
Subject: [PATCH] incorrect error handling inside generic_file_direct_write
Posted by Dmitriy Monakhov on Mon, 11 Dec 2006 10:34:36 GMT
View Forum Message <> Reply to Message

OpenVZ team has discovered error inside generic_file_direct_write()
If generic_file_direct_IO() has fail (ENOSPC condition) it may have instantiated
a few blocks outside i_size. And fsck will complain about wrong i_size
(ext2, ext3 and reiserfs interpret i_size and biggest block difference as error),
after fsck will fix error i_size will be increased to the biggest block,
but this blocks contain gurbage from previous write attempt, this is not
information leak, but its silence file data corruption.
We need truncate any block beyond i_size after write have failed , do in simular
generic_file_buffered_write() error path.

Exampe:
open("mnt2/FILE3", O_WRONLY|O_CREAT|O_DIRECT, 0666) = 3
write(3, "aaaaaa"..., 4096) = -1 ENOSPC (No space left on device)

stat mnt2/FILE3
File: `mnt2/FILE3'
Size: 0 Blocks: 4 IO Block: 4096 regular empty file
>>>>>>>>>>>>>>>>>>>>>>^^^^^^^^^^ file size is less than biggest block idx
Device: 700h/1792d Inode: 14 Links: 1
Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)

fsck.ext2 -f -n mnt1/fs_img
Pass 1: Checking inodes, blocks, and sizes
Inode 14, i_size is 0, should be 2048. Fix? no

Signed-off-by: Dmitriy Monakhov <dmonakhov@openvz.org>

diff --git a/mm/filemap.c b/mm/filemap.c
index 7b84dc8..bf7cf6c 100644
--- a/mm/filemap.c
+++ b/mm/filemap.c
@@ -2041,6 +2041,14 @@ generic_file_direct_write(struct kiocb *
 			mark_inode_dirty(inode);
 		}
 		*ppos = end;
+	} else if (written < 0) {
+		loff_t isize = i_size_read(inode);
+		/*
+		 * generic_file_direct_IO() may have instantiated a few blocks
+		 * outside i_size. Trim these off again.
+		 */
+		if (pos + count > isize)
+			vmtruncate(inode, isize);

Page 1 of 20 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=840
https://new-forum.openvz.org/index.php?t=rview&th=1633&goto=8917#msg_8917
https://new-forum.openvz.org/index.php?t=post&reply_to=8917
https://new-forum.openvz.org/index.php

 	}

 	/*

Subject: Re: [PATCH] incorrect error handling inside	generic_file_direct_write
Posted by dev on Mon, 11 Dec 2006 12:27:58 GMT
View Forum Message <> Reply to Message

I guess you forgot to add Andrew on CC.

Thanks,
Kirill

> OpenVZ team has discovered error inside generic_file_direct_write()
> If generic_file_direct_IO() has fail (ENOSPC condition) it may have instantiated
> a few blocks outside i_size. And fsck will complain about wrong i_size
> (ext2, ext3 and reiserfs interpret i_size and biggest block difference as error),
> after fsck will fix error i_size will be increased to the biggest block,
> but this blocks contain gurbage from previous write attempt, this is not
> information leak, but its silence file data corruption.
> We need truncate any block beyond i_size after write have failed , do in simular
> generic_file_buffered_write() error path.
>
> Exampe:
> open("mnt2/FILE3", O_WRONLY|O_CREAT|O_DIRECT, 0666) = 3
> write(3, "aaaaaa"..., 4096) = -1 ENOSPC (No space left on device)
>
> stat mnt2/FILE3
> File: `mnt2/FILE3'
> Size: 0 Blocks: 4 IO Block: 4096 regular empty file
>
>>>>>>>>>>>>>>>>>>>>>>>^^^^^^^^^^ file size is less than biggest block idx
>
> Device: 700h/1792d Inode: 14 Links: 1
> Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)
>
> fsck.ext2 -f -n mnt1/fs_img
> Pass 1: Checking inodes, blocks, and sizes
> Inode 14, i_size is 0, should be 2048. Fix? no
>
> Signed-off-by: Dmitriy Monakhov <dmonakhov@openvz.org>
> ----------
>
>
> -- ------------
>
> diff --git a/mm/filemap.c b/mm/filemap.c

Page 2 of 20 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=19
https://new-forum.openvz.org/index.php?t=rview&th=1633&goto=8924#msg_8924
https://new-forum.openvz.org/index.php?t=post&reply_to=8924
https://new-forum.openvz.org/index.php

> index 7b84dc8..bf7cf6c 100644
> --- a/mm/filemap.c
> +++ b/mm/filemap.c
> @@ -2041,6 +2041,14 @@ generic_file_direct_write(struct kiocb *
> 			mark_inode_dirty(inode);
> 		}
> 		*ppos = end;
> +	} else if (written < 0) {
> +		loff_t isize = i_size_read(inode);
> +		/*
> +		 * generic_file_direct_IO() may have instantiated a few blocks
> +		 * outside i_size. Trim these off again.
> +		 */
> +		if (pos + count > isize)
> +			vmtruncate(inode, isize);
> 	}
>
> 	/*
>
>
> -- ------------
>

Subject: Re: [PATCH] incorrect error handling inside generic_file_direct_write
Posted by Andrew Morton on Mon, 11 Dec 2006 20:40:52 GMT
View Forum Message <> Reply to Message

