
Subject: [PATCH v5] posix timers: allocate timer id per process
Posted by Stanislav Kinsbursky on Tue, 23 Oct 2012 07:40:24 GMT
View Forum Message <> Reply to Message

This patch is required CRIU project (www.criu.org).
To migrate processes with posix timers we have to make sure, that we can
restore posix timer with proper id.
Currently, this is not true, because timer ids are allocated globally.
So, this is precursor patch and it's purpose is make posix timer id to be
allocated per process.

Patch replaces global idr with global hash table for posix timers and
makes timer ids unique not globally, but per process. Next free timer id is
type of integer and stored on signal struct (posix_timer_id). If free timer id
reaches negative value on timer creation, it will be dropped to zero and
-EAGAIN will be returned to user.

Hash table has 512 slots.
Key is constructed as follows:
key = hash_32(hash_32(current->signal) ^ posix_timer_id));

Note: with this patch, id, returned to user, is not the minimal free
amymore. It means, that id, returned to user space in loop, listed below, will
be increasing on each iteration till INT_MAX and then dropped to zero:

while(1) {
	id = timer_create(...);
	timer_delete(id);
}

Signed-off-by: Stanislav Kinsbursky <skinsbursky@parallels.com>

v5:
1) Patch changelog updated

v4:
1) a couple of coding style fixes (lines over 80 characters)

v3:
1) hash calculation simlified to improve perfomance.

v2:
1) Hash table become RCU-friendly. Hash table search now done under RCU lock
protection.
I've tested scalability on KVM with 4 CPU. The testing environment was build
of 10 processes, each had 512 posix timers running (SIGSEV_NONE) and was

Page 1 of 12 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5627
https://new-forum.openvz.org/index.php?t=rview&th=11236&goto=48563#msg_48563
https://new-forum.openvz.org/index.php?t=post&reply_to=48563
https://new-forum.openvz.org/index.php

calling timer_gettime() in loop. With all this stuff being running, I was
measuring time of calling of syscall timer_gettime() 10000 times.

Without this patch: ~7ms
With this patch : ~7ms

 include/linux/posix-timers.h | 1
 include/linux/sched.h | 4 +
 kernel/posix-timers.c | 113 ++++++++++++++++++++++++++++--------------
 3 files changed, 79 insertions(+), 39 deletions(-)

diff --git a/include/linux/posix-timers.h b/include/linux/posix-timers.h
index 042058f..60bac69 100644
--- a/include/linux/posix-timers.h
+++ b/include/linux/posix-timers.h
@@ -55,6 +55,7 @@ struct cpu_timer_list {
 /* POSIX.1b interval timer structure. */
 struct k_itimer {
 	struct list_head list;		/* free/ allocate list */
+	struct hlist_node t_hash;
 	spinlock_t it_lock;
 	clockid_t it_clock;		/* which timer type */
 	timer_t it_id;			/* timer id */
diff --git a/include/linux/sched.h b/include/linux/sched.h
index 0dd42a0..dce1651 100644
--- a/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -51,6 +51,7 @@ struct sched_param {
 #include <linux/cred.h>
 #include <linux/llist.h>
 #include <linux/uidgid.h>
+#include <linux/idr.h>

 #include <asm/processor.h>

@@ -536,7 +537,8 @@ struct signal_struct {
 	unsigned int		has_child_subreaper:1;

 	/* POSIX.1b Interval Timers */
-	struct list_head posix_timers;
+	int			posix_timer_id;
+	struct list_head	posix_timers;

 	/* ITIMER_REAL timer for the process */
 	struct hrtimer real_timer;
diff --git a/kernel/posix-timers.c b/kernel/posix-timers.c
index 69185ae..6d94d8e 100644
--- a/kernel/posix-timers.c

Page 2 of 12 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+++ b/kernel/posix-timers.c
@@ -47,31 +47,28 @@
 #include <linux/wait.h>
 #include <linux/workqueue.h>
 #include <linux/export.h>
+#include <linux/hash.h>

