
Subject: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Glauber Costa on Tue, 18 Sep 2012 14:04:01 GMT
View Forum Message <> Reply to Message

This patch adds the basic infrastructure for the accounting of the slab
caches. To control that, the following files are created:

 * memory.kmem.usage_in_bytes
 * memory.kmem.limit_in_bytes
 * memory.kmem.failcnt
 * memory.kmem.max_usage_in_bytes

They have the same meaning of their user memory counterparts. They
reflect the state of the "kmem" res_counter.

The code is not enabled until a limit is set. This can be tested by the
flag "kmem_accounted". This means that after the patch is applied, no
behavioral changes exists for whoever is still using memcg to control
their memory usage.

We always account to both user and kernel resource_counters. This
effectively means that an independent kernel limit is in place when the
limit is set to a lower value than the user memory. A equal or higher
value means that the user limit will always hit first, meaning that kmem
is effectively unlimited.

People who want to track kernel memory but not limit it, can set this
limit to a very high number (like RESOURCE_MAX - 1page - that no one
will ever hit, or equal to the user memory)

Signed-off-by: Glauber Costa <glommer@parallels.com>
CC: Michal Hocko <mhocko@suse.cz>
CC: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>

 mm/memcontrol.c | 64
++-
 1 file changed, 63 insertions(+), 1 deletion(-)

diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index d6ad138..f3fd354 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -265,6 +265,10 @@ struct mem_cgroup {
 	};

 	/*
+	 * the counter to account for kernel memory usage.

Page 1 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=47884#msg_47884
https://new-forum.openvz.org/index.php?t=post&reply_to=47884
https://new-forum.openvz.org/index.php

+	 */
+	struct res_counter kmem;
+	/*
 	 * Per cgroup active and inactive list, similar to the
 	 * per zone LRU lists.
 	 */
@@ -279,6 +283,7 @@ struct mem_cgroup {
 	 * Should the accounting and control be hierarchical, per subtree?
 	 */
 	bool use_hierarchy;
+	bool kmem_accounted;

 	bool		oom_lock;
 	atomic_t	under_oom;
@@ -389,6 +394,7 @@ enum res_type {
 	_MEM,
 	_MEMSWAP,
 	_OOM_TYPE,
+	_KMEM,
 };

 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
@@ -1439,6 +1445,10 @@ done:
 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
+	printk(KERN_INFO "kmem: usage %llukB, limit %llukB, failcnt %llu\n",
+		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
+		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
+		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
 }

 /*
@@ -3946,6 +3956,9 @@ static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
 		else
 			val = res_counter_read_u64(&memcg->memsw, name);
 		break;
+	case _KMEM:
+		val = res_counter_read_u64(&memcg->kmem, name);
+		break;
 	default:
 		BUG();
 	}
@@ -3984,8 +3997,18 @@ static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
 			break;
 		if (type == _MEM)
 			ret = mem_cgroup_resize_limit(memcg, val);
-		else

Page 2 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+		else if (type == _MEMSWAP)
 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
+		else if (type == _KMEM) {
+			ret = res_counter_set_limit(&memcg->kmem, val);
+			if (ret)
+				break;
+
+			/* For simplicity, we won't allow this to be disabled */
+			if (!memcg->kmem_accounted && val != RESOURCE_MAX)
+				memcg->kmem_accounted = true;
+		} else
+			return -EINVAL;
 		break;
 	case RES_SOFT_LIMIT:
 		ret = res_counter_memparse_write_strategy(buffer, &val);
@@ -4051,12 +4074,16 @@ static int mem_cgroup_reset(struct cgroup *cont, unsigned int
event)
 	case RES_MAX_USAGE:
 		if (type == _MEM)
 			res_counter_reset_max(&memcg->res);
+		else if (type == _KMEM)
+			res_counter_reset_max(&memcg->kmem);
 		else
 			res_counter_reset_max(&memcg->memsw);
 		break;
 	case RES_FAILCNT:
 		if (type == _MEM)
 			res_counter_reset_failcnt(&memcg->res);
+		else if (type == _KMEM)
+			res_counter_reset_failcnt(&memcg->kmem);
 		else
 			res_counter_reset_failcnt(&memcg->memsw);
 		break;
@@ -4618,6 +4645,33 @@ static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
 }

 #ifdef CONFIG_MEMCG_KMEM
+static struct cftype kmem_cgroup_files[] = {
+	{
+		.name = "kmem.limit_in_bytes",
+		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
+		.write_string = mem_cgroup_write,
+		.read = mem_cgroup_read,
+	},
+	{
+		.name = "kmem.usage_in_bytes",
+		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
+		.read = mem_cgroup_read,

Page 3 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+	},
+	{
+		.name = "kmem.failcnt",
+		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
+		.trigger = mem_cgroup_reset,
+		.read = mem_cgroup_read,
+	},
+	{
+		.name = "kmem.max_usage_in_bytes",
+		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
+		.trigger = mem_cgroup_reset,
+		.read = mem_cgroup_read,
+	},
+	{},
+};
+
 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
 {
 	return mem_cgroup_sockets_init(memcg, ss);
@@ -4961,6 +5015,12 @@ mem_cgroup_create(struct cgroup *cont)
 		int cpu;
 		enable_swap_cgroup();
 		parent = NULL;
+
+#ifdef CONFIG_MEMCG_KMEM
+		WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys,
+					 kmem_cgroup_files));
+#endif
+
 		if (mem_cgroup_soft_limit_tree_init())
 			goto free_out;
 		root_mem_cgroup = memcg;
@@ -4979,6 +5039,7 @@ mem_cgroup_create(struct cgroup *cont)
 	if (parent && parent->use_hierarchy) {
 		res_counter_init(&memcg->res, &parent->res);
 		res_counter_init(&memcg->memsw, &parent->memsw);
+		res_counter_init(&memcg->kmem, &parent->kmem);
 		/*
 		 * We increment refcnt of the parent to ensure that we can
 		 * safely access it on res_counter_charge/uncharge.
@@ -4989,6 +5050,7 @@ mem_cgroup_create(struct cgroup *cont)
 	} else {
 		res_counter_init(&memcg->res, NULL);
 		res_counter_init(&memcg->memsw, NULL);
+		res_counter_init(&memcg->kmem, NULL);
 	}
 	memcg->last_scanned_node = MAX_NUMNODES;
 	INIT_LIST_HEAD(&memcg->oom_notify);

Page 4 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

--
1.7.11.4

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Tejun Heo on Fri, 21 Sep 2012 16:34:04 GMT
View Forum Message <> Reply to Message

On Tue, Sep 18, 2012 at 06:04:01PM +0400, Glauber Costa wrote:
> #ifdef CONFIG_MEMCG_KMEM
> +static struct cftype kmem_cgroup_files[] = {
> +	{
> +		.name = "kmem.limit_in_bytes",
> +		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
> +		.write_string = mem_cgroup_write,
> +		.read = mem_cgroup_read,
> +	},
> +	{
> +		.name = "kmem.usage_in_bytes",
> +		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
> +		.read = mem_cgroup_read,
> +	},
> +	{
> +		.name = "kmem.failcnt",
> +		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
> +		.trigger = mem_cgroup_reset,
> +		.read = mem_cgroup_read,
> +	},
> +	{
> +		.name = "kmem.max_usage_in_bytes",
> +		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
> +		.trigger = mem_cgroup_reset,
> +		.read = mem_cgroup_read,
> +	},
> +	{},
> +};
> +
> static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
> {
> 	return mem_cgroup_sockets_init(memcg, ss);
> @@ -4961,6 +5015,12 @@ mem_cgroup_create(struct cgroup *cont)
> 		int cpu;
> 		enable_swap_cgroup();
> 		parent = NULL;
> +
> +#ifdef CONFIG_MEMCG_KMEM
> +		WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys,
> +					 kmem_cgroup_files));

Page 5 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=935
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=47977#msg_47977
https://new-forum.openvz.org/index.php?t=post&reply_to=47977
https://new-forum.openvz.org/index.php

> +#endif
> +

Why not just make it part of mem_cgroup_files[]?

Thanks.

--
tejun

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Glauber Costa on Mon, 24 Sep 2012 08:09:53 GMT
View Forum Message <> Reply to Message

>> +
>> +#ifdef CONFIG_MEMCG_KMEM
>> +		WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys,
>> +					 kmem_cgroup_files));
>> +#endif
>> +
>
> Why not just make it part of mem_cgroup_files[]?
>
> Thanks.
>

Done.

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Michal Hocko on Wed, 26 Sep 2012 14:03:47 GMT
View Forum Message <> Reply to Message

On Tue 18-09-12 18:04:01, Glauber Costa wrote:
> This patch adds the basic infrastructure for the accounting of the slab
> caches. To control that, the following files are created:
>
> * memory.kmem.usage_in_bytes
> * memory.kmem.limit_in_bytes
> * memory.kmem.failcnt
> * memory.kmem.max_usage_in_bytes
>
> They have the same meaning of their user memory counterparts. They
> reflect the state of the "kmem" res_counter.

> The code is not enabled until a limit is set.

Page 6 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=47998#msg_47998
https://new-forum.openvz.org/index.php?t=post&reply_to=47998
https://new-forum.openvz.org/index.php?t=usrinfo&id=5820
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48051#msg_48051
https://new-forum.openvz.org/index.php?t=post&reply_to=48051
https://new-forum.openvz.org/index.php

"Per cgroup slab memory accounting is not enabled until a limit is set
for the group. Once the limit is set the accounting cannot be disabled
such a group."

Better?

> This can be tested by the flag "kmem_accounted".

Sounds as if it could be done from userspace (because you were talking
about an user interface) which it cannot and we do not see it in this
patch because it is not used anywhere. So please be more specific.

> This means that after the patch is applied, no behavioral changes
> exists for whoever is still using memcg to control their memory usage.
>
> We always account to both user and kernel resource_counters.

This is in contradiction with your claim that there is no behavioral
change for memcg users. Please clarify when we use u and when u+k
accounting.
"
There is no behavioral change if the kmem accounting is turned off for
memcg users but when there is a kmem.limit_in_bytes is set then the
memory.usage_in_bytes will include both user and kmem memory.
"

> This
> effectively means that an independent kernel limit is in place when the
> limit is set to a lower value than the user memory. A equal or higher
> value means that the user limit will always hit first, meaning that kmem
> is effectively unlimited.
>
> People who want to track kernel memory but not limit it, can set this
> limit to a very high number (like RESOURCE_MAX - 1page - that no one
> will ever hit, or equal to the user memory)
>
> Signed-off-by: Glauber Costa <glommer@parallels.com>
> CC: Michal Hocko <mhocko@suse.cz>
> CC: Johannes Weiner <hannes@cmpxchg.org>
> Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
> ---
> mm/memcontrol.c | 64
++-
> 1 file changed, 63 insertions(+), 1 deletion(-)
>
> diff --git a/mm/memcontrol.c b/mm/memcontrol.c
> index d6ad138..f3fd354 100644

Page 7 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> --- a/mm/memcontrol.c
> +++ b/mm/memcontrol.c
> @@ -265,6 +265,10 @@ struct mem_cgroup {
> 	};
>
> 	/*
> +	 * the counter to account for kernel memory usage.
> +	 */
> +	struct res_counter kmem;
> +	/*
> 	 * Per cgroup active and inactive list, similar to the
> 	 * per zone LRU lists.
> 	 */
> @@ -279,6 +283,7 @@ struct mem_cgroup {
> 	 * Should the accounting and control be hierarchical, per subtree?
> 	 */
> 	bool use_hierarchy;
> +	bool kmem_accounted;
>
> 	bool		oom_lock;
> 	atomic_t	under_oom;
> @@ -389,6 +394,7 @@ enum res_type {
> 	_MEM,
> 	_MEMSWAP,
> 	_OOM_TYPE,
> +	_KMEM,
> };
>
> #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
> @@ -1439,6 +1445,10 @@ done:
> 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
> 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
> 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
> +	printk(KERN_INFO "kmem: usage %llukB, limit %llukB, failcnt %llu\n",
> +		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
> +		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
> +		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
> }
>
> /*
> @@ -3946,6 +3956,9 @@ static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype
*cft,
> 		else
> 			val = res_counter_read_u64(&memcg->memsw, name);
> 		break;
> +	case _KMEM:
> +		val = res_counter_read_u64(&memcg->kmem, name);
> +		break;

Page 8 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> 	default:
> 		BUG();
> 	}
> @@ -3984,8 +3997,18 @@ static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
> 			break;
> 		if (type == _MEM)
> 			ret = mem_cgroup_resize_limit(memcg, val);
> -		else
> +		else if (type == _MEMSWAP)
> 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
> +		else if (type == _KMEM) {
> +			ret = res_counter_set_limit(&memcg->kmem, val);
> +			if (ret)
> +				break;
> +
> +			/* For simplicity, we won't allow this to be disabled */
> +			if (!memcg->kmem_accounted && val != RESOURCE_MAX)
> +				memcg->kmem_accounted = true;
> +		} else
> +			return -EINVAL;
> 		break;
> 	case RES_SOFT_LIMIT:
> 		ret = res_counter_memparse_write_strategy(buffer, &val);
> @@ -4051,12 +4074,16 @@ static int mem_cgroup_reset(struct cgroup *cont, unsigned int
event)
> 	case RES_MAX_USAGE:
> 		if (type == _MEM)
> 			res_counter_reset_max(&memcg->res);
> +		else if (type == _KMEM)
> +			res_counter_reset_max(&memcg->kmem);
> 		else
> 			res_counter_reset_max(&memcg->memsw);
> 		break;
> 	case RES_FAILCNT:
> 		if (type == _MEM)
> 			res_counter_reset_failcnt(&memcg->res);
> +		else if (type == _KMEM)
> +			res_counter_reset_failcnt(&memcg->kmem);
> 		else
> 			res_counter_reset_failcnt(&memcg->memsw);
> 		break;
> @@ -4618,6 +4645,33 @@ static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
> }
>
> #ifdef CONFIG_MEMCG_KMEM

Some things are guarded CONFIG_MEMCG_KMEM but some are not (e.g. struct
mem_cgroup.kmem). I do understand you want to keep ifdefs on the leash

Page 9 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

but we should clean this up one day.