On Mon, 11 Dec 2006 16:34:27 +0300
Dmitriy Monakhov <dmonakhov@openvz.org> wrote:

> OpenVZ team has discovered error inside generic_file_direct_write()
> If generic_file_direct_IO() has fail (ENOSPC condition) it may have instantiated
> a few blocks outside i_size. And fsck will complain about wrong i_size
> (ext2, ext3 and reiserfs interpret i_size and biggest block difference as error),
> after fsck will fix error i_size will be increased to the biggest block,
> but this blocks contain gurbage from previous write attempt, this is not
> information leak, but its silence file data corruption.
> We need truncate any block beyond i_size after write have failed , do in simular
> generic_file_buffered_write() error path.
>
> Exampe:
> open("mnt2/FILE3", O_WRONLY|O_CREAT|O_DIRECT, 0666) = 3
> write(3, "aaaaaa"..., 4096) = -1 ENOSPC (No space left on device)
>
> stat mnt2/FILE3
> File: `mnt2/FILE3'
> Size: 0 Blocks: 4 IO Block: 4096 regular empty file

Page 3 of 20 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=120
https://new-forum.openvz.org/index.php?t=rview&th=1633&goto=8949#msg_8949
https://new-forum.openvz.org/index.php?t=post&reply_to=8949
https://new-forum.openvz.org/index.php

> >>>>>>>>>>>>>>>>>>>>>>^^^^^^^^^^ file size is less than biggest block idx
> Device: 700h/1792d Inode: 14 Links: 1
> Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)
>
> fsck.ext2 -f -n mnt1/fs_img
> Pass 1: Checking inodes, blocks, and sizes
> Inode 14, i_size is 0, should be 2048. Fix? no
>
> Signed-off-by: Dmitriy Monakhov <dmonakhov@openvz.org>
> ----------
>
> diff --git a/mm/filemap.c b/mm/filemap.c
> index 7b84dc8..bf7cf6c 100644
> --- a/mm/filemap.c
> +++ b/mm/filemap.c
> @@ -2041,6 +2041,14 @@ generic_file_direct_write(struct kiocb *
> 			mark_inode_dirty(inode);
> 		}
> 		*ppos = end;
> +	} else if (written < 0) {
> +		loff_t isize = i_size_read(inode);
> +		/*
> +		 * generic_file_direct_IO() may have instantiated a few blocks
> +		 * outside i_size. Trim these off again.
> +		 */
> +		if (pos + count > isize)
> +			vmtruncate(inode, isize);
> 	}
>

XFS (at least) can call generic_file_direct_write() with i_mutex not held.
And vmtruncate() expects i_mutex to be held.

I guess a suitable solution would be to push this problem back up to the
callers: let them decide whether to run vmtruncate() and if so, to ensure
that i_mutex is held.

The existence of generic_file_aio_write_nolock() makes that rather messy
though.

Subject: Re: [PATCH] incorrect error handling inside generic_file_direct_write
Posted by Dmitriy Monakhov on Tue, 12 Dec 2006 06:22:48 GMT
View Forum Message <> Reply to Message

Andrew Morton <akpm@osdl.org> writes:

> On Mon, 11 Dec 2006 16:34:27 +0300

Page 4 of 20 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=840
https://new-forum.openvz.org/index.php?t=rview&th=1633&goto=8956#msg_8956
https://new-forum.openvz.org/index.php?t=post&reply_to=8956
https://new-forum.openvz.org/index.php

> Dmitriy Monakhov <dmonakhov@openvz.org> wrote:
>
>> OpenVZ team has discovered error inside generic_file_direct_write()
>> If generic_file_direct_IO() has fail (ENOSPC condition) it may have instantiated
>> a few blocks outside i_size. And fsck will complain about wrong i_size
>> (ext2, ext3 and reiserfs interpret i_size and biggest block difference as error),
>> after fsck will fix error i_size will be increased to the biggest block,
>> but this blocks contain gurbage from previous write attempt, this is not
>> information leak, but its silence file data corruption.
>> We need truncate any block beyond i_size after write have failed , do in simular
>> generic_file_buffered_write() error path.
>>
>> Exampe:
>> open("mnt2/FILE3", O_WRONLY|O_CREAT|O_DIRECT, 0666) = 3
>> write(3, "aaaaaa"..., 4096) = -1 ENOSPC (No space left on device)
>>
>> stat mnt2/FILE3
>> File: `mnt2/FILE3'
>> Size: 0 Blocks: 4 IO Block: 4096 regular empty file
>> >>>>>>>>>>>>>>>>>>>>>>^^^^^^^^^^ file size is less than biggest block idx
>> Device: 700h/1792d Inode: 14 Links: 1
>> Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)
>>
>> fsck.ext2 -f -n mnt1/fs_img
>> Pass 1: Checking inodes, blocks, and sizes
>> Inode 14, i_size is 0, should be 2048. Fix? no
>>
>> Signed-off-by: Dmitriy Monakhov <dmonakhov@openvz.org>
>> ----------
>>
>> diff --git a/mm/filemap.c b/mm/filemap.c
>> index 7b84dc8..bf7cf6c 100644
>> --- a/mm/filemap.c
>> +++ b/mm/filemap.c
>> @@ -2041,6 +2041,14 @@ generic_file_direct_write(struct kiocb *
>> 			mark_inode_dirty(inode);
>> 		}
>> 		*ppos = end;
>> +	} else if (written < 0) {
>> +		loff_t isize = i_size_read(inode);
>> +		/*
>> +		 * generic_file_direct_IO() may have instantiated a few blocks
>> +		 * outside i_size. Trim these off again.
>> +		 */
>> +		if (pos + count > isize)
>> +			vmtruncate(inode, isize);
>> 	}
>>

