
Subject: [PATCH][RFC] incorrect direct io error handling (v3)
Posted by Dmitriy Monakhov on Wed, 24 Jan 2007 19:04:52 GMT
View Forum Message <> Reply to Message

incorrect direct io error handling (v3)
Changes from v2:
 - Remove BUG_ON(!mutex_is_locked(..)) for non blkdev.
 - vmtruncate() called from generic_file_aio_write().
 - depends on patch titled:
 [PATH][RFC] mm: Move common segments checks to separate function

LOG:
If generic_file_direct_write() has fail (ENOSPC condition) inside
__generic_file_aio_write_nolock() it may have instantiated
a few blocks outside i_size. And fsck will complain about wrong i_size
(ext2, ext3 and reiserfs interpret i_size and biggest block difference as error),
after fsck will fix error i_size will be increased to the biggest block,
but this blocks contain gurbage from previous write attempt, this is not
information leak, but its silence file data corruption. This issue affect
fs regardless the values of blocksize or pagesize.
We need truncate any block beyond i_size after write have failed , do in simular
generic_file_buffered_write() error path. Initialy i've proposed do it in
__generic_file_aio_write_nolock() with explicit guarantee i_mutex always held,
but not everybody was agree with it. So we may safely call vmtruncate() inside
generic_file_aio_write(), here i_mutex already locked.

TEST_CASE:
open("/mnt/test/BIG_FILE", O_WRONLY|O_CREAT|O_DIRECT, 0666) = 3
write(3, "aaaaaaaaaaaaaaa"..., 104857600) = -1 ENOSPC (No space left on device)

#stat /mnt/test/BIG_FILE
 File: `/mnt/test/BIG_FILE'
 Size: 0 Blocks: 110896 IO Block: 1024 regular empty file
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<^^^^^^^^file size is less than biggest block idx

Device: fe07h/65031d Inode: 14 Links: 1
Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)
Access: 2007-01-24 20:03:38.000000000 +0300
Modify: 2007-01-24 20:03:38.000000000 +0300
Change: 2007-01-24 20:03:39.000000000 +0300

#fsck.ext3 -f /dev/VG/test
e2fsck 1.39 (29-May-2006)
Pass 1: Checking inodes, blocks, and sizes
Inode 14, i_size is 0, should be 56556544. Fix<y>? yes
Pass 2: Checking directory structure

Signed-off-by: Dmitriy Monakhov <dmonakhov@openvz.org>

Page 1 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=840
https://new-forum.openvz.org/index.php?t=rview&th=1849&goto=9841#msg_9841
https://new-forum.openvz.org/index.php?t=post&reply_to=9841
https://new-forum.openvz.org/index.php

diff --git a/mm/filemap.c b/mm/filemap.c
index d01abb6..96840e5 100644
--- a/mm/filemap.c
+++ b/mm/filemap.c
@@ -2058,8 +2058,9 @@ generic_file_direct_write(struct kiocb *
 	/*
 	 * Sync the fs metadata but not the minor inode changes and
 	 * of course not the data as we did direct DMA for the IO.
-	 * i_mutex is held, which protects generic_osync_inode() from
-	 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
+	 * i_mutex may not being held, if so some specific locking
+	 * ordering must protect generic_osync_inode() from livelocking.
+	 * AIO O_DIRECT ops attempt to sync metadata here.
 	 */
 	if ((written >= 0 || written == -EIOCBQUEUED) &&
 	 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
@@ -2365,6 +2366,17 @@ ssize_t generic_file_aio_write(struct ki
 			&iocb->ki_pos);
 	mutex_unlock(&inode->i_mutex);

+	if (unlikely(ret < 0 && (file->f_flags & O_DIRECT))) {
+		ssize_t cnt = generic_segment_checks(nr_segs, iov, VERIFY_READ);
+		loff_t isize = i_size_read(inode);
+		/*
+		 * generic_file_direct_write() may have instantiated a few
+		 * blocks outside i_size. Trim these off again.
+		 */
+		if (cnt > 0 && (pos + cnt > isize))
+			vmtruncate(inode, isize);
+	}
+
 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
 		ssize_t err;

@@ -2377,8 +2389,8 @@ ssize_t generic_file_aio_write(struct ki
 EXPORT_SYMBOL(generic_file_aio_write);

 /*
- * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
- * went wrong during pagecache shootdown.
+ * May be called without i_mutex for writes to S_ISREG files.
+ * Returns -EIO if something went wrong during pagecache shootdown.
 */
 static ssize_t
 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,

Page 2 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Subject: Re: [PATCH][RFC] incorrect direct io error handling (v3)
Posted by Andrew Morton on Thu, 25 Jan 2007 21:34:05 GMT
View Forum Message <> Reply to Message

On Wed, 24 Jan 2007 22:05:06 +0300
Dmitriy Monakhov <dmonakhov@sw.ru> wrote:

> incorrect direct io error handling (v3)
> Changes from v2:
> - Remove BUG_ON(!mutex_is_locked(..)) for non blkdev.
> - vmtruncate() called from generic_file_aio_write().
> - depends on patch titled:
> [PATH][RFC] mm: Move common segments checks to separate function

drat, I skipped that patch due to rejects, and because Nick is working on
things in the same area.