 /*
- * Management arrays for POSIX timers.	 Timers are kept in slab memory
- * Timer ids are allocated by an external routine that keeps track of the
- * id and the timer. The external interface is:
- *
- * void *idr_find(struct idr *idp, int id); to find timer_id <id>
- * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
- * related it to <ptr>
- * void idr_remove(struct idr *idp, int id); to release <id>
- * void idr_init(struct idr *idp); to initialize <idp>
- * which we supply.
- * The idr_get_new *may* call slab for more memory so it must not be
- * called under a spin lock. Likewise idr_remore may release memory
- * (but it may be ok to do this under a lock...).
- * idr_find is just a memory look up and is quite fast. A -1 return
- * indicates that the requested id does not exist.
+ * Management arrays for POSIX timers. Timers are now kept in static PAGE-size
+ * hash table.
+ * Timer ids are allocated by local routine, which selects proper hash head by
+ * key, constructed from current->signal address and per signal struct counter.
+ * This keeps timer ids unique per process, but now they can intersect between
+ * processes.
 */

 /*
 * Lets keep our timers in a slab cache :-)
 */
 static struct kmem_cache *posix_timers_cache;
-static struct idr posix_timers_id;
-static DEFINE_SPINLOCK(idr_lock);
+
+#define POSIX_TIMERS_HASH_BITS		9
+#define POSIX_TIMERS_HASH_SIZE		(1 << POSIX_TIMERS_HASH_BITS)
+
+/* Hash table is size of PAGE currently */
+static struct hlist_head posix_timers_hashtable[POSIX_TIMERS_HASH_SIZE];
+static DEFINE_SPINLOCK(hash_lock);

 /*
 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
@@ -152,6 +149,57 @@ static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long

Page 3 of 12 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

*flags);
 	__timr;								 \
 })

+static int hash(struct signal_struct *sig, unsigned int nr)
+{
+	return hash_32(hash32_ptr(sig) ^ nr, POSIX_TIMERS_HASH_BITS);
+}
+
+static struct k_itimer *__posix_timers_find(struct hlist_head *head,
+					 struct signal_struct *sig,
+					 timer_t id)
+{
+	struct hlist_node *node;
+	struct k_itimer *timer;
+
+	hlist_for_each_entry_rcu(timer, node, head, t_hash) {
+		if ((timer->it_signal == sig) && (timer->it_id == id))
+			return timer;
+	}
+	return NULL;
+}
+
+static struct k_itimer *posix_timer_by_id(timer_t id)
+{
+	struct signal_struct *sig = current->signal;
+	struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
+
+	return __posix_timers_find(head, sig, id);
+}
+
+static int posix_timer_add(struct k_itimer *timer)
+{
+	struct signal_struct *sig = current->signal;
+	int next_free_id = sig->posix_timer_id;
+	struct hlist_head *head;
+	int ret = -ENOENT;
+
+	do {
+		spin_lock(&hash_lock);
+		head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
+		if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
+			hlist_add_head_rcu(&timer->t_hash, head);
+			ret = sig->posix_timer_id++;
+		} else {
+			if (++sig->posix_timer_id < 0)
+				sig->posix_timer_id = 0;
+			if (sig->posix_timer_id == next_free_id)

Page 4 of 12 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+				ret = -EAGAIN;
+		}
+		spin_unlock(&hash_lock);
+	} while (ret == -ENOENT);
+	return ret;
+}
+
 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
 {
 	spin_unlock_irqrestore(&timr->it_lock, flags);
@@ -271,6 +319,7 @@ static __init int init_posix_timers(void)
 		.timer_get	= common_timer_get,
 		.timer_del	= common_timer_del,
 	};
+	int i;

 	posix_timers_register_clock(CLOCK_REALTIME, &clock_realtime);
 	posix_timers_register_clock(CLOCK_MONOTONIC, &clock_monotonic);
@@ -282,7 +331,8 @@ static __init int init_posix_timers(void)
 	posix_timers_cache = kmem_cache_create("posix_timers_cache",
 					sizeof (struct k_itimer), 0, SLAB_PANIC,
 					NULL);
-	idr_init(&posix_timers_id);
+	for (i = 0; i < POSIX_TIMERS_HASH_SIZE; i++)
+		INIT_HLIST_HEAD(&posix_timers_hashtable[i]);
 	return 0;
 }