> +static struct cftype kmem_cgroup_files[] = {
> +	{
> +		.name = "kmem.limit_in_bytes",
> +		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
> +		.write_string = mem_cgroup_write,
> +		.read = mem_cgroup_read,
> +	},
> +	{
> +		.name = "kmem.usage_in_bytes",
> +		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
> +		.read = mem_cgroup_read,
> +	},
> +	{
> +		.name = "kmem.failcnt",
> +		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
> +		.trigger = mem_cgroup_reset,
> +		.read = mem_cgroup_read,
> +	},
> +	{
> +		.name = "kmem.max_usage_in_bytes",
> +		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
> +		.trigger = mem_cgroup_reset,
> +		.read = mem_cgroup_read,
> +	},
> +	{},
> +};
> +
> static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
> {
> 	return mem_cgroup_sockets_init(memcg, ss);
> @@ -4961,6 +5015,12 @@ mem_cgroup_create(struct cgroup *cont)
> 		int cpu;
> 		enable_swap_cgroup();
> 		parent = NULL;
> +
> +#ifdef CONFIG_MEMCG_KMEM
> +		WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys,
> +					 kmem_cgroup_files));
> +#endif
> +
> 		if (mem_cgroup_soft_limit_tree_init())
> 			goto free_out;
> 		root_mem_cgroup = memcg;
> @@ -4979,6 +5039,7 @@ mem_cgroup_create(struct cgroup *cont)
> 	if (parent && parent->use_hierarchy) {
> 		res_counter_init(&memcg->res, &parent->res);

Page 10 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> 		res_counter_init(&memcg->memsw, &parent->memsw);
> +		res_counter_init(&memcg->kmem, &parent->kmem);

Haven't we already discussed that a new memcg should inherit kmem_accounted
from its parent for use_hierarchy?
Say we have
root
|
A (kmem_accounted = 1, use_hierachy = 1)
 \
 B (kmem_accounted = 0)
 \
 C (kmem_accounted = 1)

B find's itself in an awkward situation becuase it doesn't want to
account u+k but it ends up doing so becuase C.
--
Michal Hocko
SUSE Labs

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Glauber Costa on Wed, 26 Sep 2012 14:33:10 GMT
View Forum Message <> Reply to Message

On 09/26/2012 06:03 PM, Michal Hocko wrote:
> On Tue 18-09-12 18:04:01, Glauber Costa wrote:
>> This patch adds the basic infrastructure for the accounting of the slab
>> caches. To control that, the following files are created:
>>
>> * memory.kmem.usage_in_bytes
>> * memory.kmem.limit_in_bytes
>> * memory.kmem.failcnt
>> * memory.kmem.max_usage_in_bytes
>>
>> They have the same meaning of their user memory counterparts. They
>> reflect the state of the "kmem" res_counter.
>
>> The code is not enabled until a limit is set.
>
> "Per cgroup slab memory accounting is not enabled until a limit is set
> for the group. Once the limit is set the accounting cannot be disabled
> such a group."
>
> Better?
>
>> This can be tested by the flag "kmem_accounted".
>

Page 11 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48052#msg_48052
https://new-forum.openvz.org/index.php?t=post&reply_to=48052
https://new-forum.openvz.org/index.php

> Sounds as if it could be done from userspace (because you were talking
> about an user interface) which it cannot and we do not see it in this
> patch because it is not used anywhere. So please be more specific.
>
>> This means that after the patch is applied, no behavioral changes
>> exists for whoever is still using memcg to control their memory usage.
>>
>> We always account to both user and kernel resource_counters.
>
> This is in contradiction with your claim that there is no behavioral
> change for memcg users. Please clarify when we use u and when u+k
> accounting.
> "
> There is no behavioral change if the kmem accounting is turned off for
> memcg users but when there is a kmem.limit_in_bytes is set then the
> memory.usage_in_bytes will include both user and kmem memory.
> "
>
>> This
>> effectively means that an independent kernel limit is in place when the
>> limit is set to a lower value than the user memory. A equal or higher
>> value means that the user limit will always hit first, meaning that kmem
>> is effectively unlimited.
>>
>> People who want to track kernel memory but not limit it, can set this
>> limit to a very high number (like RESOURCE_MAX - 1page - that no one
>> will ever hit, or equal to the user memory)
>>
>> Signed-off-by: Glauber Costa <glommer@parallels.com>
>> CC: Michal Hocko <mhocko@suse.cz>
>> CC: Johannes Weiner <hannes@cmpxchg.org>
>> Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
>> ---
>> mm/memcontrol.c | 64
++-
>> 1 file changed, 63 insertions(+), 1 deletion(-)
>>
>> diff --git a/mm/memcontrol.c b/mm/memcontrol.c
>> index d6ad138..f3fd354 100644
>> --- a/mm/memcontrol.c
>> +++ b/mm/memcontrol.c
>> @@ -265,6 +265,10 @@ struct mem_cgroup {
>> 	};
>>
>> 	/*
>> +	 * the counter to account for kernel memory usage.
>> +	 */
>> +	struct res_counter kmem;

Page 12 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>> +	/*
>> 	 * Per cgroup active and inactive list, similar to the
>> 	 * per zone LRU lists.
>> 	 */
>> @@ -279,6 +283,7 @@ struct mem_cgroup {
>> 	 * Should the accounting and control be hierarchical, per subtree?
>> 	 */
>> 	bool use_hierarchy;
>> +	bool kmem_accounted;
>>
>> 	bool		oom_lock;
>> 	atomic_t	under_oom;
>> @@ -389,6 +394,7 @@ enum res_type {
>> 	_MEM,
>> 	_MEMSWAP,
>> 	_OOM_TYPE,
>> +	_KMEM,
>> };
>>
>> #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
>> @@ -1439,6 +1445,10 @@ done:
>> 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
>> 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
>> 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
>> +	printk(KERN_INFO "kmem: usage %llukB, limit %llukB, failcnt %llu\n",
>> +		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
>> +		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
>> +		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
>> }
>>
>> /*
>> @@ -3946,6 +3956,9 @@ static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype
*cft,
>> 		else
>> 			val = res_counter_read_u64(&memcg->memsw, name);
>> 		break;
>> +	case _KMEM:
>> +		val = res_counter_read_u64(&memcg->kmem, name);
>> +		break;
>> 	default:
>> 		BUG();
>> 	}
>> @@ -3984,8 +3997,18 @@ static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
>> 			break;
>> 		if (type == _MEM)
>> 			ret = mem_cgroup_resize_limit(memcg, val);
>> -		else
>> +		else if (type == _MEMSWAP)

Page 13 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>> 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
>> +		else if (type == _KMEM) {
>> +			ret = res_counter_set_limit(&memcg->kmem, val);
>> +			if (ret)
>> +				break;
>> +
>> +			/* For simplicity, we won't allow this to be disabled */
>> +			if (!memcg->kmem_accounted && val != RESOURCE_MAX)
>> +				memcg->kmem_accounted = true;
>> +		} else
>> +			return -EINVAL;
>> 		break;
>> 	case RES_SOFT_LIMIT:
>> 		ret = res_counter_memparse_write_strategy(buffer, &val);
>> @@ -4051,12 +4074,16 @@ static int mem_cgroup_reset(struct cgroup *cont, unsigned int
event)
>> 	case RES_MAX_USAGE:
>> 		if (type == _MEM)
>> 			res_counter_reset_max(&memcg->res);
>> +		else if (type == _KMEM)
>> +			res_counter_reset_max(&memcg->kmem);
>> 		else
>> 			res_counter_reset_max(&memcg->memsw);
>> 		break;
>> 	case RES_FAILCNT:
>> 		if (type == _MEM)
>> 			res_counter_reset_failcnt(&memcg->res);
>> +		else if (type == _KMEM)
>> +			res_counter_reset_failcnt(&memcg->kmem);
>> 		else
>> 			res_counter_reset_failcnt(&memcg->memsw);
>> 		break;
>> @@ -4618,6 +4645,33 @@ static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
>> }
>>
>> #ifdef CONFIG_MEMCG_KMEM
>
> Some things are guarded CONFIG_MEMCG_KMEM but some are not (e.g. struct
> mem_cgroup.kmem). I do understand you want to keep ifdefs on the leash
> but we should clean this up one day.
>
>> +static struct cftype kmem_cgroup_files[] = {
>> +	{
>> +		.name = "kmem.limit_in_bytes",
>> +		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
>> +		.write_string = mem_cgroup_write,
>> +		.read = mem_cgroup_read,
>> +	},

Page 14 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>> +	{
>> +		.name = "kmem.usage_in_bytes",
>> +		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
>> +		.read = mem_cgroup_read,
>> +	},
>> +	{
>> +		.name = "kmem.failcnt",
>> +		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
>> +		.trigger = mem_cgroup_reset,
>> +		.read = mem_cgroup_read,
>> +	},
>> +	{
>> +		.name = "kmem.max_usage_in_bytes",
>> +		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
>> +		.trigger = mem_cgroup_reset,
>> +		.read = mem_cgroup_read,
>> +	},
>> +	{},
>> +};
>> +
>> static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
>> {
>> 	return mem_cgroup_sockets_init(memcg, ss);
>> @@ -4961,6 +5015,12 @@ mem_cgroup_create(struct cgroup *cont)
>> 		int cpu;
>> 		enable_swap_cgroup();
>> 		parent = NULL;
>> +
>> +#ifdef CONFIG_MEMCG_KMEM
>> +		WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys,
>> +					 kmem_cgroup_files));
>> +#endif
>> +
>> 		if (mem_cgroup_soft_limit_tree_init())
>> 			goto free_out;
>> 		root_mem_cgroup = memcg;
>> @@ -4979,6 +5039,7 @@ mem_cgroup_create(struct cgroup *cont)
>> 	if (parent && parent->use_hierarchy) {
>> 		res_counter_init(&memcg->res, &parent->res);
>> 		res_counter_init(&memcg->memsw, &parent->memsw);
>> +		res_counter_init(&memcg->kmem, &parent->kmem);
>
> Haven't we already discussed that a new memcg should inherit kmem_accounted
> from its parent for use_hierarchy?
> Say we have
> root
> |
> A (kmem_accounted = 1, use_hierachy = 1)

Page 15 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> \
> B (kmem_accounted = 0)
> \
> C (kmem_accounted = 1)
>
> B find's itself in an awkward situation becuase it doesn't want to
> account u+k but it ends up doing so becuase C.
>

Ok, I haven't updated it here. But that should be taken care of in the
lifecycle patch.

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Michal Hocko on Wed, 26 Sep 2012 16:01:27 GMT
View Forum Message <> Reply to Message

On Wed 26-09-12 18:33:10, Glauber Costa wrote:
> On 09/26/2012 06:03 PM, Michal Hocko wrote:
> > On Tue 18-09-12 18:04:01, Glauber Costa wrote:
[...]
> >> @@ -4961,6 +5015,12 @@ mem_cgroup_create(struct cgroup *cont)
> >> 		int cpu;
> >> 		enable_swap_cgroup();
> >> 		parent = NULL;
> >> +
> >> +#ifdef CONFIG_MEMCG_KMEM
> >> +		WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys,
> >> +					 kmem_cgroup_files));
> >> +#endif
> >> +
> >> 		if (mem_cgroup_soft_limit_tree_init())
> >> 			goto free_out;
> >> 		root_mem_cgroup = memcg;
> >> @@ -4979,6 +5039,7 @@ mem_cgroup_create(struct cgroup *cont)
> >> 	if (parent && parent->use_hierarchy) {
> >> 		res_counter_init(&memcg->res, &parent->res);
> >> 		res_counter_init(&memcg->memsw, &parent->memsw);
> >> +		res_counter_init(&memcg->kmem, &parent->kmem);
> >
> > Haven't we already discussed that a new memcg should inherit kmem_accounted
> > from its parent for use_hierarchy?
> > Say we have
> > root
> > |
> > A (kmem_accounted = 1, use_hierachy = 1)
> > \
> > B (kmem_accounted = 0)

Page 16 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5820
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48055#msg_48055
https://new-forum.openvz.org/index.php?t=post&reply_to=48055
https://new-forum.openvz.org/index.php

> > \
> > C (kmem_accounted = 1)
> >
> > B find's itself in an awkward situation becuase it doesn't want to
> > account u+k but it ends up doing so becuase C.
> >
>
> Ok, I haven't updated it here. But that should be taken care of in the
> lifecycle patch.

I am not sure which patch you are thinking about but I would prefer to
have it here because it is safe wrt. races and it is more obvious as
well.

--
Michal Hocko
SUSE Labs

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Tejun Heo on Wed, 26 Sep 2012 16:36:48 GMT
View Forum Message <> Reply to Message

Hello, Michal, Glauber.

On Wed, Sep 26, 2012 at 04:03:47PM +0200, Michal Hocko wrote:
> Haven't we already discussed that a new memcg should inherit kmem_accounted
> from its parent for use_hierarchy?
> Say we have
> root
> |
> A (kmem_accounted = 1, use_hierachy = 1)
> \
> B (kmem_accounted = 0)
> \
> C (kmem_accounted = 1)
>
> B find's itself in an awkward situation becuase it doesn't want to
> account u+k but it ends up doing so becuase C.

Do we really want this level of flexibility? What's wrong with a
global switch at the root? I'm not even sure we want this to be
optional at all. The only reason I can think of is that it might
screw up some configurations in use which are carefully crafted to
suit userland-only usage but for that isn't what we need a transition
plan rather than another ultra flexible config option that not many
really understand the implication of?

Page 17 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=935
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48057#msg_48057
https://new-forum.openvz.org/index.php?t=post&reply_to=48057
https://new-forum.openvz.org/index.php

In the same vein, do we really need both .kmem_accounted and config
option? If someone is turning on MEMCG, just include kmem accounting.

Thanks.

