, version))
err = -EFAULT;
@@ -781,6 +817,8 @@ long do_shmat(int shmid, char __user *shmaddr, int shmflg, ulong
*raddr)
int acc_mode;
void *user_addr;
struct ipc_namespace *ns;
+ struct shm_file_data *sfd;
+ mode_tf mode;

if (shmid < 0) {
err = -EINVAL;
@@ -806,9 +844,11 @@ long do_shmat(int shmid, char __user *shmaddr, int shmflg, ulong
*raddr)
if (shmflg & SHM_RDONLY) {
prot = PROT_READ;
acc_mode = S _IRUGO;
+ f_mode = FMODE_READ,;
} else {
prot = PROT_READ | PROT_WRITE;
acc_mode =S_IRUGO | S_IWUGO;
+ f_mode = FMODE_READ | FMODE_WRITE;
}
if (shmflg & SHM_EXEC) {
prot |= PROT_EXEC,;
@@ -820,29 +860,43 @@ long do_shmat(int shmid, char __user *shmaddr, int shmflg, ulong
*raddr)
* additional creator id...
*/
ns = current->nsproxy->ipc_ns;
+ err = -EINVAL,
shp = shm_lock(ns, shmid);
- if(shp == NULL) {
- err = -EINVAL;
+ if(shp == NULL)
goto out;

Page 11 of 14 ---- Cenerated from OpenVZ Forum


https://new-forum.openvz.org/index.php

)
+
err = shm_checkid(ns, shp,shmid);
-if (err) {
- shm_unlock(shp);
- goto out;
-}
- if (ipcperms(&shp->shm_perm, acc_mode)) {
- shm_unlock(shp);
- err = -EACCES;
- goto out;
-}
+if (err)
+ goto out_unlock;
+
+err = -EACCES;
+ if (ipcperms(&shp->shm_perm, acc_mode))
+ goto out_unlock;

err = security_shm_shmat(shp, shmaddr, shmflg);
-if (err) {
- shm_unlock(shp);
- return err;
-}
- file = shp->shm_file;
+if (err)
+ goto out_unlock;
+
+err = -ENOMEM,;
+ sfd = kzalloc(sizeof(*sfd), GFP_KERNEL);
+ if (Isfd)
+ goto out_unlock;
+
+ file = get_empty_filp();
+ if (file)
+ goto out_free;
+
+ file->f_op = &shm_file_operations;
+ file->private_data = sfd,;
+ file->f_path.dentry = dget(shp->shm_file->f _path.dentry);
+ file->f_path.mnt = mntget(shp->shm_file->f _path.mnt);
+ file->f_mapping = shp->shm_file->f_mapping;
+ file->f_mode = f_mode;
+ sfd->id = shp->id;
+ sfd->ns = get_ipc_ns(ns);
+ sfd->file = shp->shm_file;
+ sfd->vm_ops = NULL,;

Page 12 of 14 ---- Cenerated from OpenVZ Forum


https://new-forum.openvz.org/index.php

+
size = i_size_read(file->f_path.dentry->d_inode);
shp->shm_nattch++;
shm_unlock(shp);
@@ -866,6 +920,8 @@ long do_shmat(int shmid, char __user *shmaddr, int shmflg, ulong
*raddr)
invalid:
up_write(&current->mm->mmap_sem);

+ fput(file);

+
mutex_lock(&shm_ids(ns).mutex);
shp = shm_lock(ns, shmid);
BUG_ON(!shp);

@@ -883,6 +939,12 @@ invalid:
err = PTR_ERR(user_addr);
out:
return err;

+out_free:

+ kfree(sfd);

+out_unlock:

+ shm_unlock(shp);

+ goto out;

+

}

asmlinkage long sys_shmat(int shmid, char __user *shmaddr, int shmflg)
@@ -944,7 +1006,7 @@ asmlinkage long sys_shmdt(char __user *shmaddr)
* a fragment created by mprotect() and/or munmap(), or it
* otherwise it starts at this address with no hassles.
*/
- if ((vma->vm_ops == &shm_vm_ops || is_vm_hugetlb_page(vma)) &&
+ if ((vma->vm_ops == &shm_vm_ops) &&
(vma->vm_start - addr)/PAGE_SIZE == vma->vm_pgoff) {

@@ -973,7 +1035,7 @@ asmlinkage long sys_shmdt(char __user *shmaddr)
next = vma->vm_next;

/* finding a matching vma now does not alter retval */
- if ((vma->vm_ops == &shm_vm_ops || is_vm_hugetlb_page(vma)) &&
+ if ((vma->vm_ops == &shm_vm_ops) &&

(vma->vm_start - addr)/PAGE_SIZE == vma->vm_pgoff)

do_munmap(mm, vma->vm_start, vma->vm_end - vma->vm_start);
@@ -1004,7 +1066,7 @@ static int sysvipc_shm_proc_show(struct seq_file *s, void *it)
shp->shm_segsz,
shp->shm_cprid,

Page 13 of 14 ---- Cenerated from OpenVZ Forum


https://new-forum.openvz.org/index.php

shp->shm_lprid,
- is_file_hugepages(shp->shm_file) ? (file_count(shp->shm_file) - 1) : shp->shm_nattch,
+ shp->shm_nattch,

shp->shm_perm.uid,

shp->shm_perm.gid,

shp->shm_perm.cuid,

1.4.4.1.9278f

Containers mailing list
Containers@lists.osdl.org
https://lists.osdl.org/mailman/listinfo/containers

Page 14 of 14 ---- Cenerated from OpenVZ Forum


https://new-forum.openvz.org/index.php