@@ -504,9 +554,9 @@ static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
 {
 	if (it_id_set) {
 		unsigned long flags;
-		spin_lock_irqsave(&idr_lock, flags);
-		idr_remove(&posix_timers_id, tmr->it_id);
-		spin_unlock_irqrestore(&idr_lock, flags);
+		spin_lock_irqsave(&hash_lock, flags);
+		hlist_del_rcu(&tmr->t_hash);
+		spin_unlock_irqrestore(&hash_lock, flags);
 	}
 	put_pid(tmr->it_pid);
 	sigqueue_free(tmr->sigq);
@@ -552,22 +602,9 @@ SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
 		return -EAGAIN;

 	spin_lock_init(&new_timer->it_lock);
- retry:
-	if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
-		error = -EAGAIN;

Page 5 of 12 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-		goto out;
-	}
-	spin_lock_irq(&idr_lock);
-	error = idr_get_new(&posix_timers_id, new_timer, &new_timer_id);
-	spin_unlock_irq(&idr_lock);
-	if (error) {
-		if (error == -EAGAIN)
-			goto retry;
-		/*
-		 * Weird looking, but we return EAGAIN if the IDR is
-		 * full (proper POSIX return value for this)
-		 */
-		error = -EAGAIN;
+	new_timer_id = posix_timer_add(new_timer);
+	if (new_timer_id < 0) {
+		error = new_timer_id;
 		goto out;
 	}

@@ -640,7 +677,7 @@ static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
 	struct k_itimer *timr;

 	rcu_read_lock();
-	timr = idr_find(&posix_timers_id, (int)timer_id);
+	timr = posix_timer_by_id(timer_id);
 	if (timr) {
 		spin_lock_irqsave(&timr->it_lock, *flags);
 		if (timr->it_signal == current->signal) {

Subject: Re: [PATCH v5] posix timers: allocate timer id per process
Posted by Eric Dumazet on Tue, 23 Oct 2012 07:52:03 GMT
View Forum Message <> Reply to Message

On Tue, 2012-10-23 at 11:40 +0400, Stanislav Kinsbursky wrote:
> This patch is required CRIU project (www.criu.org).
> To migrate processes with posix timers we have to make sure, that we can
> restore posix timer with proper id.
> Currently, this is not true, because timer ids are allocated globally.
> So, this is precursor patch and it's purpose is make posix timer id to be
> allocated per process.
>
> Patch replaces global idr with global hash table for posix timers and
> makes timer ids unique not globally, but per process. Next free timer id is
> type of integer and stored on signal struct (posix_timer_id). If free timer id
> reaches negative value on timer creation, it will be dropped to zero and
> -EAGAIN will be returned to user.
>

Page 6 of 12 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=580
https://new-forum.openvz.org/index.php?t=rview&th=11236&goto=48564#msg_48564
https://new-forum.openvz.org/index.php?t=post&reply_to=48564
https://new-forum.openvz.org/index.php

> Hash table has 512 slots.
> Key is constructed as follows:
> key = hash_32(hash_32(current->signal) ^ posix_timer_id));
>
> Note: with this patch, id, returned to user, is not the minimal free
> amymore. It means, that id, returned to user space in loop, listed below, will
> be increasing on each iteration till INT_MAX and then dropped to zero:
>
> while(1) {
> 	id = timer_create(...);
> 	timer_delete(id);
> }
>
> Signed-off-by: Stanislav Kinsbursky <skinsbursky@parallels.com>
>
> ---

SGTM

Signed-off-by: Eric Dumazet <edumazet@google.com>

Thanks !

Subject: Re: [PATCH v5] posix timers: allocate timer id per process
Posted by Thomas Gleixner on Tue, 23 Oct 2012 09:50:11 GMT
View Forum Message <> Reply to Message

B1;2601;0cOn Tue, 23 Oct 2012, Stanislav Kinsbursky wrote:
> Patch replaces global idr with global hash table for posix timers and
> makes timer ids unique not globally, but per process. Next free timer id is
> type of integer and stored on signal struct (posix_timer_id). If free timer id
> reaches negative value on timer creation, it will be dropped to zero and
> -EAGAIN will be returned to user.