--
tejun

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Glauber Costa on Wed, 26 Sep 2012 17:34:00 GMT
View Forum Message <> Reply to Message

On 09/26/2012 08:01 PM, Michal Hocko wrote:
> On Wed 26-09-12 18:33:10, Glauber Costa wrote:
>> On 09/26/2012 06:03 PM, Michal Hocko wrote:
>>> On Tue 18-09-12 18:04:01, Glauber Costa wrote:
> [...]
>>>> @@ -4961,6 +5015,12 @@ mem_cgroup_create(struct cgroup *cont)
>>>> 		int cpu;
>>>> 		enable_swap_cgroup();
>>>> 		parent = NULL;
>>>> +
>>>> +#ifdef CONFIG_MEMCG_KMEM
>>>> +		WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys,
>>>> +					 kmem_cgroup_files));
>>>> +#endif
>>>> +
>>>> 		if (mem_cgroup_soft_limit_tree_init())
>>>> 			goto free_out;
>>>> 		root_mem_cgroup = memcg;
>>>> @@ -4979,6 +5039,7 @@ mem_cgroup_create(struct cgroup *cont)
>>>> 	if (parent && parent->use_hierarchy) {
>>>> 		res_counter_init(&memcg->res, &parent->res);
>>>> 		res_counter_init(&memcg->memsw, &parent->memsw);
>>>> +		res_counter_init(&memcg->kmem, &parent->kmem);
>>>
>>> Haven't we already discussed that a new memcg should inherit kmem_accounted
>>> from its parent for use_hierarchy?
>>> Say we have
>>> root
>>> |
>>> A (kmem_accounted = 1, use_hierachy = 1)
>>> \
>>> B (kmem_accounted = 0)
>>> \
>>> C (kmem_accounted = 1)
>>>

Page 18 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48060#msg_48060
https://new-forum.openvz.org/index.php?t=post&reply_to=48060
https://new-forum.openvz.org/index.php

>>> B find's itself in an awkward situation becuase it doesn't want to
>>> account u+k but it ends up doing so becuase C.
>>>
>>
>> Ok, I haven't updated it here. But that should be taken care of in the
>> lifecycle patch.
>
> I am not sure which patch you are thinking about but I would prefer to
> have it here because it is safe wrt. races and it is more obvious as
> well.
>

The patch where I make kmem_accounted into a bitfield. So any code here
will eventually disappear.

But BTW, I am not saying I won't update the patch - I like that all
patches work and make sense in their own, I am just saying that I forgot
to update this patch, because I added the code in its final version to
the end and then squashed it.

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Glauber Costa on Wed, 26 Sep 2012 17:36:36 GMT
View Forum Message <> Reply to Message

On 09/26/2012 08:36 PM, Tejun Heo wrote:
> Hello, Michal, Glauber.
>
> On Wed, Sep 26, 2012 at 04:03:47PM +0200, Michal Hocko wrote:
>> Haven't we already discussed that a new memcg should inherit kmem_accounted
>> from its parent for use_hierarchy?
>> Say we have
>> root
>> |
>> A (kmem_accounted = 1, use_hierachy = 1)
>> \
>> B (kmem_accounted = 0)
>> \
>> C (kmem_accounted = 1)
>>
>> B find's itself in an awkward situation becuase it doesn't want to
>> account u+k but it ends up doing so becuase C.
>
> Do we really want this level of flexibility? What's wrong with a
> global switch at the root? I'm not even sure we want this to be
> optional at all. The only reason I can think of is that it might
> screw up some configurations in use which are carefully crafted to
> suit userland-only usage but for that isn't what we need a transition

Page 19 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48061#msg_48061
https://new-forum.openvz.org/index.php?t=post&reply_to=48061
https://new-forum.openvz.org/index.php

> plan rather than another ultra flexible config option that not many
> really understand the implication of?
>
> In the same vein, do we really need both .kmem_accounted and config
> option? If someone is turning on MEMCG, just include kmem accounting.
>

Yes, we do.

This was discussed multiple times. Our interest is to preserve existing
deployed setup, that were tuned in a world where kmem didn't exist.
Because we also feed kmem to the user counter, this may very well
disrupt their setup.

User memory, unlike kernel memory, may very well be totally in control
of the userspace application, so it is not unreasonable to believe that
extra pages appearing in a new kernel version may break them.

It is actually a much worse compatibility problem than flipping
hierarchy, in comparison

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Tejun Heo on Wed, 26 Sep 2012 17:44:32 GMT
View Forum Message <> Reply to Message

Hello, Glauber.

On Wed, Sep 26, 2012 at 10:36 AM, Glauber Costa <glommer@parallels.com> wrote:
> This was discussed multiple times. Our interest is to preserve existing
> deployed setup, that were tuned in a world where kmem didn't exist.
> Because we also feed kmem to the user counter, this may very well
> disrupt their setup.

So, that can be served by .kmem_accounted at root, no?

> User memory, unlike kernel memory, may very well be totally in control
> of the userspace application, so it is not unreasonable to believe that
> extra pages appearing in a new kernel version may break them.
>
> It is actually a much worse compatibility problem than flipping
> hierarchy, in comparison

Again, what's wrong with one switch at the root?

Thanks.

--

Page 20 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=935
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48062#msg_48062
https://new-forum.openvz.org/index.php?t=post&reply_to=48062
https://new-forum.openvz.org/index.php

tejun

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Glauber Costa on Wed, 26 Sep 2012 17:53:09 GMT
View Forum Message <> Reply to Message

On 09/26/2012 09:44 PM, Tejun Heo wrote:
> Hello, Glauber.
>
> On Wed, Sep 26, 2012 at 10:36 AM, Glauber Costa <glommer@parallels.com> wrote:
>> This was discussed multiple times. Our interest is to preserve existing
>> deployed setup, that were tuned in a world where kmem didn't exist.
>> Because we also feed kmem to the user counter, this may very well
>> disrupt their setup.
>
> So, that can be served by .kmem_accounted at root, no?
>
>> User memory, unlike kernel memory, may very well be totally in control
>> of the userspace application, so it is not unreasonable to believe that
>> extra pages appearing in a new kernel version may break them.
>>
>> It is actually a much worse compatibility problem than flipping
>> hierarchy, in comparison
>
> Again, what's wrong with one switch at the root?
>

I understand your trauma about over flexibility, and you know I share of
it. But I don't think there is any need to cap it here. Given kmem
accounted is perfectly hierarchical, and there seem to be plenty of
people who only care about user memory, I see no reason to disallow a
mixed use case here.

I must say that for my particular use case, enabling it unconditionally
would just work, so it is not that what I have in mind.

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Tejun Heo on Wed, 26 Sep 2012 18:01:24 GMT
View Forum Message <> Reply to Message

Hello,

On Wed, Sep 26, 2012 at 09:53:09PM +0400, Glauber Costa wrote:
> I understand your trauma about over flexibility, and you know I share of
> it. But I don't think there is any need to cap it here. Given kmem

Page 21 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48064#msg_48064
https://new-forum.openvz.org/index.php?t=post&reply_to=48064
https://new-forum.openvz.org/index.php?t=usrinfo&id=935
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48065#msg_48065
https://new-forum.openvz.org/index.php?t=post&reply_to=48065
https://new-forum.openvz.org/index.php

> accounted is perfectly hierarchical, and there seem to be plenty of
> people who only care about user memory, I see no reason to disallow a
> mixed use case here.
>
> I must say that for my particular use case, enabling it unconditionally
> would just work, so it is not that what I have in mind.

So, I'm not gonna go as far as pushing for enabling it unconditionally
but would really like to hear why it's necessary to make it per node
instead of one global switch. Maybe it has already been discussed to
hell and back. Care to summarize / point me to it?

Thanks.

--
tejun

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Glauber Costa on Wed, 26 Sep 2012 18:56:09 GMT
View Forum Message <> Reply to Message

On 09/26/2012 10:01 PM, Tejun Heo wrote:
> Hello,
>
> On Wed, Sep 26, 2012 at 09:53:09PM +0400, Glauber Costa wrote:
>> I understand your trauma about over flexibility, and you know I share of
>> it. But I don't think there is any need to cap it here. Given kmem
>> accounted is perfectly hierarchical, and there seem to be plenty of
>> people who only care about user memory, I see no reason to disallow a
>> mixed use case here.
>>
>> I must say that for my particular use case, enabling it unconditionally
>> would just work, so it is not that what I have in mind.
>
> So, I'm not gonna go as far as pushing for enabling it unconditionally
> but would really like to hear why it's necessary to make it per node
> instead of one global switch. Maybe it has already been discussed to
> hell and back. Care to summarize / point me to it?
>

For me, it is the other way around: it makes perfect sense to have a
per-subtree selection of features where it doesn't hurt us, provided it
is hierarchical. For the mere fact that not every application is
interested in this (Michal is the one that is being so far more vocal
about this not being needed in some use cases), and it is perfectly
valid to imagine such applications would coexist.

Page 22 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48066#msg_48066
https://new-forum.openvz.org/index.php?t=post&reply_to=48066
https://new-forum.openvz.org/index.php

So given the flexibility it brings, the real question is, as I said,
backwards: what is it necessary to make it a global switch ?

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Tejun Heo on Wed, 26 Sep 2012 19:34:17 GMT
View Forum Message <> Reply to Message

Hello,

On Wed, Sep 26, 2012 at 10:56:09PM +0400, Glauber Costa wrote:
> For me, it is the other way around: it makes perfect sense to have a
> per-subtree selection of features where it doesn't hurt us, provided it
> is hierarchical. For the mere fact that not every application is
> interested in this (Michal is the one that is being so far more vocal
> about this not being needed in some use cases), and it is perfectly
> valid to imagine such applications would coexist.
>
> So given the flexibility it brings, the real question is, as I said,
> backwards: what is it necessary to make it a global switch ?

Because it hurts my head and it's better to keep things simple. We're
planning to retire .use_hierarhcy in sub hierarchies and I'd really
like to prevent another fiasco like that unless there absolutely is no
way around it. Flexibility where necessary is fine but let's please
try our best to avoid over-designing things. We've been far too good
at getting lost in flexbility maze. Michal, care to chime in?

Thanks.

--
tejun

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Glauber Costa on Wed, 26 Sep 2012 19:46:37 GMT
View Forum Message <> Reply to Message

On 09/26/2012 11:34 PM, Tejun Heo wrote:
> Hello,
>
> On Wed, Sep 26, 2012 at 10:56:09PM +0400, Glauber Costa wrote:
>> For me, it is the other way around: it makes perfect sense to have a
>> per-subtree selection of features where it doesn't hurt us, provided it
>> is hierarchical. For the mere fact that not every application is
>> interested in this (Michal is the one that is being so far more vocal
>> about this not being needed in some use cases), and it is perfectly

Page 23 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=935
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48069#msg_48069
https://new-forum.openvz.org/index.php?t=post&reply_to=48069
https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48071#msg_48071
https://new-forum.openvz.org/index.php?t=post&reply_to=48071
https://new-forum.openvz.org/index.php

>> valid to imagine such applications would coexist.
>>
>> So given the flexibility it brings, the real question is, as I said,
>> backwards: what is it necessary to make it a global switch ?
>
> Because it hurts my head and it's better to keep things simple. We're
> planning to retire .use_hierarhcy in sub hierarchies and I'd really
> like to prevent another fiasco like that unless there absolutely is no
> way around it. Flexibility where necessary is fine but let's please
> try our best to avoid over-designing things. We've been far too good
> at getting lost in flexbility maze. Michal, care to chime in?
>

I would very much like to hear Michal here as well, sure.

But as I said in this very beginning of this, you pretty much know that
I am heavily involved in trying to get rid of use_hierarchy, and by no
means I consider this en pair with that.

use_hierarchy is a hack around a core property of cgroups, the fact that
they are hierarchical. Its mere existence came to be to overcome a
performance limitation.

It puts you in contradictory situation where you have cgroups organized
as directories, and then not satisfied in making this hierarchical
representation be gravely ignored, forces you to use nonsensical terms
like "flat hierarchy", making us grasp at how it is to be a politician
once in our lifetimes.

Besides not being part of cgroup core, and respecting very much both
cgroups' and basic sanity properties, kmem is an actual feature that
some people want, and some people don't. There is no reason to believe
that applications that want will live in the same environment with ones
that don't want.

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Tejun Heo on Wed, 26 Sep 2012 19:56:48 GMT
View Forum Message <> Reply to Message

Hello,

On Wed, Sep 26, 2012 at 11:46:37PM +0400, Glauber Costa wrote:
> Besides not being part of cgroup core, and respecting very much both
> cgroups' and basic sanity properties, kmem is an actual feature that
> some people want, and some people don't. There is no reason to believe
> that applications that want will live in the same environment with ones
> that don't want.

Page 24 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=935
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48072#msg_48072
https://new-forum.openvz.org/index.php?t=post&reply_to=48072
https://new-forum.openvz.org/index.php

I don't know. It definitely is less crazy than .use_hierarchy but I
wouldn't say it's an inherently different thing. I mean, what does it
even mean to have u+k limit on one subtree and not on another branch?
And we worry about things like what if parent doesn't enable it but
its chlidren do.

This is a feature which adds complexity. If the feature is necessary
and justified, sure. If not, let's please not and let's err on the
side of conservativeness. We can always add it later but the other
direction is much harder.

Thanks.

--
tejun

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Glauber Costa on Wed, 26 Sep 2012 20:02:14 GMT
View Forum Message <> Reply to Message

On 09/26/2012 11:56 PM, Tejun Heo wrote:
> Hello,
>
> On Wed, Sep 26, 2012 at 11:46:37PM +0400, Glauber Costa wrote:
>> Besides not being part of cgroup core, and respecting very much both
>> cgroups' and basic sanity properties, kmem is an actual feature that
>> some people want, and some people don't. There is no reason to believe
>> that applications that want will live in the same environment with ones
>> that don't want.
>
> I don't know. It definitely is less crazy than .use_hierarchy but I
> wouldn't say it's an inherently different thing. I mean, what does it
> even mean to have u+k limit on one subtree and not on another branch?
> And we worry about things like what if parent doesn't enable it but
> its chlidren do.
>

It is inherently different. To begin with, it actually contemplates two
use cases. It is not a work around.

The meaning is also very well defined. The meaning of having this
enabled in one subtree and not in other is: Subtree A wants to track
kernel memory. Subtree B does not. It's that, and never more than that.
There is no maybes and no buts, no magic knobs that makes it behave in a
crazy way.

Page 25 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48073#msg_48073
https://new-forum.openvz.org/index.php?t=post&reply_to=48073
https://new-forum.openvz.org/index.php

If a children enables it but the parent does not, this does what every
tree does: enable it from that point downwards.

> This is a feature which adds complexity. If the feature is necessary
> and justified, sure. If not, let's please not and let's err on the
> side of conservativeness. We can always add it later but the other
> direction is much harder.
>

I disagree. Having kmem tracking adds complexity. Having to cope with
the use case where we turn it on dynamically to cope with the "user page
only" use case adds complexity. But I see no significant complexity
being added by having it per subtree. Really.

You have the use_hierarchy fiasco in mind, and I do understand that you
are raising the flag and all that.

But think in terms of functionality: This thing here is a lot more
similar to swap than use_hierarchy. Would you argue that memsw should be
per-root ?

The reason why it shouldn't: Some people want to limit memory
consumption all the way to the swap, some people don't. Same with kmem.

