
Subject: [RFC] mm-controller
Posted by Peter Zijlstra on Thu, 21 Jun 2007 09:32:44 GMT
View Forum Message <> Reply to Message

Having read the RSS and Pagecache controllers some things bothered me.

 - the duplication of much of the reclaim data (not code)
 and the size increase as a result thereof.

 - the clear distinction between mapped (RSS) and unmapped (pagecache)
 limits. Linux doesn't impose individual limits on these, so I don't
 see why containers should.

 - lack of soft limits (but I understand that that is WIP :-)

 - while I appreciate the statistical nature of one container
 per page, I'm bit sceptical because there is no forced migration
 cycle.

So, while pondering the problem, I wrote down some ideas....

While I appreciate that people do not like to start over again, I think
it would be fruit-full to at least discuss the various design decisions.

(Will be travelling shorty, so replies might take longer than usual)

Mapped pages:
~~~~~~~~~~~~

Basic premises:
  - accounting per address_space/anon_vma

Because, if the data is shared between containers isolation is broken anyway
and we might as well charge them equally [1].

Move the full reclaim structures from struct zone to these structures.

	struct reclaim;

	struct reclaim_zone {
		spinlock_t		lru_lock;

		struct list_head 	active;

Page 1 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=788
https://new-forum.openvz.org/index.php?t=rview&th=2775&goto=14296#msg_14296
https://new-forum.openvz.org/index.php?t=post&reply_to=14296
https://new-forum.openvz.org/index.php


		struct list_head 	inactive;

		unsigned long		nr_active;
		unsigned long		nr_inactive;

		struct reclaim		*reclaim;
	};

	struct reclaim {
		struct reclaim_zone	zone_reclaim[MAX_NR_ZONES];

		spinlock_t		containers_lock;
		struct list_head	containers;
		unsigned long		nr_containers;
	};

	struct address_space {
		...
		struct reclaim reclaim;
	};

	struct anon_vma {
		...
		struct reclaim reclaim;
	};

Then, on instantiation of either address_space or anon_vma we string together
these reclaim domains with a reclaim scheduler.

	struct sched_item;

	struct reclaim_item {
		struct sched_item	sched_item;
		struct reclaim_zone	*reclaim_zone;
	};

	struct container {
		...
		struct sched_queue	reclaim_queue;
	};

	sched_enqueue(&container->reclaim_queue, &reclaim_item.sched_item);

Page 2 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php


Then, shrink_zone() would use the appropriate containers' reclaim_queue
to find an reclaim_item to run isolate_pages on.

	struct sched_item *si;
	struct reclaim_item *ri;
	struct reclaim_zone *rzone;
	LIST_HEAD(pages);

	si = sched_current(&container->reclaim_queue);
	ri = container_of(si, struct reclaim_item, sched_item); 
	rzone = ri->reclaim_zone;
	nr_scanned = isolate_pages(rzone, &pages);

	weight = (rzone->nr_active + rzone->nr_inactive) /
			(nr_scanned * rzone->reclaim->nr_containers);

	sched_account(&container->reclaim_queue,
			 &rzone->sched_item, weight);

We use a scheduler to interleave the various lists instead of a sequence of
lists to create the appearance of a single longer list. That is, we want each
tail to be of equal age.

 [ it would probably make sense to drive the shrinking of the active list
   from the use of the inactive list. This has the advantage of 'hiding' 
   the active list.

   Much like proposed here: http://lkml.org/lkml/2005/12/7/57
   and here:  http://programming.kicks-ass.net/kernel-patches/page-replace
/2.6.21-pr0/useonce-new-shrinker.patch
]

Unmapped pages:
~~~~~~~~~~~~~~

Since unmapped pages lack a 'release' (or dis-associate) event, the fairest
thing is to account each container a fraction relative to its use of these
unmapped pages.

Use would constitute of the following events:
 - pagecache insertion
 - pagecache lookup

Page 3 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Each containers proportion will be calculated using the floating proportions
introduced in the per BDI dirty limit patches.

	struct prop_global	pagecache_proportion;
	struct reclaim		pagecache_reclaim;

	enum reclaim_item_flags {
		ri_pagecache,
	};

	struct reclaim_item {
		...
		unsigned long flags;
	};

	struct container {
		...
		struct prop_local_single pagecache_usage;
	};

and add it to the vm scheduler.

	if (ri->flags & ri_pagecache) {
		unsigned long num, denom;
		unsigned long long w;
		
		prop_fraction(&pagecache_proportion,
			 &container->pagecache_usage,
			 &num, &denom);

		w = (rzone->nr_active + rzone->nr_inactive) * denom;
		do_div(w, num);
		
		weight = (unsigned long)w * nr_scanned;
	} else
	

Considerations:
~~~~~~~~~~~~~~

Advantages:
 - each page is on a single list
 - no distinction between container vs global reclaim
 - no increase of sizeof(struct page)

Page 4 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php


 - pages are but on a single list
 - breaks up lru_lock (might get a scheduler lock in return)

Disadvantages:
 - major overhaul of the reclaim code
 - naive container usage calculation will be O(nr vmas)
   however a smarter scheme would still be O(nr containers)

Notes:
~~~~~

[1] if needed one could refine this using floating proportions
 charging each container a fraction relative to its usage

Page 5 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