That's the theory ...

> diff --git a/include/linux/sched.h b/include/linux/sched.h
> index 0dd42a0..dce1651 100644
> --- a/include/linux/sched.h
> +++ b/include/linux/sched.h
> @@ -51,6 +51,7 @@ struct sched_param {
> #include <linux/cred.h>
> #include <linux/llist.h>
> #include <linux/uidgid.h>
> +#include <linux/idr.h>

Why ?

Page 7 of 12 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1942
https://new-forum.openvz.org/index.php?t=rview&th=11236&goto=48565#msg_48565
https://new-forum.openvz.org/index.php?t=post&reply_to=48565
https://new-forum.openvz.org/index.php

> +static int posix_timer_add(struct k_itimer *timer)
> +{
> +	struct signal_struct *sig = current->signal;
> +	int next_free_id = sig->posix_timer_id;
> +	struct hlist_head *head;
> +	int ret = -ENOENT;
> +
> +	do {
> +		spin_lock(&hash_lock);
> +		head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
> +		if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
> +			hlist_add_head_rcu(&timer->t_hash, head);
> +			ret = sig->posix_timer_id++;

Let's assume a program, which creates timers and destroys them in a
loop.

	while (1) {
	 id = timer_create();
	 if (id < 0)
	 	 continue;
	 timer_delete(id);
	}

After 2^31 iterations sig->posix_timer_id contains 0x80000000.

__posix_timer_find() will return NULL as there is no timer with this
id and you happily add the new timer to the hash list and return
0x80000000, which translates to -INT_MAX.

Now this will return a totally useless error code to user space and
what's worse it will free that timer without removing it from the hash
bucket. The next access to that bucket will explode nicely.

> +		} else {
> +			if (++sig->posix_timer_id < 0)
> +				sig->posix_timer_id = 0;
> +			if (sig->posix_timer_id == next_free_id)
> +				ret = -EAGAIN;

This code path has obvioulsy never been executed.

> +		}
> +		spin_unlock(&hash_lock);
> +	} while (ret == -ENOENT);
> +	return ret;
> +}

Page 8 of 12 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Thanks,

	tglx

Subject: Re: [PATCH v5] posix timers: allocate timer id per process
Posted by Thomas Gleixner on Tue, 23 Oct 2012 21:47:33 GMT
View Forum Message <> Reply to Message

On Tue, 23 Oct 2012, Eric Dumazet wrote:

> On Tue, 2012-10-23 at 11:40 +0400, Stanislav Kinsbursky wrote:
> > This patch is required CRIU project (www.criu.org).
> > To migrate processes with posix timers we have to make sure, that we can
> > restore posix timer with proper id.
> > Currently, this is not true, because timer ids are allocated globally.
> > So, this is precursor patch and it's purpose is make posix timer id to be
> > allocated per process.
> >
> > Patch replaces global idr with global hash table for posix timers and
> > makes timer ids unique not globally, but per process. Next free timer id is
> > type of integer and stored on signal struct (posix_timer_id). If free timer id
> > reaches negative value on timer creation, it will be dropped to zero and
> > -EAGAIN will be returned to user.
> >
> > Hash table has 512 slots.
> > Key is constructed as follows:
> > key = hash_32(hash_32(current->signal) ^ posix_timer_id));
> >
> > Note: with this patch, id, returned to user, is not the minimal free
> > amymore. It means, that id, returned to user space in loop, listed below, will
> > be increasing on each iteration till INT_MAX and then dropped to zero:
> >
> > while(1) {
> > 	id = timer_create(...);
> > 	timer_delete(id);
> > }
> >
> > Signed-off-by: Stanislav Kinsbursky <skinsbursky@parallels.com>
> >
> > ---
>
> SGTM

Not so good to me.

> Signed-off-by: Eric Dumazet <edumazet@google.com>

Page 9 of 12 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1942
https://new-forum.openvz.org/index.php?t=rview&th=11236&goto=48578#msg_48578
https://new-forum.openvz.org/index.php?t=post&reply_to=48578
https://new-forum.openvz.org/index.php

And that should be either an Acked-by or a Reviewed-by. You can't sign
off on patches which have not been submitted or transported by you.