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Tejun Heo on Wed, 26 Sep 2012 20:16:29 GMT
View Forum Message <> Reply to Message

On Thu, Sep 27, 2012 at 12:02:14AM +0400, Glauber Costa wrote:
> But think in terms of functionality: This thing here is a lot more
> similar to swap than use_hierarchy. Would you argue that memsw should be
> per-root ?

I'm fairly sure you can make about the same argument about
use_hierarchy. There is a choice to make here and one is simpler than
the other. I want the additional complexity justified by actual use
cases which isn't too much to ask for especially when the complexity
is something visible to userland.

So let's please stop arguing semantics. If this is definitely
necessary for some use cases, sure let's have it. If not, let's
consider it later. I'll stop responding on "inherent differences." I
don't think we'll get anywhere with that.

Michal, Johannes, Kamezawa, what are your thoughts?

Thanks.

Page 26 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=935
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48074#msg_48074
https://new-forum.openvz.org/index.php?t=post&reply_to=48074
https://new-forum.openvz.org/index.php

--
tejun

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Glauber Costa on Wed, 26 Sep 2012 21:24:40 GMT
View Forum Message <> Reply to Message

On 09/27/2012 12:16 AM, Tejun Heo wrote:
> On Thu, Sep 27, 2012 at 12:02:14AM +0400, Glauber Costa wrote:
>> But think in terms of functionality: This thing here is a lot more
>> similar to swap than use_hierarchy. Would you argue that memsw should be
>> per-root ?
>
> I'm fairly sure you can make about the same argument about
> use_hierarchy. There is a choice to make here and one is simpler than
> the other. I want the additional complexity justified by actual use
> cases which isn't too much to ask for especially when the complexity
> is something visible to userland.
>
> So let's please stop arguing semantics. If this is definitely
> necessary for some use cases, sure let's have it. If not, let's
> consider it later. I'll stop responding on "inherent differences." I
> don't think we'll get anywhere with that.
>

If you stop responding, we are for sure not getting anywhere. I agree
with you here.

Let me point out one issue that you seem to be missing, and you respond
or not, your call.

"kmem_accounted" is not a switch. It is an internal representation only.
The semantics, that we discussed exhaustively in San Diego, is that a
group that is not limited is not accounted. This is simple and consistent.

Since the limits are still per-cgroup, you are actually proposing more
user-visible complexity than me, since you are adding yet another file,
with its own semantics.

About use cases, I've already responded: my containers use case is kmem
limited. There are people like Michal that specifically asked for
user-only semantics to be preserved. So your question for global vs
local switch (that again, doesn't exist; only a local *limit* exists)
should really be posed in the following way:
"Can two different use cases with different needs be hosted in the same
box?"

Page 27 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48075#msg_48075
https://new-forum.openvz.org/index.php?t=post&reply_to=48075
https://new-forum.openvz.org/index.php

> Michal, Johannes, Kamezawa, what are your thoughts?
>
waiting! =)

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Tejun Heo on Wed, 26 Sep 2012 22:10:46 GMT
View Forum Message <> Reply to Message

Hello, Glauber.

On Thu, Sep 27, 2012 at 01:24:40AM +0400, Glauber Costa wrote:
> "kmem_accounted" is not a switch. It is an internal representation only.
> The semantics, that we discussed exhaustively in San Diego, is that a
> group that is not limited is not accounted. This is simple and consistent.
>
> Since the limits are still per-cgroup, you are actually proposing more
> user-visible complexity than me, since you are adding yet another file,
> with its own semantics.

I was confused. I thought it was exposed as a switch to userland (it
being right below .use_hierarchy tripped red alert). This is internal
flag dependent upon kernel limit being set. My apologies.

So, the proposed behavior is to allow enabling kmemcg anytime but
ignore what happened inbetween? Where the knob is changes but the
weirdity seems all the same. What prevents us from having a single
switch at root which can only be flipped when there's no children?

Backward compatibility is covered with single switch and I really
don't think "you can enable limits for kernel memory anytime but we
don't keep track of whatever happened before it was flipped the first
time because the first time is always special" is a sane thing to
expose to userland. Or am I misunderstanding the proposed behavior
again?

Thanks.

--
tejun

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Johannes Weiner on Wed, 26 Sep 2012 22:11:36 GMT

Page 28 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=935
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48076#msg_48076
https://new-forum.openvz.org/index.php?t=post&reply_to=48076
https://new-forum.openvz.org/index.php?t=usrinfo&id=5127
https://new-forum.openvz.org/index.php

View Forum Message <> Reply to Message

On Thu, Sep 27, 2012 at 12:02:14AM +0400, Glauber Costa wrote:
> On 09/26/2012 11:56 PM, Tejun Heo wrote:
> > Hello,
> >
> > On Wed, Sep 26, 2012 at 11:46:37PM +0400, Glauber Costa wrote:
> >> Besides not being part of cgroup core, and respecting very much both
> >> cgroups' and basic sanity properties, kmem is an actual feature that
> >> some people want, and some people don't. There is no reason to believe
> >> that applications that want will live in the same environment with ones
> >> that don't want.
> >
> > I don't know. It definitely is less crazy than .use_hierarchy but I
> > wouldn't say it's an inherently different thing. I mean, what does it
> > even mean to have u+k limit on one subtree and not on another branch?
> > And we worry about things like what if parent doesn't enable it but
> > its chlidren do.
> >
>
> It is inherently different. To begin with, it actually contemplates two
> use cases. It is not a work around.
>
> The meaning is also very well defined. The meaning of having this
> enabled in one subtree and not in other is: Subtree A wants to track
> kernel memory. Subtree B does not. It's that, and never more than that.
> There is no maybes and no buts, no magic knobs that makes it behave in a
> crazy way.
>
> If a children enables it but the parent does not, this does what every
> tree does: enable it from that point downwards.
>
> > This is a feature which adds complexity. If the feature is necessary
> > and justified, sure. If not, let's please not and let's err on the
> > side of conservativeness. We can always add it later but the other
> > direction is much harder.
>
> I disagree. Having kmem tracking adds complexity. Having to cope with
> the use case where we turn it on dynamically to cope with the "user page
> only" use case adds complexity. But I see no significant complexity
> being added by having it per subtree. Really.

Maybe not in code, but you are adding an extra variable into the
system. "One switch per subtree" is more complex than "one switch."
Yes, the toggle is hidden behind setting the limit, but it's still a
toggle. The use_hierarchy complexity comes not from the file that
enables it, but from the resulting semantics.

kmem accounting is expensive and we definitely want to allow enabling

Page 29 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48077#msg_48077
https://new-forum.openvz.org/index.php?t=post&reply_to=48077
https://new-forum.openvz.org/index.php

it separately from traditional user memory accounting. But I think
there is no good reason to not demand an all-or-nothing answer from
the admin; either he wants kmem tracking on a machine or not. At
least you haven't presented a convincing case, IMO.

I don't think there is strong/any demand for per-node toggles, but
once we add this behavior, people will rely on it and expect kmem
tracking to stay local and we are stuck with it. Adding it for the
reason that people will use it is a self-fulfilling prophecy.

> You have the use_hierarchy fiasco in mind, and I do understand that you
> are raising the flag and all that.
>
> But think in terms of functionality: This thing here is a lot more
> similar to swap than use_hierarchy. Would you argue that memsw should be
> per-root ?

We actually do have a per-root flag that controls accounting for swap.

> The reason why it shouldn't: Some people want to limit memory
> consumption all the way to the swap, some people don't. Same with kmem.

That lies in the nature of the interface: we chose k & u+k rather than
u & u+k, so our memory.limit_in_bytes will necessarily include kmem,
while swap is not included there. But I really doubt that there is a
strong case for turning on swap accounting intentionally and then
limiting memory+swap only on certain subtrees. Where would be the
sense in that?

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Glauber Costa on Wed, 26 Sep 2012 22:29:06 GMT
View Forum Message <> Reply to Message

On 09/27/2012 02:10 AM, Tejun Heo wrote:
> Hello, Glauber.
>
> On Thu, Sep 27, 2012 at 01:24:40AM +0400, Glauber Costa wrote:
>> "kmem_accounted" is not a switch. It is an internal representation only.
>> The semantics, that we discussed exhaustively in San Diego, is that a
>> group that is not limited is not accounted. This is simple and consistent.
>>
>> Since the limits are still per-cgroup, you are actually proposing more
>> user-visible complexity than me, since you are adding yet another file,
>> with its own semantics.
>
> I was confused. I thought it was exposed as a switch to userland (it
> being right below .use_hierarchy tripped red alert).

Page 30 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48078#msg_48078
https://new-forum.openvz.org/index.php?t=post&reply_to=48078
https://new-forum.openvz.org/index.php

Remember I was the one more vocally and radically so far trying to get
rid of use_hierarchy. I should have been more clear - and I was, as soon
as I better understood the nature of your opposition - but this is
precisely what I meant by "inherently different".

>
> So, the proposed behavior is to allow enabling kmemcg anytime but
> ignore what happened inbetween? Where the knob is changes but the
> weirdity seems all the same. What prevents us from having a single
> switch at root which can only be flipped when there's no children?

So I view this very differently from you. We have no root-only switches
in memcg. This would be a first, and this is the kind of thing that adds
complexity, in my view.

You have someone like libvirt or a systemd service using memcg. It
probably starts at boot. Once it is started, it will pretty much prevent
switching of any global switch like this.

And then what? If you want a different behavior you need to go kill all
your services that are using memcg so you can get the behavior you want?
And if they happen to be making a specific flag choice by design, you
just say "you really can't run A + B together" ?

I myself think global switches are an unnecessary complication. And let
us not talk about use_hierarchy, please. If it becomes global, it is
going to be as part of a phase out plan anyway. The problem with that is
not that it is global, is that it shouldn't even exist.

>
> Backward compatibility is covered with single switch and I really
> don't think "you can enable limits for kernel memory anytime but we
> don't keep track of whatever happened before it was flipped the first
> time because the first time is always special" is a sane thing to
> expose to userland. Or am I misunderstanding the proposed behavior
> again?
>

You do keep track. Before you switch it for the first time, it all
belongs to the root memcg.

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Tejun Heo on Wed, 26 Sep 2012 22:42:35 GMT
View Forum Message <> Reply to Message

Hello, Glauber.

Page 31 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=935
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48079#msg_48079
https://new-forum.openvz.org/index.php?t=post&reply_to=48079
https://new-forum.openvz.org/index.php

On Thu, Sep 27, 2012 at 02:29:06AM +0400, Glauber Costa wrote:
> And then what? If you want a different behavior you need to go kill all
> your services that are using memcg so you can get the behavior you want?
> And if they happen to be making a specific flag choice by design, you
> just say "you really can't run A + B together" ?
>
> I myself think global switches are an unnecessary complication. And let
> us not talk about use_hierarchy, please. If it becomes global, it is
> going to be as part of a phase out plan anyway. The problem with that is
> not that it is global, is that it shouldn't even exist.

I would consider it more of a compatibility thing which is set during
boot and configurable by sysadmin. Let the newer systems enable it by
default on boot and old configs / special ones disable it as
necessary.

> > Backward compatibility is covered with single switch and I really
> > don't think "you can enable limits for kernel memory anytime but we
> > don't keep track of whatever happened before it was flipped the first
> > time because the first time is always special" is a sane thing to
> > expose to userland. Or am I misunderstanding the proposed behavior
> > again?
>
> You do keep track. Before you switch it for the first time, it all
> belongs to the root memcg.

Well, that's really playing with words. Limit is per cgroup and
before the limit is set for the first time, everything is accounted to
something else. How is that keeping track?

The proposed behavior seems really crazy to me. Do people really
think this is a good idea?

Thanks.

--
tejun

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Glauber Costa on Wed, 26 Sep 2012 22:45:52 GMT
View Forum Message <> Reply to Message

On 09/27/2012 02:11 AM, Johannes Weiner wrote:
> On Thu, Sep 27, 2012 at 12:02:14AM +0400, Glauber Costa wrote:
>> On 09/26/2012 11:56 PM, Tejun Heo wrote:
>>> Hello,

Page 32 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48080#msg_48080
https://new-forum.openvz.org/index.php?t=post&reply_to=48080
https://new-forum.openvz.org/index.php

>>>
>>> On Wed, Sep 26, 2012 at 11:46:37PM +0400, Glauber Costa wrote:
>>>> Besides not being part of cgroup core, and respecting very much both
>>>> cgroups' and basic sanity properties, kmem is an actual feature that
>>>> some people want, and some people don't. There is no reason to believe
>>>> that applications that want will live in the same environment with ones
>>>> that don't want.
>>>
>>> I don't know. It definitely is less crazy than .use_hierarchy but I
>>> wouldn't say it's an inherently different thing. I mean, what does it
>>> even mean to have u+k limit on one subtree and not on another branch?
>>> And we worry about things like what if parent doesn't enable it but
>>> its chlidren do.
>>>
>>
>> It is inherently different. To begin with, it actually contemplates two
>> use cases. It is not a work around.
>>
>> The meaning is also very well defined. The meaning of having this
>> enabled in one subtree and not in other is: Subtree A wants to track
>> kernel memory. Subtree B does not. It's that, and never more than that.
>> There is no maybes and no buts, no magic knobs that makes it behave in a
>> crazy way.
>>
>> If a children enables it but the parent does not, this does what every
>> tree does: enable it from that point downwards.
>>
>>> This is a feature which adds complexity. If the feature is necessary
>>> and justified, sure. If not, let's please not and let's err on the
>>> side of conservativeness. We can always add it later but the other
>>> direction is much harder.
>>
>> I disagree. Having kmem tracking adds complexity. Having to cope with
>> the use case where we turn it on dynamically to cope with the "user page
>> only" use case adds complexity. But I see no significant complexity
>> being added by having it per subtree. Really.
>
> Maybe not in code, but you are adding an extra variable into the
> system. "One switch per subtree" is more complex than "one switch."
> Yes, the toggle is hidden behind setting the limit, but it's still a
> toggle. The use_hierarchy complexity comes not from the file that
> enables it, but from the resulting semantics.
>

I didn't claim the complexity was in the code. I actually think the
other way around that you do, and claim that a global switch is more
complex than a per-subtree. All properties we have so far applies to
subtrees, due to cgroup's hierarchical nature. We have no global

Page 33 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

switches like this so far, and adding one would just add a new concept
that wasn't here.