> LOG:
> If generic_file_direct_write() has fail (ENOSPC condition) inside
> __generic_file_aio_write_nolock() it may have instantiated
> a few blocks outside i_size. And fsck will complain about wrong i_size
> (ext2, ext3 and reiserfs interpret i_size and biggest block difference as error),
> after fsck will fix error i_size will be increased to the biggest block,
> but this blocks contain gurbage from previous write attempt, this is not
> information leak, but its silence file data corruption. This issue affect
> fs regardless the values of blocksize or pagesize.
> We need truncate any block beyond i_size after write have failed , do in simular
> generic_file_buffered_write() error path. Initialy i've proposed do it in
> __generic_file_aio_write_nolock() with explicit guarantee i_mutex always held,
> but not everybody was agree with it. So we may safely call vmtruncate() inside
> generic_file_aio_write(), here i_mutex already locked.
>
> TEST_CASE:
> open("/mnt/test/BIG_FILE", O_WRONLY|O_CREAT|O_DIRECT, 0666) = 3
> write(3, "aaaaaaaaaaaaaaa"..., 104857600) = -1 ENOSPC (No space left on device)
>
> #stat /mnt/test/BIG_FILE
> File: `/mnt/test/BIG_FILE'
> Size: 0 Blocks: 110896 IO Block: 1024 regular empty file
> <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<^^^^^^^^file size is less than biggest block idx
>
> Device: fe07h/65031d Inode: 14 Links: 1
> Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)
> Access: 2007-01-24 20:03:38.000000000 +0300
> Modify: 2007-01-24 20:03:38.000000000 +0300
> Change: 2007-01-24 20:03:39.000000000 +0300
>
> #fsck.ext3 -f /dev/VG/test

Page 3 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=120
https://new-forum.openvz.org/index.php?t=rview&th=1849&goto=9850#msg_9850
https://new-forum.openvz.org/index.php?t=post&reply_to=9850
https://new-forum.openvz.org/index.php

> e2fsck 1.39 (29-May-2006)
> Pass 1: Checking inodes, blocks, and sizes
> Inode 14, i_size is 0, should be 56556544. Fix<y>? yes
> Pass 2: Checking directory structure
>
> Signed-off-by: Dmitriy Monakhov <dmonakhov@openvz.org>
> -------
>

diff --git a/mm/filemap.c b/mm/filemap.c
> index d01abb6..96840e5 100644
> --- a/mm/filemap.c
> +++ b/mm/filemap.c
> @@ -2058,8 +2058,9 @@ generic_file_direct_write(struct kiocb *
> 	/*
> 	 * Sync the fs metadata but not the minor inode changes and
> 	 * of course not the data as we did direct DMA for the IO.
> -	 * i_mutex is held, which protects generic_osync_inode() from
> -	 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
> +	 * i_mutex may not being held, if so some specific locking
> +	 * ordering must protect generic_osync_inode() from livelocking.
> +	 * AIO O_DIRECT ops attempt to sync metadata here.
> 	 */
> 	if ((written >= 0 || written == -EIOCBQUEUED) &&
> 	 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
> @@ -2365,6 +2366,17 @@ ssize_t generic_file_aio_write(struct ki
> 			&iocb->ki_pos);
> 	mutex_unlock(&inode->i_mutex);
>
> +	if (unlikely(ret < 0 && (file->f_flags & O_DIRECT))) {
> +		ssize_t cnt = generic_segment_checks(nr_segs, iov, VERIFY_READ);
> +		loff_t isize = i_size_read(inode);
> +		/*
> +		 * generic_file_direct_write() may have instantiated a few
> +		 * blocks outside i_size. Trim these off again.
> +		 */
> +		if (cnt > 0 && (pos + cnt > isize))
> +			vmtruncate(inode, isize);
> +	}
> +

vmtruncate() really wants i_mutex to be held. Can't we do that here?

Subject: Re: [PATCH][RFC] incorrect direct io error handling (v3)
Posted by Dmitriy Monakhov on Fri, 26 Jan 2007 07:59:30 GMT
View Forum Message <> Reply to Message

Page 4 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=840
https://new-forum.openvz.org/index.php?t=rview&th=1849&goto=9853#msg_9853
https://new-forum.openvz.org/index.php?t=post&reply_to=9853
https://new-forum.openvz.org/index.php

Andrew Morton <akpm@osdl.org> writes:

> On Wed, 24 Jan 2007 22:05:06 +0300
> Dmitriy Monakhov <dmonakhov@sw.ru> wrote:
>
>> incorrect direct io error handling (v3)
>> Changes from v2:
>> - Remove BUG_ON(!mutex_is_locked(..)) for non blkdev.
>> - vmtruncate() called from generic_file_aio_write().
>> - depends on patch titled:
>> [PATH][RFC] mm: Move common segments checks to separate function
>
> drat, I skipped that patch due to rejects, and because Nick is working on
> things in the same area.
>
[skip]
>> 	if ((written >= 0 || written == -EIOCBQUEUED) &&
>> 	 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
>> @@ -2365,6 +2366,17 @@ ssize_t generic_file_aio_write(struct ki
>> 			&iocb->ki_pos);
>> 	mutex_unlock(&inode->i_mutex);
>>
>> +	if (unlikely(ret < 0 && (file->f_flags & O_DIRECT))) {
>> +		ssize_t cnt = generic_segment_checks(nr_segs, iov, VERIFY_READ);
>> +		loff_t isize = i_size_read(inode);
>> +		/*
>> +		 * generic_file_direct_write() may have instantiated a few
>> +		 * blocks outside i_size. Trim these off again.
>> +		 */
>> +		if (cnt > 0 && (pos + cnt > isize))
>> +			vmtruncate(inode, isize);
>> +	}
>> +
>
> vmtruncate() really wants i_mutex to be held. Can't we do that here?
Yepp 110% true, baaahh it looks like my brain was't clear at the time i
wrote this. We have to do vmtruncate() brfore droping i_mutex , right after
__generic_file_aio_write_nolock() call , i'm sorry to waste your time.

Page 5 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