Thanks,

	tglx

Subject: Re: [PATCH v5] posix timers: allocate timer id per process
Posted by Eric Dumazet on Tue, 23 Oct 2012 21:53:36 GMT
View Forum Message <> Reply to Message

On Tue, 2012-10-23 at 23:47 +0200, Thomas Gleixner wrote:

> Not so good to me.
>
> > Signed-off-by: Eric Dumazet <edumazet@google.com>
>
> And that should be either an Acked-by or a Reviewed-by. You can't sign
> off on patches which have not been submitted or transported by you.

I actually gave some input, provided a hash function, and so on.

So this SOB was valid. I do that all the time.

And yes, there are bugs in this patch, as many patches that were merged
in linux tree, included by you.

Thanks

Subject: Re: [PATCH v5] posix timers: allocate timer id per process
Posted by Thomas Gleixner on Tue, 23 Oct 2012 22:33:05 GMT
View Forum Message <> Reply to Message

On Tue, 23 Oct 2012, Eric Dumazet wrote:

> On Tue, 2012-10-23 at 23:47 +0200, Thomas Gleixner wrote:
>
> > Not so good to me.
> >
> > > Signed-off-by: Eric Dumazet <edumazet@google.com>
> >
> > And that should be either an Acked-by or a Reviewed-by. You can't sign
> > off on patches which have not been submitted or transported by you.
>

Page 10 of 12 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=580
https://new-forum.openvz.org/index.php?t=rview&th=11236&goto=48579#msg_48579
https://new-forum.openvz.org/index.php?t=post&reply_to=48579
https://new-forum.openvz.org/index.php?t=usrinfo&id=1942
https://new-forum.openvz.org/index.php?t=rview&th=11236&goto=48580#msg_48580
https://new-forum.openvz.org/index.php?t=post&reply_to=48580
https://new-forum.openvz.org/index.php

> I actually gave some input, provided a hash function, and so on.
>
> So this SOB was valid. I do that all the time.

Not really. I recommend you to read the relevant file in Documentation
which covers what can have your SOB.

Your input is documented in the mail thread, but it does not contain a
patch - which is Signed-off-by YOU - on which the thing at hand is
based on. So it's not covered by what SOB actually means.

You can rightfully request the patch author to add a "Suggested-by"
tag, but you can't rightfully claim authorship of something you did
not author.

> And yes, there are bugs in this patch, as many patches that were merged
> in linux tree, included by you.

That's a totally different issue. We can ack/review/signoff and commit
totally bogus patches as long as we want.

Though that does not change the meanings of the tags (Acked, Reviewed,
Signed-off) at all.

Thanks,

	tglx

Subject: Re: [PATCH v5] posix timers: allocate timer id per process
Posted by Eric Dumazet on Wed, 24 Oct 2012 03:02:40 GMT
View Forum Message <> Reply to Message

On Wed, 2012-10-24 at 00:33 +0200, Thomas Gleixner wrote:
> On Tue, 23 Oct 2012, Eric Dumazet wrote:
>
> > On Tue, 2012-10-23 at 23:47 +0200, Thomas Gleixner wrote:
> >
> > > Not so good to me.
> > >
> > > > Signed-off-by: Eric Dumazet <edumazet@google.com>
> > >
> > > And that should be either an Acked-by or a Reviewed-by. You can't sign
> > > off on patches which have not been submitted or transported by you.
> >
> > I actually gave some input, provided a hash function, and so on.
> >
> > So this SOB was valid. I do that all the time.

Page 11 of 12 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=580
https://new-forum.openvz.org/index.php?t=rview&th=11236&goto=48582#msg_48582
https://new-forum.openvz.org/index.php?t=post&reply_to=48582
https://new-forum.openvz.org/index.php

>
> Not really. I recommend you to read the relevant file in Documentation
> which covers what can have your SOB.

OK I did that again, and found this :

The Signed-off-by: tag indicates that the signer was involved in the
development of the patch, or that he/she was in the patch's delivery
path.

And I was involved in the development of the patch.

I understand you dont like it at all, so I'll remember not trying to
help anymore in this area.

Page 12 of 12 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