> kmem accounting is expensive and we definitely want to allow enabling
> it separately from traditional user memory accounting. But I think
> there is no good reason to not demand an all-or-nothing answer from
> the admin; either he wants kmem tracking on a machine or not. At
> least you haven't presented a convincing case, IMO.
>
> I don't think there is strong/any demand for per-node toggles, but
> once we add this behavior, people will rely on it and expect kmem
> tracking to stay local and we are stuck with it. Adding it for the
> reason that people will use it is a self-fulfilling prophecy.

I don't think this is a compatibility only switch. Much has been said in
the past about the problem of sharing. A lot of the kernel objects are
shared by nature, this is pretty much unavoidable. The answer we have
been giving to this inquiry, is that the workloads (us) interested
in kmem accounted tend to be quite local in their file accesses (and
other kernel objects as well).

It should be obvious that not all workloads are like this, and some of
them would actually prefer to have their umem limited only.

I really don't think, and correct me if I am wrong, that the problem
lays in "is there a use case for umem?", but rather, if they should be
allowed to coexist in a box.

And honestly, it seems to me totally reasonable to avoid restricting
people to run as many workloads they think they can in the same box.

>> You have the use_hierarchy fiasco in mind, and I do understand that you
>> are raising the flag and all that.
>>
>> But think in terms of functionality: This thing here is a lot more
>> similar to swap than use_hierarchy. Would you argue that memsw should be
>> per-root ?
>
> We actually do have a per-root flag that controls accounting for swap.
>
>> The reason why it shouldn't: Some people want to limit memory
>> consumption all the way to the swap, some people don't. Same with kmem.
>
> That lies in the nature of the interface: we chose k & u+k rather than
> u & u+k, so our memory.limit_in_bytes will necessarily include kmem,

Page 34 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> while swap is not included there. But I really doubt that there is a
> strong case for turning on swap accounting intentionally and then
> limiting memory+swap only on certain subtrees. Where would be the
> sense in that?

It makes absolute sense. Because until I go set
memory.memsw.limit_in_bytes, my subtree is not limited, which is
precisely what kmem does.

And the use cases for that are:

1) I, application A, want to use 2G of mem, and I can never swap
2) I, application B, want to use 2G of mem, but I am fine using extra 1G
in swap.

There are plenty of workloads in both the "can swap" and "can't swap"
category around.

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Glauber Costa on Wed, 26 Sep 2012 22:54:11 GMT
View Forum Message <> Reply to Message

On 09/27/2012 02:42 AM, Tejun Heo wrote:
> Hello, Glauber.
>
> On Thu, Sep 27, 2012 at 02:29:06AM +0400, Glauber Costa wrote:
>> And then what? If you want a different behavior you need to go kill all
>> your services that are using memcg so you can get the behavior you want?
>> And if they happen to be making a specific flag choice by design, you
>> just say "you really can't run A + B together" ?
>>
>> I myself think global switches are an unnecessary complication. And let
>> us not talk about use_hierarchy, please. If it becomes global, it is
>> going to be as part of a phase out plan anyway. The problem with that is
>> not that it is global, is that it shouldn't even exist.
>
> I would consider it more of a compatibility thing which is set during
> boot and configurable by sysadmin. Let the newer systems enable it by
> default on boot and old configs / special ones disable it as
> necessary.
>

I don't. Much has been said in the past about the problem of sharing. A
lot of the kernel objects are shared by nature, this is pretty much
unavoidable. The answer we have been giving to this inquiry, is that the
workloads (us) interested in kmem accounted tend to be quite local in
their file accesses (and other kernel objects as well).

Page 35 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48081#msg_48081
https://new-forum.openvz.org/index.php?t=post&reply_to=48081
https://new-forum.openvz.org/index.php

It should be obvious that not all workloads are like this, and some of
them would actually prefer to have their umem limited only.

There is nothing unreasonable in tracking user memory only.

If we have a global switch for "tracking all kernel memory", who would
you account the objects that are heavily shared to? I solve this by not
tracking kernel memory for cgroups in such workloads. What do you propose?

>>> Backward compatibility is covered with single switch and I really
>>> don't think "you can enable limits for kernel memory anytime but we
>>> don't keep track of whatever happened before it was flipped the first
>>> time because the first time is always special" is a sane thing to
>>> expose to userland. Or am I misunderstanding the proposed behavior
>>> again?
>>
>> You do keep track. Before you switch it for the first time, it all
>> belongs to the root memcg.
>
> Well, that's really playing with words. Limit is per cgroup and
> before the limit is set for the first time, everything is accounted to
> something else. How is that keeping track?
>

Even after the limit is set, it is set only by workloads that want kmem
to be tracked. If you want to track it during the whole lifetime of the
cgroup, you switch it before you put tasks to it. What is so crazy about it?

> The proposed behavior seems really crazy to me. Do people really
> think this is a good idea?
>

It is really sad that you lost the opportunity to say that in a room
full of mm developers that could add to this discussion in real time,
when after an explanation about this was given, Mel asked if anyone
would have any objections to this.

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Tejun Heo on Wed, 26 Sep 2012 23:08:07 GMT
View Forum Message <> Reply to Message

Hello, Glauber.

On Thu, Sep 27, 2012 at 02:54:11AM +0400, Glauber Costa wrote:
> I don't. Much has been said in the past about the problem of sharing. A
> lot of the kernel objects are shared by nature, this is pretty much

Page 36 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=935
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48082#msg_48082
https://new-forum.openvz.org/index.php?t=post&reply_to=48082
https://new-forum.openvz.org/index.php

> unavoidable. The answer we have been giving to this inquiry, is that the
> workloads (us) interested in kmem accounted tend to be quite local in
> their file accesses (and other kernel objects as well).
>
> It should be obvious that not all workloads are like this, and some of
> them would actually prefer to have their umem limited only.
>
> There is nothing unreasonable in tracking user memory only.
>
> If we have a global switch for "tracking all kernel memory", who would
> you account the objects that are heavily shared to? I solve this by not
> tracking kernel memory for cgroups in such workloads. What do you propose?

One of the things wrong with that is that it exposes the limitation of
the current implementation as interface to userland, which is never a
good idea. In addition, how is userland supposed to know which
workload is shared kmem heavy or not? Details like that are not even
inherent to workloads. It's highly dependent on kernel implementation
which may change any day. If we hit workloads like that the right
thing to do is improving kmemcg so that such problems don't occur, not
exposing another switch.

If we can't make that work in reasonable (doesn't have to be perfect)
way, we might as well just give up on kmem controller. If userland
has to second-guess kernel implementation details to make use of it,
it's useless.

> > Well, that's really playing with words. Limit is per cgroup and
> > before the limit is set for the first time, everything is accounted to
> > something else. How is that keeping track?
> >
>
> Even after the limit is set, it is set only by workloads that want kmem
> to be tracked. If you want to track it during the whole lifetime of the
> cgroup, you switch it before you put tasks to it. What is so crazy about it?

The fact that the numbers don't really mean what they apparently
should mean.

> > The proposed behavior seems really crazy to me. Do people really
> > think this is a good idea?
>
> It is really sad that you lost the opportunity to say that in a room
> full of mm developers that could add to this discussion in real time,
> when after an explanation about this was given, Mel asked if anyone
> would have any objections to this.

Sure, conferences are useful for building consensus but that's the

Page 37 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

extent of it. Sorry that I didn't realize the implications then but
conferences don't really add any finality to decisions.

So, this seems properly crazy to me at the similar level of
use_hierarchy fiasco. I'm gonna NACK on this.

Thanks.

--
tejun

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Glauber Costa on Wed, 26 Sep 2012 23:20:27 GMT
View Forum Message <> Reply to Message

On 09/27/2012 03:08 AM, Tejun Heo wrote:
> Hello, Glauber.
>
> On Thu, Sep 27, 2012 at 02:54:11AM +0400, Glauber Costa wrote:
>> I don't. Much has been said in the past about the problem of sharing. A
>> lot of the kernel objects are shared by nature, this is pretty much
>> unavoidable. The answer we have been giving to this inquiry, is that the
>> workloads (us) interested in kmem accounted tend to be quite local in
>> their file accesses (and other kernel objects as well).
>>
>> It should be obvious that not all workloads are like this, and some of
>> them would actually prefer to have their umem limited only.
>>
>> There is nothing unreasonable in tracking user memory only.
>>
>> If we have a global switch for "tracking all kernel memory", who would
>> you account the objects that are heavily shared to? I solve this by not
>> tracking kernel memory for cgroups in such workloads. What do you propose?
>
> One of the things wrong with that is that it exposes the limitation of
> the current implementation as interface to userland, which is never a
> good idea. In addition, how is userland supposed to know which
> workload is shared kmem heavy or not? Details like that are not even
> inherent to workloads. It's highly dependent on kernel implementation
> which may change any day. If we hit workloads like that the right
> thing to do is improving kmemcg so that such problems don't occur, not
> exposing another switch.
>

Sorry, there is nothing implementation dependent in here. One of the
biggest consumers of all this, are dentries. Dentries are related to
the paths you touch. If you touch files in a self-contained directory,

Page 38 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48083#msg_48083
https://new-forum.openvz.org/index.php?t=post&reply_to=48083
https://new-forum.openvz.org/index.php

where you don't expect anyone else to touch, this can safely be
considered local. If you touch files all around, this can safely be
considered not local. Where is the implementation dependent part?

> If we can't make that work in reasonable (doesn't have to be perfect)
> way, we might as well just give up on kmem controller. If userland
> has to second-guess kernel implementation details to make use of it,
> it's useless.
>
As I said above, it shouldn't.

>>> Well, that's really playing with words. Limit is per cgroup and
>>> before the limit is set for the first time, everything is accounted to
>>> something else. How is that keeping track?
>>>
>>
>> Even after the limit is set, it is set only by workloads that want kmem
>> to be tracked. If you want to track it during the whole lifetime of the
>> cgroup, you switch it before you put tasks to it. What is so crazy about it?
>
> The fact that the numbers don't really mean what they apparently
> should mean.
>

This is vague. The usage file in the cgroup means how much kernel memory
was used by that cgroup. If it really bothers you that this may not be
set through the whole group's lifetime, it is also easily solvable.

> So, this seems properly crazy to me at the similar level of
> use_hierarchy fiasco. I'm gonna NACK on this.
>

As I said: all use cases I particularly care about are covered by a
global switch.

I am laying down my views because I really believe they make more sense.
But at some point, of course, I'll shut up if I believe I am a lone voice.

I believe it should still be good to hear from mhocko and kame, but from
your point of view, would all the rest, plus the introduction of a
global switch make it acceptable to you?

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Tejun Heo on Wed, 26 Sep 2012 23:33:34 GMT
View Forum Message <> Reply to Message

Hello,

Page 39 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=935
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48084#msg_48084
https://new-forum.openvz.org/index.php?t=post&reply_to=48084
https://new-forum.openvz.org/index.php

On Thu, Sep 27, 2012 at 03:20:27AM +0400, Glauber Costa wrote:
> > One of the things wrong with that is that it exposes the limitation of
> > the current implementation as interface to userland, which is never a
> > good idea. In addition, how is userland supposed to know which
> > workload is shared kmem heavy or not? Details like that are not even
> > inherent to workloads. It's highly dependent on kernel implementation
> > which may change any day. If we hit workloads like that the right
> > thing to do is improving kmemcg so that such problems don't occur, not
> > exposing another switch.
>
> Sorry, there is nothing implementation dependent in here. One of the
> biggest consumers of all this, are dentries. Dentries are related to
> the paths you touch. If you touch files in a self-contained directory,
> where you don't expect anyone else to touch, this can safely be
> considered local. If you touch files all around, this can safely be
> considered not local. Where is the implementation dependent part?

For things like dentries and inodes and if that really matters, we
should be able to account for the usage better, no? And frankly I'm
not even sold on that usecase. Unless there's a way to detect and
inform about these, userland isn't gonna know that they're doing
something which consumes a lot of shared memory even that activity is
filesystem walking. You're still asking userland to tune something
depending on parameters not easily visible from userland. It's a lose
lose situation.

> >> Even after the limit is set, it is set only by workloads that want kmem
> >> to be tracked. If you want to track it during the whole lifetime of the
> >> cgroup, you switch it before you put tasks to it. What is so crazy about it?
> >
> > The fact that the numbers don't really mean what they apparently
> > should mean.
> >
>
> This is vague. The usage file in the cgroup means how much kernel memory
> was used by that cgroup. If it really bothers you that this may not be
> set through the whole group's lifetime, it is also easily solvable.

Yes, easily by having a global switch which can be manipulated when
there's no children. It really seems like a no brainer to me.

> > So, this seems properly crazy to me at the similar level of
> > use_hierarchy fiasco. I'm gonna NACK on this.
>
> As I said: all use cases I particularly care about are covered by a
> global switch.
>

Page 40 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> I am laying down my views because I really believe they make more sense.
> But at some point, of course, I'll shut up if I believe I am a lone voice.
>
> I believe it should still be good to hear from mhocko and kame, but from
> your point of view, would all the rest, plus the introduction of a
> global switch make it acceptable to you?

The only thing I'm whining about is per-node switch + silently
ignoring past accounting, so if those two are solved, I think I'm
pretty happy with the rest.

Thanks.

--
tejun

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Michal Hocko on Thu, 27 Sep 2012 12:08:06 GMT
View Forum Message <> Reply to Message

On Thu 27-09-12 01:24:40, Glauber Costa wrote:
[...]
> About use cases, I've already responded: my containers use case is kmem
> limited. There are people like Michal that specifically asked for
> user-only semantics to be preserved.

Yes, because we have many users (basically almost all) who care only
about the user memory because that's what occupies the vast majority of
the memory. They usually want to isolate workload which would disrupt
the global memory otherwise (e.g. backup process vs. database). You
really do not want to pay an additional overhead for kmem accounting
here.

> So your question for global vs local switch (that again, doesn't
> exist; only a local *limit* exists) should really be posed in the
> following way: "Can two different use cases with different needs be
> hosted in the same box?"

I think this is a good and a relevant question. I think this boils down
to whether you want to have trusted and untrusted workloads at the same
machine.
Trusted loads usually only need user memory accounting because kmem
consumption should be really negligible (unless kernel is doing
something really stupid and no kmem limit will help here).
On the other hand, untrusted workloads can do nasty things that
administrator has hard time to mitigate and setting a kmem limit can
help significantly.