Page 5 of 20 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>
> XFS (at least) can call generic_file_direct_write() with i_mutex not held.
How could it be ?

from mm/filemap.c:2046 generic_file_direct_write() comment right after
place where i want to add vmtruncate()
/*
	 * Sync the fs metadata but not the minor inode changes and
	 * of course not the data as we did direct DMA for the IO.
	 * i_mutex is held, which protects generic_osync_inode() from
	 * livelocking.
	 */

> And vmtruncate() expects i_mutex to be held.
generic_file_direct_IO must called under i_mutex too
from mm/filemap.c:2388
 /*
 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
 * went wrong during pagecache shootdown.
 */
 static ssize_t
 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,

This means XFS generic_file_direct_write() call generic_file_direct_IO() without
i_mutex held too?
>
> I guess a suitable solution would be to push this problem back up to the
> callers: let them decide whether to run vmtruncate() and if so, to ensure
> that i_mutex is held.
>
> The existence of generic_file_aio_write_nolock() makes that rather messy
> though.

Subject: Re: [PATCH] incorrect error handling inside generic_file_direct_write
Posted by Andrew Morton on Tue, 12 Dec 2006 06:36:30 GMT
View Forum Message <> Reply to Message

On Tue, 12 Dec 2006 12:22:14 +0300
Dmitriy Monakhov <dmonakhov@sw.ru> wrote:

> >> @@ -2041,6 +2041,14 @@ generic_file_direct_write(struct kiocb *
> >> 			mark_inode_dirty(inode);
> >> 		}
> >> 		*ppos = end;
> >> +	} else if (written < 0) {
> >> +		loff_t isize = i_size_read(inode);
> >> +		/*

Page 6 of 20 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=120
https://new-forum.openvz.org/index.php?t=rview&th=1633&goto=8957#msg_8957
https://new-forum.openvz.org/index.php?t=post&reply_to=8957
https://new-forum.openvz.org/index.php

> >> +		 * generic_file_direct_IO() may have instantiated a few blocks
> >> +		 * outside i_size. Trim these off again.
> >> +		 */
> >> +		if (pos + count > isize)
> >> +			vmtruncate(inode, isize);
> >> 	}
> >>
> >
> > XFS (at least) can call generic_file_direct_write() with i_mutex not held.
> How could it be ?
>
> from mm/filemap.c:2046 generic_file_direct_write() comment right after
> place where i want to add vmtruncate()
> /*
> 	 * Sync the fs metadata but not the minor inode changes and
> 	 * of course not the data as we did direct DMA for the IO.
> 	 * i_mutex is held, which protects generic_osync_inode() from
> 	 * livelocking.
> 	 */
>
> > And vmtruncate() expects i_mutex to be held.
> generic_file_direct_IO must called under i_mutex too
> from mm/filemap.c:2388
> /*
> * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
> * went wrong during pagecache shootdown.
> */
> static ssize_t
> generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,

yup, the comments are wrong.

> This means XFS generic_file_direct_write() call generic_file_direct_IO() without
> i_mutex held too?

Think so. XFS uses blockdev_direct_IO_own_locking(). We'd need to check
with the XFS guys regarding its precise operation and what needs to be done
here.

> >
> > I guess a suitable solution would be to push this problem back up to the
> > callers: let them decide whether to run vmtruncate() and if so, to ensure
> > that i_mutex is held.
> >
> > The existence of generic_file_aio_write_nolock() makes that rather messy
> > though.

Page 7 of 20 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Subject: Re: [PATCH] incorrect error handling inside generic_file_direct_write
Posted by Dmitriy Monakhov on Tue, 12 Dec 2006 09:20:59 GMT
View Forum Message <> Reply to Message

Andrew Morton <akpm@osdl.org> writes:

> On Mon, 11 Dec 2006 16:34:27 +0300
> Dmitriy Monakhov <dmonakhov@openvz.org> wrote:
>
>> OpenVZ team has discovered error inside generic_file_direct_write()
>> If generic_file_direct_IO() has fail (ENOSPC condition) it may have instantiated
>> a few blocks outside i_size. And fsck will complain about wrong i_size
>> (ext2, ext3 and reiserfs interpret i_size and biggest block difference as error),
>> after fsck will fix error i_size will be increased to the biggest block,
>> but this blocks contain gurbage from previous write attempt, this is not
>> information leak, but its silence file data corruption.
>> We need truncate any block beyond i_size after write have failed , do in simular
>> generic_file_buffered_write() error path.
>>
>> Exampe:
>> open("mnt2/FILE3", O_WRONLY|O_CREAT|O_DIRECT, 0666) = 3
>> write(3, "aaaaaa"..., 4096) = -1 ENOSPC (No space left on device)
>>
>> stat mnt2/FILE3
>> File: `mnt2/FILE3'
>> Size: 0 Blocks: 4 IO Block: 4096 regular empty file
>> >>>>>>>>>>>>>>>>>>>>>>^^^^^^^^^^ file size is less than biggest block idx
>> Device: 700h/1792d Inode: 14 Links: 1
>> Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)
>>
>> fsck.ext2 -f -n mnt1/fs_img
>> Pass 1: Checking inodes, blocks, and sizes
>> Inode 14, i_size is 0, should be 2048. Fix? no
>>
>> Signed-off-by: Dmitriy Monakhov <dmonakhov@openvz.org>
>> ----------
>>
>> diff --git a/mm/filemap.c b/mm/filemap.c
>> index 7b84dc8..bf7cf6c 100644
>> --- a/mm/filemap.c
>> +++ b/mm/filemap.c
>> @@ -2041,6 +2041,14 @@ generic_file_direct_write(struct kiocb *
>> 			mark_inode_dirty(inode);
>> 		}
>> 		*ppos = end;
>> +	} else if (written < 0) {
>> +		loff_t isize = i_size_read(inode);
>> +		/*
>> +		 * generic_file_direct_IO() may have instantiated a few blocks

Page 8 of 20 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=840
https://new-forum.openvz.org/index.php?t=rview&th=1633&goto=8966#msg_8966
https://new-forum.openvz.org/index.php?t=post&reply_to=8966
https://new-forum.openvz.org/index.php

>> +		 * outside i_size. Trim these off again.
>> +		 */
>> +		if (pos + count > isize)
>> +			vmtruncate(inode, isize);
>> 	}
>>
>
> XFS (at least) can call generic_file_direct_write() with i_mutex not held.
> And vmtruncate() expects i_mutex to be held.
>
> I guess a suitable solution would be to push this problem back up to the
> callers: let them decide whether to run vmtruncate() and if so, to ensure
> that i_mutex is held.
>
> The existence of generic_file_aio_write_nolock() makes that rather messy
> though.
This means we may call generic_file_aio_write_nolock() without i_mutex, right?
but call trace is :
 generic_file_aio_write_nolock()
 ->generic_file_buffered_write() /* i_mutex not held here */
but according to filemaps locking rules: mm/filemap.c:77
 ..
 * ->i_mutex			(generic_file_buffered_write)
 * ->mmap_sem		(fault_in_pages_readable->do_page_fault)
 ..
I'm confused a litle bit, where is the truth?

Subject: Re: [PATCH] incorrect error handling inside generic_file_direct_write
Posted by Andrew Morton on Tue, 12 Dec 2006 09:52:32 GMT
View Forum Message <> Reply to Message

On Tue, 12 Dec 2006 15:20:52 +0300
Dmitriy Monakhov <dmonakhov@sw.ru> wrote:

> > XFS (at least) can call generic_file_direct_write() with i_mutex not held.
> > And vmtruncate() expects i_mutex to be held.
> >
> > I guess a suitable solution would be to push this problem back up to the
> > callers: let them decide whether to run vmtruncate() and if so, to ensure
> > that i_mutex is held.
> >
> > The existence of generic_file_aio_write_nolock() makes that rather messy
> > though.
> This means we may call generic_file_aio_write_nolock() without i_mutex, right?
> but call trace is :
> generic_file_aio_write_nolock()
> ->generic_file_buffered_write() /* i_mutex not held here */

Page 9 of 20 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=120
https://new-forum.openvz.org/index.php?t=rview&th=1633&goto=8967#msg_8967
https://new-forum.openvz.org/index.php?t=post&reply_to=8967
https://new-forum.openvz.org/index.php

> but according to filemaps locking rules: mm/filemap.c:77
> ..
> * ->i_mutex			(generic_file_buffered_write)
> * ->mmap_sem		(fault_in_pages_readable->do_page_fault)
> ..
> I'm confused a litle bit, where is the truth?

xfs_write() calls generic_file_direct_write() without taking i_mutex for
O_DIRECT writes.

Subject: Re: [PATCH] incorrect error handling inside generic_file_direct_write
Posted by Dmitriy Monakhov on Tue, 12 Dec 2006 10:18:38 GMT
View Forum Message <> Reply to Message

Andrew Morton <akpm@osdl.org> writes:

> On Tue, 12 Dec 2006 15:20:52 +0300
> Dmitriy Monakhov <dmonakhov@sw.ru> wrote:
>
>> > XFS (at least) can call generic_file_direct_write() with i_mutex not held.
>> > And vmtruncate() expects i_mutex to be held.
>> >
>> > I guess a suitable solution would be to push this problem back up to the
>> > callers: let them decide whether to run vmtruncate() and if so, to ensure
>> > that i_mutex is held.
>> >
>> > The existence of generic_file_aio_write_nolock() makes that rather messy
>> > though.
>> This means we may call generic_file_aio_write_nolock() without i_mutex, right?
>> but call trace is :
>> generic_file_aio_write_nolock()
>> ->generic_file_buffered_write() /* i_mutex not held here */
>> but according to filemaps locking rules: mm/filemap.c:77
>> ..
>> * ->i_mutex			(generic_file_buffered_write)
>> * ->mmap_sem		(fault_in_pages_readable->do_page_fault)
>> ..
>> I'm confused a litle bit, where is the truth?
>
> xfs_write() calls generic_file_direct_write() without taking i_mutex for
> O_DIRECT writes.
Yes, but my quastion is about __generic_file_aio_write_nolock().
As i understand _nolock sufix means that i_mutex was already locked
by caller, am i right ?
If yes, than __generic_file_aio_write_nolock() is beter place for vmtrancate()
acclivity after generic_file_direct_write() has fail.
Signed-off-by: Dmitriy Monakhov <dmonakhov@openvz.org>

