
Subject: Re: [ckrm-tech] [RFC][PATCH][2/4] Add RSS accounting and control
Posted by Balbir Singh on Mon, 19 Feb 2007 16:17:27 GMT
View Forum Message <> Reply to Message

Vaidyanathan Srinivasan wrote:
>
> Balbir Singh wrote:
>> Paul Menage wrote:
>>> On 2/19/07, Balbir Singh <balbir@in.ibm.com> wrote:
>>>>> More worrisome is the potential for use-after-free. What prevents the
>>>>> pointer at mm->container from referring to freed memory after we're dropped
>>>>> the lock?
>>>>>
>>>> The container cannot be freed unless all tasks holding references to it are
>>>> gone,
>>> ... or have been moved to other containers. If you're not holding
>>> task->alloc_lock or one of the container mutexes, there's nothing to
>>> stop the task being moved to another container, and the container
>>> being deleted.
>>>
>>> If you're in an RCU section then you can guarantee that the container
>>> (that you originally read from the task) and its subsystems at least
>>> won't be deleted while you're accessing them, but for accounting like
>>> this I suspect that's not enough, since you need to be adding to the
>>> accounting stats on the correct container. I think you'll need to hold
>>> mm->container_lock for the duration of memctl_update_rss()
>>>
>>> Paul
>>>
>> Yes, that sounds like the correct thing to do.
>>
>
> Accounting accuracy will anyway be affected when a process is migrated
> while it is still allocating pages. Having a lock here does not
> necessarily improve the accounting accuracy. Charges from the old
> container would have to be moved to the new container before deletion
> which implies all tasks have already left the container and no
> mm_struct is holding a pointer to it.
>
> The only condition that will break our code will be if the container
> pointer becomes invalid while we are updating stats. This can be
> prevented by RCU section as mentioned by Paul. I believe explicit
> lock and unlock may not provide additional benefit here.
>

Yes, if the container pointer becomes invalid, then consider the following
scenario

Page 1 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=675
https://new-forum.openvz.org/index.php?t=rview&th=1994&goto=10470#msg_10470
https://new-forum.openvz.org/index.php?t=post&reply_to=10470
https://new-forum.openvz.org/index.php

1. Use RCU, get a reference to the container
2. All tasks/mm's move to newer container (and the accounting information
 moves)
3. Container is RCU deleted
4. We still charge the older container that is going to be deleted soon
5. Release RCU
6. RCU garbage collects (callback runs)

We end up charging/uncharging a soon to be deleted container, that
is not good.

What did I miss?

> --Vaidy
>

--
	Warm Regards,
	Balbir Singh

Subject: Re: [ckrm-tech] [RFC][PATCH][2/4] Add RSS accounting and control
Posted by Vaidyanathan Srinivas on Tue, 20 Feb 2007 06:40:34 GMT
View Forum Message <> Reply to Message

Balbir Singh wrote:
> Vaidyanathan Srinivasan wrote:
>> Balbir Singh wrote:
>>> Paul Menage wrote:
>>>> On 2/19/07, Balbir Singh <balbir@in.ibm.com> wrote:
>>>>>> More worrisome is the potential for use-after-free. What prevents the
>>>>>> pointer at mm->container from referring to freed memory after we're dropped
>>>>>> the lock?
>>>>>>
>>>>> The container cannot be freed unless all tasks holding references to it are
>>>>> gone,
>>>> ... or have been moved to other containers. If you're not holding
>>>> task->alloc_lock or one of the container mutexes, there's nothing to
>>>> stop the task being moved to another container, and the container
>>>> being deleted.
>>>>
>>>> If you're in an RCU section then you can guarantee that the container
>>>> (that you originally read from the task) and its subsystems at least
>>>> won't be deleted while you're accessing them, but for accounting like
>>>> this I suspect that's not enough, since you need to be adding to the
>>>> accounting stats on the correct container. I think you'll need to hold
>>>> mm->container_lock for the duration of memctl_update_rss()

Page 2 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1203
https://new-forum.openvz.org/index.php?t=rview&th=1994&goto=10510#msg_10510
https://new-forum.openvz.org/index.php?t=post&reply_to=10510
https://new-forum.openvz.org/index.php

>>>>
>>>> Paul
>>>>
>>> Yes, that sounds like the correct thing to do.
>>>
>> Accounting accuracy will anyway be affected when a process is migrated
>> while it is still allocating pages. Having a lock here does not
>> necessarily improve the accounting accuracy. Charges from the old
>> container would have to be moved to the new container before deletion
>> which implies all tasks have already left the container and no
>> mm_struct is holding a pointer to it.
>>
>> The only condition that will break our code will be if the container
>> pointer becomes invalid while we are updating stats. This can be
>> prevented by RCU section as mentioned by Paul. I believe explicit
>> lock and unlock may not provide additional benefit here.
>>
>
> Yes, if the container pointer becomes invalid, then consider the following
> scenario
>
> 1. Use RCU, get a reference to the container
> 2. All tasks/mm's move to newer container (and the accounting information
> moves)
> 3. Container is RCU deleted
> 4. We still charge the older container that is going to be deleted soon
> 5. Release RCU
> 6. RCU garbage collects (callback runs)
>
> We end up charging/uncharging a soon to be deleted container, that
> is not good.
>
> What did I miss?

You are right. We should go with your read/write lock method. Later
we can evaluate if using an RCU and then fixing the wrong charge will
work better or worse.

--Vaidy

Page 3 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