Page 41 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5820
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48091#msg_48091
https://new-forum.openvz.org/index.php?t=post&reply_to=48091
https://new-forum.openvz.org/index.php

IMHO such a different loads exist on a single machine quite often (Web
server and a back up process as the most simplistic one). The per
hierarchy accounting, therefore, sounds like a good idea without too
much added complexity (actually the only added complexity is in the
proper kmem.limit_in_bytes handling which is a single place).

So I would rather go with per-hierarchy thing.

> > Michal, Johannes, Kamezawa, what are your thoughts?
> >
> waiting! =)

Well, you guys generated a lot of discussion that one has to read
through, didn't you :P

--
Michal Hocko
SUSE Labs

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Glauber Costa on Thu, 27 Sep 2012 12:11:00 GMT
View Forum Message <> Reply to Message

>>> Michal, Johannes, Kamezawa, what are your thoughts?
>>>
>> waiting! =)
>
> Well, you guys generated a lot of discussion that one has to read
> through, didn't you :P
>
We're quite good at that!

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Michal Hocko on Thu, 27 Sep 2012 12:15:58 GMT
View Forum Message <> Reply to Message

On Wed 26-09-12 16:33:34, Tejun Heo wrote:
[...]
> > > So, this seems properly crazy to me at the similar level of
> > > use_hierarchy fiasco. I'm gonna NACK on this.
> >
> > As I said: all use cases I particularly care about are covered by a
> > global switch.
> >

Page 42 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48092#msg_48092
https://new-forum.openvz.org/index.php?t=post&reply_to=48092
https://new-forum.openvz.org/index.php?t=usrinfo&id=5820
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48094#msg_48094
https://new-forum.openvz.org/index.php?t=post&reply_to=48094
https://new-forum.openvz.org/index.php

> > I am laying down my views because I really believe they make more sense.
> > But at some point, of course, I'll shut up if I believe I am a lone voice.
> >
> > I believe it should still be good to hear from mhocko and kame, but from
> > your point of view, would all the rest, plus the introduction of a
> > global switch make it acceptable to you?
>
> The only thing I'm whining about is per-node switch + silently
> ignoring past accounting, so if those two are solved, I think I'm
> pretty happy with the rest.

I think that per-group "switch" is not nice as well but if we make it
hierarchy specific (which I am proposing for quite some time) and do not
let enable accounting for a group with tasks then we get both
flexibility and reasonable semantic. A global switch sounds too coars to
me and it really not necessary.

Would this work with you?
--
Michal Hocko
SUSE Labs

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Glauber Costa on Thu, 27 Sep 2012 12:20:55 GMT
View Forum Message <> Reply to Message

On 09/27/2012 04:15 PM, Michal Hocko wrote:
> On Wed 26-09-12 16:33:34, Tejun Heo wrote:
> [...]
>>>> So, this seems properly crazy to me at the similar level of
>>>> use_hierarchy fiasco. I'm gonna NACK on this.
>>>
>>> As I said: all use cases I particularly care about are covered by a
>>> global switch.
>>>
>>> I am laying down my views because I really believe they make more sense.
>>> But at some point, of course, I'll shut up if I believe I am a lone voice.
>>>
>>> I believe it should still be good to hear from mhocko and kame, but from
>>> your point of view, would all the rest, plus the introduction of a
>>> global switch make it acceptable to you?
>>
>> The only thing I'm whining about is per-node switch + silently
>> ignoring past accounting, so if those two are solved, I think I'm
>> pretty happy with the rest.
>
> I think that per-group "switch" is not nice as well but if we make it

Page 43 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48096#msg_48096
https://new-forum.openvz.org/index.php?t=post&reply_to=48096
https://new-forum.openvz.org/index.php

> hierarchy specific (which I am proposing for quite some time) and do not
> let enable accounting for a group with tasks then we get both
> flexibility and reasonable semantic. A global switch sounds too coars to
> me and it really not necessary.
>
> Would this work with you?
>

How exactly would that work? AFAIK, we have a single memcg root, we
can't have multiple memcg hierarchies in a system. Am I missing something?

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Glauber Costa on Thu, 27 Sep 2012 12:40:03 GMT
View Forum Message <> Reply to Message

On 09/27/2012 04:40 PM, Michal Hocko wrote:
> On Thu 27-09-12 16:20:55, Glauber Costa wrote:
>> On 09/27/2012 04:15 PM, Michal Hocko wrote:
>>> On Wed 26-09-12 16:33:34, Tejun Heo wrote:
>>> [...]
>>>>>> So, this seems properly crazy to me at the similar level of
>>>>>> use_hierarchy fiasco. I'm gonna NACK on this.
>>>>>
>>>>> As I said: all use cases I particularly care about are covered by a
>>>>> global switch.
>>>>>
>>>>> I am laying down my views because I really believe they make more sense.
>>>>> But at some point, of course, I'll shut up if I believe I am a lone voice.
>>>>>
>>>>> I believe it should still be good to hear from mhocko and kame, but from
>>>>> your point of view, would all the rest, plus the introduction of a
>>>>> global switch make it acceptable to you?
>>>>
>>>> The only thing I'm whining about is per-node switch + silently
>>>> ignoring past accounting, so if those two are solved, I think I'm
>>>> pretty happy with the rest.
>>>
>>> I think that per-group "switch" is not nice as well but if we make it
>>> hierarchy specific (which I am proposing for quite some time) and do not
>>> let enable accounting for a group with tasks then we get both
>>> flexibility and reasonable semantic. A global switch sounds too coars to
>>> me and it really not necessary.
>>>
>>> Would this work with you?
>>>
>>
>> How exactly would that work? AFAIK, we have a single memcg root, we

Page 44 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48098#msg_48098
https://new-forum.openvz.org/index.php?t=post&reply_to=48098
https://new-forum.openvz.org/index.php

>> can't have multiple memcg hierarchies in a system. Am I missing something?
>
> Well root is so different that we could consider the first level as the
> real roots for hierarchies.
>
So let's favor clarity: What you are proposing is that the first level
can have a switch for that, and the first level only. Is that right ?

At first, I just want to understand what exactly is your proposal. This
is not an endorsement of lack thereof.

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Michal Hocko on Thu, 27 Sep 2012 12:40:31 GMT
View Forum Message <> Reply to Message

On Thu 27-09-12 16:20:55, Glauber Costa wrote:
> On 09/27/2012 04:15 PM, Michal Hocko wrote:
> > On Wed 26-09-12 16:33:34, Tejun Heo wrote:
> > [...]
> >>>> So, this seems properly crazy to me at the similar level of
> >>>> use_hierarchy fiasco. I'm gonna NACK on this.
> >>>
> >>> As I said: all use cases I particularly care about are covered by a
> >>> global switch.
> >>>
> >>> I am laying down my views because I really believe they make more sense.
> >>> But at some point, of course, I'll shut up if I believe I am a lone voice.
> >>>
> >>> I believe it should still be good to hear from mhocko and kame, but from
> >>> your point of view, would all the rest, plus the introduction of a
> >>> global switch make it acceptable to you?
> >>
> >> The only thing I'm whining about is per-node switch + silently
> >> ignoring past accounting, so if those two are solved, I think I'm
> >> pretty happy with the rest.
> >
> > I think that per-group "switch" is not nice as well but if we make it
> > hierarchy specific (which I am proposing for quite some time) and do not
> > let enable accounting for a group with tasks then we get both
> > flexibility and reasonable semantic. A global switch sounds too coars to
> > me and it really not necessary.
> >
> > Would this work with you?
> >
>
> How exactly would that work? AFAIK, we have a single memcg root, we
> can't have multiple memcg hierarchies in a system. Am I missing something?

Page 45 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5820
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48097#msg_48097
https://new-forum.openvz.org/index.php?t=post&reply_to=48097
https://new-forum.openvz.org/index.php

Well root is so different that we could consider the first level as the
real roots for hierarchies.
--
Michal Hocko
SUSE Labs

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Michal Hocko on Thu, 27 Sep 2012 12:54:15 GMT
View Forum Message <> Reply to Message

On Thu 27-09-12 16:40:03, Glauber Costa wrote:
> On 09/27/2012 04:40 PM, Michal Hocko wrote:
> > On Thu 27-09-12 16:20:55, Glauber Costa wrote:
> >> On 09/27/2012 04:15 PM, Michal Hocko wrote:
> >>> On Wed 26-09-12 16:33:34, Tejun Heo wrote:
> >>> [...]
> >>>>>> So, this seems properly crazy to me at the similar level of
> >>>>>> use_hierarchy fiasco. I'm gonna NACK on this.
> >>>>>
> >>>>> As I said: all use cases I particularly care about are covered by a
> >>>>> global switch.
> >>>>>
> >>>>> I am laying down my views because I really believe they make more sense.
> >>>>> But at some point, of course, I'll shut up if I believe I am a lone voice.
> >>>>>
> >>>>> I believe it should still be good to hear from mhocko and kame, but from
> >>>>> your point of view, would all the rest, plus the introduction of a
> >>>>> global switch make it acceptable to you?
> >>>>
> >>>> The only thing I'm whining about is per-node switch + silently
> >>>> ignoring past accounting, so if those two are solved, I think I'm
> >>>> pretty happy with the rest.
> >>>
> >>> I think that per-group "switch" is not nice as well but if we make it
> >>> hierarchy specific (which I am proposing for quite some time) and do not
> >>> let enable accounting for a group with tasks then we get both
> >>> flexibility and reasonable semantic. A global switch sounds too coars to
> >>> me and it really not necessary.
> >>>
> >>> Would this work with you?
> >>>
> >>
> >> How exactly would that work? AFAIK, we have a single memcg root, we
> >> can't have multiple memcg hierarchies in a system. Am I missing something?
> >
> > Well root is so different that we could consider the first level as the

Page 46 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5820
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48099#msg_48099
https://new-forum.openvz.org/index.php?t=post&reply_to=48099
https://new-forum.openvz.org/index.php

> > real roots for hierarchies.
> >
> So let's favor clarity: What you are proposing is that the first level
> can have a switch for that, and the first level only. Is that right ?

I do not want any more switches. I am fine with your "set the limit and
start accounting apprach" and then inherit the _internal_ flag down the
hierarchy.
If you are in a child and want to set the limit then you can do that
only if your parent is accounted already (so that you can have your own
limit). We will need the same thing for oom_controll and swappinness.
--
Michal Hocko
SUSE Labs

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Mel Gorman on Thu, 27 Sep 2012 14:28:22 GMT
View Forum Message <> Reply to Message

On Wed, Sep 26, 2012 at 04:08:07PM -0700, Tejun Heo wrote:
> Hello, Glauber.
>
> On Thu, Sep 27, 2012 at 02:54:11AM +0400, Glauber Costa wrote:
> > I don't. Much has been said in the past about the problem of sharing. A
> > lot of the kernel objects are shared by nature, this is pretty much
> > unavoidable. The answer we have been giving to this inquiry, is that the
> > workloads (us) interested in kmem accounted tend to be quite local in
> > their file accesses (and other kernel objects as well).
> >
> > It should be obvious that not all workloads are like this, and some of
> > them would actually prefer to have their umem limited only.
> >
> > There is nothing unreasonable in tracking user memory only.
> >
> > If we have a global switch for "tracking all kernel memory", who would
> > you account the objects that are heavily shared to? I solve this by not
> > tracking kernel memory for cgroups in such workloads. What do you propose?
>
> One of the things wrong with that is that it exposes the limitation of
> the current implementation as interface to userland, which is never a
> good idea.

I think the limitations have been fairly clearly explained and any admin
using the interface is going to have *some* familiarity with the limitations.

> In addition, how is userland supposed to know which
> workload is shared kmem heavy or not?

Page 47 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=6532
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48108#msg_48108
https://new-forum.openvz.org/index.php?t=post&reply_to=48108
https://new-forum.openvz.org/index.php

By using a bit of common sense.

An application may not be able to figure this out but the administrator
is going to be able to make a very educated guess. If processes running
within two containers are not sharing a filesystem hierarchy for example
then it'll be clear they are not sharing dentries.

If there was a suspicion they were then it could be analysed with
something like SystemTap probing when files are opened and see if files
are being opened that are shared between containers.

It's not super-easy but it's not impossible either and I fail to see why
it's such a big deal for you.

>Details like that are not even
> inherent to workloads. It's highly dependent on kernel implementation
> which may change any day. If we hit workloads like that the right
> thing to do is improving kmemcg so that such problems don't occur, not
> exposing another switch.
>
> If we can't make that work in reasonable (doesn't have to be perfect)
> way, we might as well just give up on kmem controller. If userland
> has to second-guess kernel implementation details to make use of it,
> it's useless.
>
> > > Well, that's really playing with words. Limit is per cgroup and
> > > before the limit is set for the first time, everything is accounted to
> > > something else. How is that keeping track?
> > >
> >
> > Even after the limit is set, it is set only by workloads that want kmem
> > to be tracked. If you want to track it during the whole lifetime of the
> > cgroup, you switch it before you put tasks to it. What is so crazy about it?
>
> The fact that the numbers don't really mean what they apparently
> should mean.
>

I think it is a reasonable limitation that only some kernel allocations are
accounted for although I'll freely admit I'm not a cgroup or memcg user
either.

My understanding is that this comes down to cost -- accounting for the
kernel memory usage is expensive so it is limited only to the allocations
that are easy to abuse by an unprivileged process. Hence this is
initially concerned with stack pages with dentries and TCP usage to
follow in later patches.

Page 48 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Further I would expect that an administrator would be aware of these
limitations and set kmem_accounting at cgroup creation time before any
processes start. Maybe that should be enforced but it's not a
fundamental problem.

Due to the cost of accounting, I can see why it would be desirable to
enable kmem_accounting for some cgroup trees and not others. It is not
unreasonable to expect that an administrator might want to account within
one cgroup where processes are accessing millions of files without
impairing the performance of another cgroup that is mostly using
anonymous memory.

> > > The proposed behavior seems really crazy to me. Do people really
> > > think this is a good idea?
> >
> > It is really sad that you lost the opportunity to say that in a room
> > full of mm developers that could add to this discussion in real time,
> > when after an explanation about this was given, Mel asked if anyone
> > would have any objections to this.
>
> Sure, conferences are useful for building consensus but that's the
> extent of it. Sorry that I didn't realize the implications then but
> conferences don't really add any finality to decisions.
>
> So, this seems properly crazy to me at the similar level of
> use_hierarchy fiasco. I'm gonna NACK on this.
>

I think you're over-reacting to say the very least :|

--
Mel Gorman
SUSE Labs

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Tejun Heo on Thu, 27 Sep 2012 14:33:00 GMT
View Forum Message <> Reply to Message

Hello, Michal.