Page 10 of 20 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=840
https://new-forum.openvz.org/index.php?t=rview&th=1633&goto=8968#msg_8968
https://new-forum.openvz.org/index.php?t=post&reply_to=8968
https://new-forum.openvz.org/index.php

diff --git a/mm/filemap.c b/mm/filemap.c
index 7b84dc8..723d2ca 100644
--- a/mm/filemap.c
+++ b/mm/filemap.c
@@ -2282,6 +2282,15 @@ __generic_file_aio_write_nolock(struct k

 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
 							ppos, count, ocount);
+		if (written < 0) {
+			loff_t isize = i_size_read(inode);
+			/*
+			 * generic_file_direct_write() may have instantiated
+			 * a few blocks outside i_size. Trim these off again.
+			 */
+			if (pos + count > isize)
+				vmtruncate(inode, isize);
+		}
 		if (written < 0 || written == count)
 			goto out;
 		/*

Subject: Re: [PATCH] incorrect error handling inside generic_file_direct_write
Posted by Andrew Morton on Tue, 12 Dec 2006 10:40:27 GMT
View Forum Message <> Reply to Message

On Tue, 12 Dec 2006 16:18:32 +0300
Dmitriy Monakhov <dmonakhov@sw.ru> wrote:

> >> but according to filemaps locking rules: mm/filemap.c:77
> >> ..
> >> * ->i_mutex			(generic_file_buffered_write)
> >> * ->mmap_sem		(fault_in_pages_readable->do_page_fault)
> >> ..
> >> I'm confused a litle bit, where is the truth?
> >
> > xfs_write() calls generic_file_direct_write() without taking i_mutex for
> > O_DIRECT writes.
> Yes, but my quastion is about __generic_file_aio_write_nolock().
> As i understand _nolock sufix means that i_mutex was already locked
> by caller, am i right ?

Nope. It just means that __generic_file_aio_write_nolock() doesn't take
the lock. We don't assume or require that the caller took it. For example
the raw driver calls generic_file_aio_write_nolock() without taking
i_mutex. Raw isn't relevant to the problem (although ocfs2 might be). But

Page 11 of 20 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=120
https://new-forum.openvz.org/index.php?t=rview&th=1633&goto=8969#msg_8969
https://new-forum.openvz.org/index.php?t=post&reply_to=8969
https://new-forum.openvz.org/index.php

we cannot assume that all callers have taken i_mutex, I think.

I guess we can make that a rule (document it, add
BUG_ON(!mutex_is_locked(..)) if it isn't a blockdev) if needs be. After
really checking that this matches reality for all callers.

It's important, too - if we have an unprotected i_size_write() then the
seqlock can get out of sync due to a race and then i_size_read() locks up
the kernel.

Subject: Re: [PATCH] incorrect error handling inside generic_file_direct_write
Posted by Dmitriy Monakhov on Tue, 12 Dec 2006 20:14:31 GMT
View Forum Message <> Reply to Message

Andrew Morton <akpm@osdl.org> writes:

> On Tue, 12 Dec 2006 16:18:32 +0300
> Dmitriy Monakhov <dmonakhov@sw.ru> wrote:
>
>> >> but according to filemaps locking rules: mm/filemap.c:77
>> >> ..
>> >> * ->i_mutex			(generic_file_buffered_write)
>> >> * ->mmap_sem		(fault_in_pages_readable->do_page_fault)
>> >> ..
>> >> I'm confused a litle bit, where is the truth?
>> >
>> > xfs_write() calls generic_file_direct_write() without taking i_mutex for
>> > O_DIRECT writes.
>> Yes, but my quastion is about __generic_file_aio_write_nolock().
>> As i understand _nolock sufix means that i_mutex was already locked
>> by caller, am i right ?
>
> Nope. It just means that __generic_file_aio_write_nolock() doesn't take
> the lock. We don't assume or require that the caller took it. For example
> the raw driver calls generic_file_aio_write_nolock() without taking
> i_mutex. Raw isn't relevant to the problem (although ocfs2 might be). But
> we cannot assume that all callers have taken i_mutex, I think.
>
> I guess we can make that a rule (document it, add
> BUG_ON(!mutex_is_locked(..)) if it isn't a blockdev) if needs be. After
> really checking that this matches reality for all callers.
I've checked generic_file_aio_write_nolock() callers for non blockdev.
Only ocfs2 call it explicitly, and do it under i_mutex.
So we need to do:
1) Change wrong comments.
2) Add BUG_ON(!mutex_is_locked(..)) for non blkdev.
3) Invoke vmtruncate only for non blkdev.