On Thu, Sep 27, 2012 at 02:08:06PM +0200, Michal Hocko wrote:
> Yes, because we have many users (basically almost all) who care only
> about the user memory because that's what occupies the vast majority of
> the memory. They usually want to isolate workload which would disrupt
> the global memory otherwise (e.g. backup process vs. database). You
> really do not want to pay an additional overhead for kmem accounting

Page 49 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=935
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48109#msg_48109
https://new-forum.openvz.org/index.php?t=post&reply_to=48109
https://new-forum.openvz.org/index.php

> here.

I'm not too convinced. First of all, the overhead added by kmemcg
isn't big. The hot path overhead is quite minimal - it doesn't do
much more than indirecting one more time. In terms of memory usage,
it sure could lead to a bit more fragmentation but even if it gets to
several megs per cgroup, I don't think that's something excessive.
So, there is overhead but I don't believe it to be prohibitive.

> > So your question for global vs local switch (that again, doesn't
> > exist; only a local *limit* exists) should really be posed in the
> > following way: "Can two different use cases with different needs be
> > hosted in the same box?"
>
> I think this is a good and a relevant question. I think this boils down
> to whether you want to have trusted and untrusted workloads at the same
> machine.
> Trusted loads usually only need user memory accounting because kmem
> consumption should be really negligible (unless kernel is doing
> something really stupid and no kmem limit will help here).
> On the other hand, untrusted workloads can do nasty things that
> administrator has hard time to mitigate and setting a kmem limit can
> help significantly.
>
> IMHO such a different loads exist on a single machine quite often (Web
> server and a back up process as the most simplistic one). The per
> hierarchy accounting, therefore, sounds like a good idea without too
> much added complexity (actually the only added complexity is in the
> proper kmem.limit_in_bytes handling which is a single place).

The distinction between "trusted" and "untrusted" is something
artificially created due to the assumed deficiency of kmemcg
implementation. Making things like this visible to userland is a bad
idea because it locks us into a place where we can't or don't need to
improve the said deficiencies and end up pushing the difficult
problems to somewhere else where it will likely be implemented in a
shabbier way. There sure are cases when such approach simply cannot
be avoided, but I really don't think that's the case here - the
overhead already seems to be at an acceptable level and we're not
taking away the escape switch.

This is userland visible API. We better err on the side of being
conservative than going overboard with flexibility. Even if we
eventually need to make this switching fullly hierarchical, we really
should be doing,

1. Implement simple global switching and look for problem cases.

Page 50 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

2. Analyze them and see whether the problem case can't be solved in a
 better, more intelligent way.

3. If the problem is something structurally inherent or reasonably too
 difficult to solve any other way, consider dumping the problem as
 config parameters to userland.

We can always expand the flexibility. Let's do the simple thing
first. As an added bonus, it would enable using static_keys for
accounting branches too.

Thanks.

--
tejun

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Mel Gorman on Thu, 27 Sep 2012 14:43:07 GMT
View Forum Message <> Reply to Message

On Thu, Sep 27, 2012 at 07:33:00AM -0700, Tejun Heo wrote:
> Hello, Michal.
>
> On Thu, Sep 27, 2012 at 02:08:06PM +0200, Michal Hocko wrote:
> > Yes, because we have many users (basically almost all) who care only
> > about the user memory because that's what occupies the vast majority of
> > the memory. They usually want to isolate workload which would disrupt
> > the global memory otherwise (e.g. backup process vs. database). You
> > really do not want to pay an additional overhead for kmem accounting
> > here.
>
> I'm not too convinced. First of all, the overhead added by kmemcg
> isn't big.

Really?

If kmemcg was globally accounted then every __GFP_KMEMCG allocation in
the page allocator potentially ends up down in
__memcg_kmem_newpage_charge which

1. takes RCU read lock
2. looks up cgroup from task
3. takes a reference count
4. memcg_charge_kmem -> __mem_cgroup_try_charge
5. release reference count

That's a *LOT* of work to incur for cgroups that do not care about kernel

Page 51 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=6532
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48110#msg_48110
https://new-forum.openvz.org/index.php?t=post&reply_to=48110
https://new-forum.openvz.org/index.php

accounting. This is why I thought it was reasonable that the kmem accounting
not be global.

--
Mel Gorman
SUSE Labs

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Tejun Heo on Thu, 27 Sep 2012 14:49:42 GMT
View Forum Message <> Reply to Message

Hello, Mel.

On Thu, Sep 27, 2012 at 03:28:22PM +0100, Mel Gorman wrote:
> > In addition, how is userland supposed to know which
> > workload is shared kmem heavy or not?
>
> By using a bit of common sense.
>
> An application may not be able to figure this out but the administrator
> is going to be able to make a very educated guess. If processes running
> within two containers are not sharing a filesystem hierarchy for example
> then it'll be clear they are not sharing dentries.
>
> If there was a suspicion they were then it could be analysed with
> something like SystemTap probing when files are opened and see if files
> are being opened that are shared between containers.
>
> It's not super-easy but it's not impossible either and I fail to see why
> it's such a big deal for you.

Because we're not even trying to actually solve the problem but just
dumping it to userland. If dentry/inode usage is the only case we're
being worried about, there can be better ways to solve it or at least
we should strive for that.

Also, the problem is not that it is impossible if you know and
carefully plan for things beforehand (that would be one extremely
competent admin) but that the problem is undiscoverable. With kmemcg
accounting disabled, there's no way to tell a looking cgroup the admin
thinks running something which doesn'ft tax kmem much could be
generating a ton without the admin ever noticing.

> > The fact that the numbers don't really mean what they apparently
> > should mean.
>
> I think it is a reasonable limitation that only some kernel allocations are

Page 52 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=935
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48111#msg_48111
https://new-forum.openvz.org/index.php?t=post&reply_to=48111
https://new-forum.openvz.org/index.php

> accounted for although I'll freely admit I'm not a cgroup or memcg user
> either.
>
> My understanding is that this comes down to cost -- accounting for the
> kernel memory usage is expensive so it is limited only to the allocations
> that are easy to abuse by an unprivileged process. Hence this is
> initially concerned with stack pages with dentries and TCP usage to
> follow in later patches.

I think the cost isn't too prohibitive considering it's already using
memcg. Charging / uncharging happens only as pages enter and leave
slab caches and the hot path overhead is essentially single
indirection. Glauber's benchmark seemed pretty reasonable to me and I
don't yet think that warrants exposing this subtle tree of
configuration.

> > Sure, conferences are useful for building consensus but that's the
> > extent of it. Sorry that I didn't realize the implications then but
> > conferences don't really add any finality to decisions.
> >
> > So, this seems properly crazy to me at the similar level of
> > use_hierarchy fiasco. I'm gonna NACK on this.
>
> I think you're over-reacting to say the very least :|

The part I nacked is enabling kmemcg on a populated cgroup and then
starting accounting from then without any apparent indication that any
past allocation hasn't been considered. You end up with numbers which
nobody can't tell what they really mean and there's no mechanism to
guarantee any kind of ordering between populating the cgroup and
configuring it and there's *no* way to find out what happened
afterwards neither. This is properly crazy and definitely deserves a
nack.

Thanks.

--
tejun

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Glauber Costa on Thu, 27 Sep 2012 14:57:59 GMT
View Forum Message <> Reply to Message

On 09/27/2012 06:49 PM, Tejun Heo wrote:
> Hello, Mel.
>
> On Thu, Sep 27, 2012 at 03:28:22PM +0100, Mel Gorman wrote:

Page 53 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48113#msg_48113
https://new-forum.openvz.org/index.php?t=post&reply_to=48113
https://new-forum.openvz.org/index.php

>>> In addition, how is userland supposed to know which
>>> workload is shared kmem heavy or not?
>>
>> By using a bit of common sense.
>>
>> An application may not be able to figure this out but the administrator
>> is going to be able to make a very educated guess. If processes running
>> within two containers are not sharing a filesystem hierarchy for example
>> then it'll be clear they are not sharing dentries.
>>
>> If there was a suspicion they were then it could be analysed with
>> something like SystemTap probing when files are opened and see if files
>> are being opened that are shared between containers.
>>
>> It's not super-easy but it's not impossible either and I fail to see why
>> it's such a big deal for you.
>
> Because we're not even trying to actually solve the problem but just
> dumping it to userland. If dentry/inode usage is the only case we're
> being worried about, there can be better ways to solve it or at least
> we should strive for that.
>

Not only it is not the only case we care about, this is not even touched
in this series. (It is only touched in the next one). This one, for
instance, cares about the stack. The reason everything is being dumped
into "kmem", is precisely to make things simpler. I argue that at some
point it makes sense to draw a line, and "kmem" is a much better line
than any fine grained control - precisely because it is conceptually
easier to grasp.

> Also, the problem is not that it is impossible if you know and
> carefully plan for things beforehand (that would be one extremely
> competent admin) but that the problem is undiscoverable. With kmemcg
> accounting disabled, there's no way to tell a looking cgroup the admin
> thinks running something which doesn'ft tax kmem much could be
> generating a ton without the admin ever noticing.
>
>>> The fact that the numbers don't really mean what they apparently
>>> should mean.
>>
>> I think it is a reasonable limitation that only some kernel allocations are
>> accounted for although I'll freely admit I'm not a cgroup or memcg user
>> either.
>>
>> My understanding is that this comes down to cost -- accounting for the
>> kernel memory usage is expensive so it is limited only to the allocations

Page 54 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>> that are easy to abuse by an unprivileged process. Hence this is
>> initially concerned with stack pages with dentries and TCP usage to
>> follow in later patches.
>
> I think the cost isn't too prohibitive considering it's already using
> memcg. Charging / uncharging happens only as pages enter and leave
> slab caches and the hot path overhead is essentially single
> indirection. Glauber's benchmark seemed pretty reasonable to me and I
> don't yet think that warrants exposing this subtle tree of
> configuration.
>

Only so we can get some numbers: the cost is really minor if this is all
disabled. It this is fully enable, it can get to some 2 or 3 %, which
may or may not be acceptable to an application. But for me this is not
even about cost, and that's why I haven't brought it up so far

>>> Sure, conferences are useful for building consensus but that's the
>>> extent of it. Sorry that I didn't realize the implications then but
>>> conferences don't really add any finality to decisions.
>>>
>>> So, this seems properly crazy to me at the similar level of
>>> use_hierarchy fiasco. I'm gonna NACK on this.
>>
>> I think you're over-reacting to say the very least :|
>
> The part I nacked is enabling kmemcg on a populated cgroup and then
> starting accounting from then without any apparent indication that any
> past allocation hasn't been considered. You end up with numbers which
> nobody can't tell what they really mean and there's no mechanism to
> guarantee any kind of ordering between populating the cgroup and
> configuring it and there's *no* way to find out what happened
> afterwards neither. This is properly crazy and definitely deserves a
> nack.
>

Mel suggestion of not allowing this to happen once the cgroup has tasks
takes care of this, and is something I thought of myself.

This would remove this particular piece of objection, and maintain the
per-subtree control.

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Tejun Heo on Thu, 27 Sep 2012 14:58:02 GMT
View Forum Message <> Reply to Message

Hello, Mel.

Page 55 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=935
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48112#msg_48112
https://new-forum.openvz.org/index.php?t=post&reply_to=48112
https://new-forum.openvz.org/index.php

On Thu, Sep 27, 2012 at 03:43:07PM +0100, Mel Gorman wrote:
> > I'm not too convinced. First of all, the overhead added by kmemcg
> > isn't big.
>
> Really?
>
> If kmemcg was globally accounted then every __GFP_KMEMCG allocation in
> the page allocator potentially ends up down in
> __memcg_kmem_newpage_charge which
>
> 1. takes RCU read lock
> 2. looks up cgroup from task
> 3. takes a reference count
> 4. memcg_charge_kmem -> __mem_cgroup_try_charge
> 5. release reference count
>
> That's a *LOT* of work to incur for cgroups that do not care about kernel
> accounting. This is why I thought it was reasonable that the kmem accounting
> not be global.

But that happens only when pages enter and leave slab and if it still
is significant, we can try to further optimize charging. Given that
this is only for cases where memcg is already in use and we provide a
switch to disable it globally, I really don't think this warrants
implementing fully hierarchy configuration.

Thanks.

--
tejun

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Michal Hocko on Thu, 27 Sep 2012 15:09:50 GMT
View Forum Message <> Reply to Message

On Thu 27-09-12 07:33:00, Tejun Heo wrote:
> Hello, Michal.
>
> On Thu, Sep 27, 2012 at 02:08:06PM +0200, Michal Hocko wrote:
> > Yes, because we have many users (basically almost all) who care only
> > about the user memory because that's what occupies the vast majority of
> > the memory. They usually want to isolate workload which would disrupt
> > the global memory otherwise (e.g. backup process vs. database). You
> > really do not want to pay an additional overhead for kmem accounting
> > here.
>

Page 56 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5820
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48114#msg_48114
https://new-forum.openvz.org/index.php?t=post&reply_to=48114
https://new-forum.openvz.org/index.php

> I'm not too convinced. First of all, the overhead added by kmemcg
> isn't big.

You are probably talking about memory overhead which is indeed not that
big (except for possible side effects as fragmentation which you mention
bellow). But the runtime overhead is present, as far as I understand from
what Glauber said. But, on the other hand, it is fair to say that those
who _want_ use the feature should pay for it.

> The hot path overhead is quite minimal - it doesn't do much more than
> indirecting one more time. In terms of memory usage, it sure could
> lead to a bit more fragmentation but even if it gets to several megs
> per cgroup, I don't think that's something excessive. So, there is
> overhead but I don't believe it to be prohibitive.

Remember that users do not want to pay even "something minimal" when the
feature is not needed.

> > > So your question for global vs local switch (that again, doesn't
> > > exist; only a local *limit* exists) should really be posed in the
> > > following way: "Can two different use cases with different needs be
> > > hosted in the same box?"
> >
> > I think this is a good and a relevant question. I think this boils down
> > to whether you want to have trusted and untrusted workloads at the same
> > machine.
> > Trusted loads usually only need user memory accounting because kmem
> > consumption should be really negligible (unless kernel is doing
> > something really stupid and no kmem limit will help here).
> > On the other hand, untrusted workloads can do nasty things that
> > administrator has hard time to mitigate and setting a kmem limit can
> > help significantly.
> >
> > IMHO such a different loads exist on a single machine quite often (Web
> > server and a back up process as the most simplistic one). The per
> > hierarchy accounting, therefore, sounds like a good idea without too
> > much added complexity (actually the only added complexity is in the
> > proper kmem.limit_in_bytes handling which is a single place).
>
> The distinction between "trusted" and "untrusted" is something
> artificially created due to the assumed deficiency of kmemcg
> implementation.