Page 12 of 20 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=840
https://new-forum.openvz.org/index.php?t=rview&th=1633&goto=8998#msg_8998
https://new-forum.openvz.org/index.php?t=post&reply_to=8998
https://new-forum.openvz.org/index.php

Signed-off-by: Dmitriy Monakhov <dmonakhov@openvz.org>

diff --git a/mm/filemap.c b/mm/filemap.c
index 7b84dc8..540ef5e 100644
--- a/mm/filemap.c
+++ b/mm/filemap.c
@@ -2046,8 +2046,8 @@ generic_file_direct_write(struct kiocb *
 	/*
 	 * Sync the fs metadata but not the minor inode changes and
 	 * of course not the data as we did direct DMA for the IO.
-	 * i_mutex is held, which protects generic_osync_inode() from
-	 * livelocking.
+	 * i_mutex may not being held, if so some specific locking
+	 * ordering must protect generic_osync_inode() from livelocking.
 	 */
 	if (written >= 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
 		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
@@ -2282,6 +2282,17 @@ __generic_file_aio_write_nolock(struct k

 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
 							ppos, count, ocount);
+		/*
+		 * If host is not S_ISBLK generic_file_direct_write() may
+		 * have instantiated a few blocks outside i_size files
+		 * Trim these off again.
+		 */
+		if (unlikely(written < 0) && !S_ISBLK(inode->i_mode)) {
+			loff_t isize = i_size_read(inode);
+			if (pos + count > isize)
+				vmtruncate(inode, isize);
+		}
+
 		if (written < 0 || written == count)
 			goto out;
 		/*
@@ -2344,6 +2355,13 @@ ssize_t generic_file_aio_write_nolock(st
 	ssize_t ret;

 	BUG_ON(iocb->ki_pos != pos);
+	/*
+	 * generic_file_buffered_write() may be called inside
+	 * __generic_file_aio_write_nolock() even in case of
+	 * O_DIRECT for non S_ISBLK files. So i_mutex must be held.
+	 */
+	if (!S_ISBLK(inode->i_mode))
+		BUG_ON(!mutex_is_locked(&inode->i_mutex));

Page 13 of 20 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
 			&iocb->ki_pos);
@@ -2386,8 +2404,8 @@ ssize_t generic_file_aio_write(struct ki
 EXPORT_SYMBOL(generic_file_aio_write);

 /*
- * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
- * went wrong during pagecache shootdown.
+ * May be called without i_mutex for writes to S_ISREG files.
+ * Returns -EIO if something went wrong during pagecache shootdown.
 */
 static ssize_t
 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,

Subject: RE: [PATCH] incorrect error handling inside generic_file_direct_write
Posted by kenneth.w.chen on Wed, 13 Dec 2006 02:43:37 GMT
View Forum Message <> Reply to Message

Andrew Morton wrote on Tuesday, December 12, 2006 2:40 AM
> On Tue, 12 Dec 2006 16:18:32 +0300
> Dmitriy Monakhov <dmonakhov@sw.ru> wrote:
>
> > >> but according to filemaps locking rules: mm/filemap.c:77
> > >> ..
> > >> * ->i_mutex			(generic_file_buffered_write)
> > >> * ->mmap_sem		(fault_in_pages_readable->do_page_fault)
> > >> ..
> > >> I'm confused a litle bit, where is the truth?
> > >
> > > xfs_write() calls generic_file_direct_write() without taking i_mutex for
> > > O_DIRECT writes.
> > Yes, but my quastion is about __generic_file_aio_write_nolock().
> > As i understand _nolock sufix means that i_mutex was already locked
> > by caller, am i right ?
>
> Nope. It just means that __generic_file_aio_write_nolock() doesn't take
> the lock. We don't assume or require that the caller took it. For example
> the raw driver calls generic_file_aio_write_nolock() without taking
> i_mutex. Raw isn't relevant to the problem (although ocfs2 might be). But
> we cannot assume that all callers have taken i_mutex, I think.

I think we should also clean up generic_file_aio_write_nolock. This was
brought up a couple of weeks ago and I gave up too early. Here is my
second attempt.

Page 14 of 20 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1020
https://new-forum.openvz.org/index.php?t=rview&th=1633&goto=9006#msg_9006
https://new-forum.openvz.org/index.php?t=post&reply_to=9006
https://new-forum.openvz.org/index.php

How about the following patch, I think we can kill generic_file_aio_write_nolock
and merge both *file_aio_write_nolock into one function, then

generic_file_aio_write
ocfs2_file_aio_write
blk_dev->aio_write

all points to a non-lock version of __generic_file_aio_write(). First
two already hold i_mutex, while the block device's aio_write method
doesn't require i_mutex to be held.

Signed-off-by: Ken Chen <kenneth.w.chen@intel.com>

diff -Nurp linux-2.6.19/drivers/char/raw.c linux-2.6.19.ken/drivers/char/raw.c
--- linux-2.6.19/drivers/char/raw.c	2006-11-29 13:57:37.000000000 -0800
+++ linux-2.6.19.ken/drivers/char/raw.c	2006-12-12 16:41:39.000000000 -0800
@@ -242,7 +242,7 @@ static const struct file_operations raw_
 	.read	=	do_sync_read,
 	.aio_read = 	generic_file_aio_read,
 	.write	=	do_sync_write,
-	.aio_write = 	generic_file_aio_write_nolock,
+	.aio_write = 	__generic_file_aio_write,
 	.open	=	raw_open,
 	.release=	raw_release,
 	.ioctl	=	raw_ioctl,
diff -Nurp linux-2.6.19/fs/block_dev.c linux-2.6.19.ken/fs/block_dev.c
--- linux-2.6.19/fs/block_dev.c	2006-11-29 13:57:37.000000000 -0800
+++ linux-2.6.19.ken/fs/block_dev.c	2006-12-12 16:47:58.000000000 -0800
@@ -1198,7 +1198,7 @@ const struct file_operations def_blk_fop
 	.read		= do_sync_read,
 	.write		= do_sync_write,
 	.aio_read	= generic_file_aio_read,
- 	.aio_write	= generic_file_aio_write_nolock,
+ 	.aio_write	= __generic_file_aio_write,
 	.mmap		= generic_file_mmap,
 	.fsync		= block_fsync,
 	.unlocked_ioctl	= block_ioctl,
diff -Nurp linux-2.6.19/fs/ocfs2/file.c linux-2.6.19.ken/fs/ocfs2/file.c
--- linux-2.6.19/fs/ocfs2/file.c	2006-11-29 13:57:37.000000000 -0800
+++ linux-2.6.19.ken/fs/ocfs2/file.c	2006-12-12 16:42:09.000000000 -0800
@@ -1107,7 +1107,7 @@ static ssize_t ocfs2_file_aio_write(stru
 	/* communicate with ocfs2_dio_end_io */
 	ocfs2_iocb_set_rw_locked(iocb);

-	ret = generic_file_aio_write_nolock(iocb, iov, nr_segs, iocb->ki_pos);
+	ret = __generic_file_aio_write(iocb, iov, nr_segs, iocb->ki_pos);

Page 15 of 20 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 	/* buffered aio wouldn't have proper lock coverage today */
 	BUG_ON(ret == -EIOCBQUEUED && !(filp->f_flags & O_DIRECT));
diff -Nurp linux-2.6.19/include/linux/fs.h linux-2.6.19.ken/include/linux/fs.h
--- linux-2.6.19/include/linux/fs.h	2006-11-29 13:57:37.000000000 -0800
+++ linux-2.6.19.ken/include/linux/fs.h	2006-12-12 16:41:58.000000000 -0800
@@ -1742,7 +1742,7 @@ extern int file_send_actor(read_descript
 int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk);
 extern ssize_t generic_file_aio_read(struct kiocb *, const struct iovec *, unsigned long, loff_t);
 extern ssize_t generic_file_aio_write(struct kiocb *, const struct iovec *, unsigned long, loff_t);
-extern ssize_t generic_file_aio_write_nolock(struct kiocb *, const struct iovec *,
+extern ssize_t __generic_file_aio_write(struct kiocb *, const struct iovec *,
 		unsigned long, loff_t);
 extern ssize_t generic_file_direct_write(struct kiocb *, const struct iovec *,
 		unsigned long *, loff_t, loff_t *, size_t, size_t);
diff -Nurp linux-2.6.19/mm/filemap.c linux-2.6.19.ken/mm/filemap.c
--- linux-2.6.19/mm/filemap.c	2006-11-29 13:57:37.000000000 -0800
+++ linux-2.6.19.ken/mm/filemap.c	2006-12-12 16:47:58.000000000 -0800
@@ -2219,9 +2219,9 @@ zero_length_segment:
 }
 EXPORT_SYMBOL(generic_file_buffered_write);

-static ssize_t
-__generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
-				unsigned long nr_segs, loff_t *ppos)
+ssize_t
+__generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
+				unsigned long nr_segs, loff_t pos)
 {
 	struct file *file = iocb->ki_filp;
 	struct address_space * mapping = file->f_mapping;
@@ -2229,9 +2229,10 @@ __generic_file_aio_write_nolock(struct k
 	size_t count;		/* after file limit checks */
 	struct inode 	*inode = mapping->host;
 	unsigned long	seg;
-	loff_t		pos;
+	loff_t		*ppos = &iocb->ki_pos;
 	ssize_t		written;
 	ssize_t		err;
+	ssize_t		ret;

 	ocount = 0;
 	for (seg = 0; seg < nr_segs; seg++) {
@@ -2254,7 +2255,6 @@ __generic_file_aio_write_nolock(struct k
 	}

 	count = ocount;
-	pos = *ppos;

Page 16 of 20 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);

@@ -2332,32 +2332,16 @@ __generic_file_aio_write_nolock(struct k
 	}
 out:
 	current->backing_dev_info = NULL;
-	return written ? written : err;
-}
-
-ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
-		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
-{
-	struct file *file = iocb->ki_filp;
-	struct address_space *mapping = file->f_mapping;
-	struct inode *inode = mapping->host;
-	ssize_t ret;
-
-	BUG_ON(iocb->ki_pos != pos);
-
-	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
-			&iocb->ki_pos);
+	ret = written ? written : err;

 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
-		ssize_t err;
-
 		err = sync_page_range_nolock(inode, mapping, pos, ret);
 		if (err < 0)
 			ret = err;
 	}
 	return ret;
 }
-EXPORT_SYMBOL(generic_file_aio_write_nolock);
+EXPORT_SYMBOL(__generic_file_aio_write);

 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
 		unsigned long nr_segs, loff_t pos)
@@ -2370,8 +2354,7 @@ ssize_t generic_file_aio_write(struct ki
 	BUG_ON(iocb->ki_pos != pos);

 	mutex_lock(&inode->i_mutex);
-	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
-			&iocb->ki_pos);
+	ret = __generic_file_aio_write(iocb, iov, nr_segs, pos);
 	mutex_unlock(&inode->i_mutex);

 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {

Page 17 of 20 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Subject: Re: [PATCH] incorrect error handling inside generic_file_direct_write
Posted by Christoph Hellwig on Fri, 15 Dec 2006 10:43:41 GMT
View Forum Message <> Reply to Message

> +ssize_t
> +__generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
> +				unsigned long nr_segs, loff_t pos)

I'd still call this generic_file_aio_write_nolock.

> +	loff_t		*ppos = &iocb->ki_pos;

I'd rather use iocb->ki_pos directly in the few places ppos is referenced
currently.

> 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
> -		ssize_t err;
> -
> 		err = sync_page_range_nolock(inode, mapping, pos, ret);
> 		if (err < 0)
> 			ret = err;
> 	}

So we're doing the sync_page_range once in __generic_file_aio_write
with i_mutex held.

> 	mutex_lock(&inode->i_mutex);
> -	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
> -			&iocb->ki_pos);
> +	ret = __generic_file_aio_write(iocb, iov, nr_segs, pos);
> 	mutex_unlock(&inode->i_mutex);
>
> 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {

And then another time after it's unlocked, this seems wrong.

Subject: RE: [PATCH] incorrect error handling inside generic_file_direct_write
Posted by kenneth.w.chen on Fri, 15 Dec 2006 18:53:18 GMT
View Forum Message <> Reply to Message

Christoph Hellwig wrote on Friday, December 15, 2006 2:44 AM
> So we're doing the sync_page_range once in __generic_file_aio_write
> with i_mutex held.
>
>
> > 	mutex_lock(&inode->i_mutex);

Page 18 of 20 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=355
https://new-forum.openvz.org/index.php?t=rview&th=1633&goto=9059#msg_9059
https://new-forum.openvz.org/index.php?t=post&reply_to=9059
https://new-forum.openvz.org/index.php?t=usrinfo&id=1020
https://new-forum.openvz.org/index.php?t=rview&th=1633&goto=9081#msg_9081
https://new-forum.openvz.org/index.php?t=post&reply_to=9081
https://new-forum.openvz.org/index.php

> > -	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
> > -			&iocb->ki_pos);
> > +	ret = __generic_file_aio_write(iocb, iov, nr_segs, pos);
> > 	mutex_unlock(&inode->i_mutex);
> >
> > 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
>
> And then another time after it's unlocked, this seems wrong.

I didn't invent that mess though.

I should've ask the question first: in 2.6.20-rc1, generic_file_aio_write
will call sync_page_range twice, once from __generic_file_aio_write_nolock
and once within the function itself. Is it redundant? Can we delete the
one in the top level function? Like the following?

--- ./mm/filemap.c.orig	2006-12-15 09:02:58.000000000 -0800
+++ ./mm/filemap.c	2006-12-15 09:03:19.000000000 -0800
@@ -2370,14 +2370,6 @@ ssize_t generic_file_aio_write(struct ki
 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
 			&iocb->ki_pos);
 	mutex_unlock(&inode->i_mutex);
-
-	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
-		ssize_t err;
-
-		err = sync_page_range(inode, mapping, pos, ret);
-		if (err < 0)
-			ret = err;
-	}
 	return ret;
 }
 EXPORT_SYMBOL(generic_file_aio_write);

Subject: Re: [PATCH] incorrect error handling inside generic_file_direct_write
Posted by Christoph Hellwig on Tue, 02 Jan 2007 11:17:46 GMT
View Forum Message <> Reply to Message

On Fri, Dec 15, 2006 at 10:53:18AM -0800, Chen, Kenneth W wrote:
> Christoph Hellwig wrote on Friday, December 15, 2006 2:44 AM
> > So we're doing the sync_page_range once in __generic_file_aio_write
> > with i_mutex held.
> >
> >
> > > 	mutex_lock(&inode->i_mutex);

Page 19 of 20 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=355
https://new-forum.openvz.org/index.php?t=rview&th=1633&goto=9417#msg_9417
https://new-forum.openvz.org/index.php?t=post&reply_to=9417
https://new-forum.openvz.org/index.php

> > > -	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
> > > -			&iocb->ki_pos);
> > > +	ret = __generic_file_aio_write(iocb, iov, nr_segs, pos);
> > > 	mutex_unlock(&inode->i_mutex);
> > >
> > > 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
> >
> > And then another time after it's unlocked, this seems wrong.
>
>
> I didn't invent that mess though.
>
> I should've ask the question first: in 2.6.20-rc1, generic_file_aio_write
> will call sync_page_range twice, once from __generic_file_aio_write_nolock
> and once within the function itself. Is it redundant? Can we delete the
> one in the top level function? Like the following?

Really? I'm looking at -rc3 now as -rc1 is rather old and it's definitly
not the case there. I also can't remember ever doing this - when I
started the generic read/write path untangling I had exactly the same
situation that's now in -rc3:

 - generic_file_aio_write_nolock calls sync_page_range_nolock
 - generic_file_aio_write calls sync_page_range
 - __generic_file_aio_write_nolock doesn't call any sync_page_range variant

Page 20 of 20 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