Not really. It doesn't have to do anything with the overhead (be it
memory or runtime). It really boils down to "do I need/want it at all".
Why would I want to think about how much kernel memory is in use in the
first place? Or do you think that user memory accounting should be
deprecated?

Page 57 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> Making things like this visible to userland is a bad
> idea because it locks us into a place where we can't or don't need to
> improve the said deficiencies and end up pushing the difficult
> problems to somewhere else where it will likely be implemented in a
> shabbier way. There sure are cases when such approach simply cannot
> be avoided, but I really don't think that's the case here - the
> overhead already seems to be at an acceptable level and we're not
> taking away the escape switch.
>
> This is userland visible API.

I am not sure which API visible part you have in mind but
kmem.limit_in_bytes will be there whether we go with global knob or "no
limit no accounting" approach.

> We better err on the side of being conservative than going overboard
> with flexibility. Even if we eventually need to make this switching
> fullly hierarchical, we really should be doing,
>
> 1. Implement simple global switching and look for problem cases.
>
> 2. Analyze them and see whether the problem case can't be solved in a
> better, more intelligent way.
>
> 3. If the problem is something structurally inherent or reasonably too
> difficult to solve any other way, consider dumping the problem as
> config parameters to userland.
>
> We can always expand the flexibility. Let's do the simple thing
> first. As an added bonus, it would enable using static_keys for
> accounting branches too.

While I do agree with you in general and being careful is at place in
this area as time shown several times, this seems to be too restrictive
in this particular case.
We won't save almost no code with the global knob so I am not sure
what we are actually saving here. Global knob will just give us all or
nothing semantic without making the whole thing simpler. You will stick
with static branches and checkes whether the group accountable anyway,
right?
--
Michal Hocko
SUSE Labs

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure

Page 58 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Posted by Tejun Heo on Thu, 27 Sep 2012 17:46:05 GMT
View Forum Message <> Reply to Message

Hello,

On Thu, Sep 27, 2012 at 06:57:59PM +0400, Glauber Costa wrote:
> > Because we're not even trying to actually solve the problem but just
> > dumping it to userland. If dentry/inode usage is the only case we're
> > being worried about, there can be better ways to solve it or at least
> > we should strive for that.
>
> Not only it is not the only case we care about, this is not even touched
> in this series. (It is only touched in the next one). This one, for
> instance, cares about the stack. The reason everything is being dumped
> into "kmem", is precisely to make things simpler. I argue that at some
> point it makes sense to draw a line, and "kmem" is a much better line
> than any fine grained control - precisely because it is conceptually
> easier to grasp.

Can you please give other examples of cases where this type of issue
exists (plenty of shared kernel data structure which is inherent to
the workload at hand)? Until now, this has been the only example for
this type of issues.

> > I think the cost isn't too prohibitive considering it's already using
> > memcg. Charging / uncharging happens only as pages enter and leave
> > slab caches and the hot path overhead is essentially single
> > indirection. Glauber's benchmark seemed pretty reasonable to me and I
> > don't yet think that warrants exposing this subtle tree of
> > configuration.
>
> Only so we can get some numbers: the cost is really minor if this is all
> disabled. It this is fully enable, it can get to some 2 or 3 %, which
> may or may not be acceptable to an application. But for me this is not
> even about cost, and that's why I haven't brought it up so far

It seems like Mel's concern is mostly based on performance overhead
concerns tho.

> > The part I nacked is enabling kmemcg on a populated cgroup and then
> > starting accounting from then without any apparent indication that any
> > past allocation hasn't been considered. You end up with numbers which
> > nobody can't tell what they really mean and there's no mechanism to
> > guarantee any kind of ordering between populating the cgroup and
> > configuring it and there's *no* way to find out what happened
> > afterwards neither. This is properly crazy and definitely deserves a
> > nack.
> >
>

Page 59 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=935
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48120#msg_48120
https://new-forum.openvz.org/index.php?t=post&reply_to=48120
https://new-forum.openvz.org/index.php

> Mel suggestion of not allowing this to happen once the cgroup has tasks
> takes care of this, and is something I thought of myself.

You mean Michal's? It should also disallow switching if there are
children cgroups, right?

> This would remove this particular piece of objection, and maintain the
> per-subtree control.

Yeah, I don't see anything broken with that although I'll try to argue
for simpler one a bit more.

Thanks.

--
tejun

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Michal Hocko on Thu, 27 Sep 2012 17:56:43 GMT
View Forum Message <> Reply to Message

On Thu 27-09-12 10:46:05, Tejun Heo wrote:
[...]
> > > The part I nacked is enabling kmemcg on a populated cgroup and then
> > > starting accounting from then without any apparent indication that any
> > > past allocation hasn't been considered. You end up with numbers which
> > > nobody can't tell what they really mean and there's no mechanism to
> > > guarantee any kind of ordering between populating the cgroup and
> > > configuring it and there's *no* way to find out what happened
> > > afterwards neither. This is properly crazy and definitely deserves a
> > > nack.
> > >
> >
> > Mel suggestion of not allowing this to happen once the cgroup has tasks
> > takes care of this, and is something I thought of myself.
>
> You mean Michal's? It should also disallow switching if there are
> children cgroups, right?

Right.

--
Michal Hocko
SUSE Labs

Page 60 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5820
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48121#msg_48121
https://new-forum.openvz.org/index.php?t=post&reply_to=48121
https://new-forum.openvz.org/index.php

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Glauber Costa on Thu, 27 Sep 2012 18:30:36 GMT
View Forum Message <> Reply to Message

On 09/27/2012 06:58 PM, Tejun Heo wrote:
> Hello, Mel.
>
> On Thu, Sep 27, 2012 at 03:43:07PM +0100, Mel Gorman wrote:
>>> I'm not too convinced. First of all, the overhead added by kmemcg
>>> isn't big.
>>
>> Really?
>>
>> If kmemcg was globally accounted then every __GFP_KMEMCG allocation in
>> the page allocator potentially ends up down in
>> __memcg_kmem_newpage_charge which
>>
>> 1. takes RCU read lock
>> 2. looks up cgroup from task
>> 3. takes a reference count
>> 4. memcg_charge_kmem -> __mem_cgroup_try_charge
>> 5. release reference count
>>
>> That's a *LOT* of work to incur for cgroups that do not care about kernel
>> accounting. This is why I thought it was reasonable that the kmem accounting
>> not be global.
>
> But that happens only when pages enter and leave slab and if it still
> is significant, we can try to further optimize charging. Given that
> this is only for cases where memcg is already in use and we provide a
> switch to disable it globally, I really don't think this warrants
> implementing fully hierarchy configuration.
>

Not totally true. We still have to match every allocation to the right
cache, and that is actually our heaviest hit, responsible for the 2, 3 %
we're seeing when this is enabled. It is the kind of path so hot that
people frown upon branches being added, so I don't think we'll ever get
this close to being free.

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Glauber Costa on Thu, 27 Sep 2012 18:45:01 GMT
View Forum Message <> Reply to Message

On 09/27/2012 09:46 PM, Tejun Heo wrote:
> Hello,
>

Page 61 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48123#msg_48123
https://new-forum.openvz.org/index.php?t=post&reply_to=48123
https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48124#msg_48124
https://new-forum.openvz.org/index.php?t=post&reply_to=48124
https://new-forum.openvz.org/index.php

> On Thu, Sep 27, 2012 at 06:57:59PM +0400, Glauber Costa wrote:
>>> Because we're not even trying to actually solve the problem but just
>>> dumping it to userland. If dentry/inode usage is the only case we're
>>> being worried about, there can be better ways to solve it or at least
>>> we should strive for that.
>>
>> Not only it is not the only case we care about, this is not even touched
>> in this series. (It is only touched in the next one). This one, for
>> instance, cares about the stack. The reason everything is being dumped
>> into "kmem", is precisely to make things simpler. I argue that at some
>> point it makes sense to draw a line, and "kmem" is a much better line
>> than any fine grained control - precisely because it is conceptually
>> easier to grasp.
>
> Can you please give other examples of cases where this type of issue
> exists (plenty of shared kernel data structure which is inherent to
> the workload at hand)? Until now, this has been the only example for
> this type of issues.
>

Yes. the namespace related caches (*), all kinds of sockets and network
structures, other file system structures like file struct, vm areas, and
pretty much everything a full container does.

(*) we run full userspace, so we have namespaces + cgroups combination.

>>> I think the cost isn't too prohibitive considering it's already using
>>> memcg. Charging / uncharging happens only as pages enter and leave
>>> slab caches and the hot path overhead is essentially single
>>> indirection. Glauber's benchmark seemed pretty reasonable to me and I
>>> don't yet think that warrants exposing this subtle tree of
>>> configuration.
>>
>> Only so we can get some numbers: the cost is really minor if this is all
>> disabled. It this is fully enable, it can get to some 2 or 3 %, which
>> may or may not be acceptable to an application. But for me this is not
>> even about cost, and that's why I haven't brought it up so far
>
> It seems like Mel's concern is mostly based on performance overhead
> concerns tho.
>
>>> The part I nacked is enabling kmemcg on a populated cgroup and then
>>> starting accounting from then without any apparent indication that any
>>> past allocation hasn't been considered. You end up with numbers which
>>> nobody can't tell what they really mean and there's no mechanism to
>>> guarantee any kind of ordering between populating the cgroup and
>>> configuring it and there's *no* way to find out what happened
>>> afterwards neither. This is properly crazy and definitely deserves a

Page 62 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>>> nack.
>>>
>>
>> Mel suggestion of not allowing this to happen once the cgroup has tasks
>> takes care of this, and is something I thought of myself.
>
> You mean Michal's? It should also disallow switching if there are
> children cgroups, right?
>

No, I meant Mel, quoting this:

"Further I would expect that an administrator would be aware of these
limitations and set kmem_accounting at cgroup creation time before any
processes start. Maybe that should be enforced but it's not a
fundamental problem."

But I guess it is pretty much the same thing Michal proposes, in essence.

Or IOW, if your concern is with the fact that charges may have happened
in the past before this is enabled, we can make sure this cannot happen
by disallowing the limit to be set if currently unset (value changes are
obviously fine) if you have children or any tasks already in the group.

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Tejun Heo on Sun, 30 Sep 2012 07:57:00 GMT
View Forum Message <> Reply to Message

Hello, Glauber.

On Thu, Sep 27, 2012 at 10:45:01PM +0400, Glauber Costa wrote:
> > Can you please give other examples of cases where this type of issue
> > exists (plenty of shared kernel data structure which is inherent to
> > the workload at hand)? Until now, this has been the only example for
> > this type of issues.
>
> Yes. the namespace related caches (*), all kinds of sockets and network
> structures, other file system structures like file struct, vm areas, and
> pretty much everything a full container does.
>
> (*) we run full userspace, so we have namespaces + cgroups combination.

This is probably me being dumb but wouldn't resources used by full
namespaces be mostly independent? Which parts get shared? Also, if
you do full namespace, isn't it more likely that you would want fuller
resource isolation too?

Page 63 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=935
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48138#msg_48138
https://new-forum.openvz.org/index.php?t=post&reply_to=48138
https://new-forum.openvz.org/index.php

> >> Mel suggestion of not allowing this to happen once the cgroup has tasks
> >> takes care of this, and is something I thought of myself.
> >
> > You mean Michal's? It should also disallow switching if there are
> > children cgroups, right?
>
> No, I meant Mel, quoting this:
>
> "Further I would expect that an administrator would be aware of these
> limitations and set kmem_accounting at cgroup creation time before any
> processes start. Maybe that should be enforced but it's not a
> fundamental problem."
>
> But I guess it is pretty much the same thing Michal proposes, in essence.
>
> Or IOW, if your concern is with the fact that charges may have happened
> in the past before this is enabled, we can make sure this cannot happen
> by disallowing the limit to be set if currently unset (value changes are
> obviously fine) if you have children or any tasks already in the group.

Yeah, please do that.

Thanks.

--
tejun

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Tejun Heo on Sun, 30 Sep 2012 08:02:49 GMT
View Forum Message <> Reply to Message

On Sun, Sep 30, 2012 at 04:57:00PM +0900, Tejun Heo wrote:
> On Thu, Sep 27, 2012 at 10:45:01PM +0400, Glauber Costa wrote:
> > > Can you please give other examples of cases where this type of issue
> > > exists (plenty of shared kernel data structure which is inherent to
> > > the workload at hand)? Until now, this has been the only example for
> > > this type of issues.
> >
> > Yes. the namespace related caches (*), all kinds of sockets and network
> > structures, other file system structures like file struct, vm areas, and
> > pretty much everything a full container does.
> >
> > (*) we run full userspace, so we have namespaces + cgroups combination.
>
> This is probably me being dumb but wouldn't resources used by full
> namespaces be mostly independent? Which parts get shared? Also, if
> you do full namespace, isn't it more likely that you would want fuller

Page 64 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=935
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48139#msg_48139
https://new-forum.openvz.org/index.php?t=post&reply_to=48139
https://new-forum.openvz.org/index.php

> resource isolation too?

Just a thought about dentry/inode. Would it make sense to count total
number of references per cgroup and charge the total amount according
to that? Reference counts are how the shared ownership is represented
after all. Counting total per cgroup isn't accurate and pathological
cases could be weird tho.

Thanks.

--
tejun

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Tejun Heo on Sun, 30 Sep 2012 08:23:58 GMT
View Forum Message <> Reply to Message

Hello, Glauber.

On Thu, Sep 27, 2012 at 10:30:36PM +0400, Glauber Costa wrote:
> > But that happens only when pages enter and leave slab and if it still
> > is significant, we can try to further optimize charging. Given that
> > this is only for cases where memcg is already in use and we provide a
> > switch to disable it globally, I really don't think this warrants
> > implementing fully hierarchy configuration.
>
> Not totally true. We still have to match every allocation to the right
> cache, and that is actually our heaviest hit, responsible for the 2, 3 %
> we're seeing when this is enabled. It is the kind of path so hot that
> people frown upon branches being added, so I don't think we'll ever get
> this close to being free.

Sure, depening on workload, any addition to alloc/free could be
noticeable. I don't know. I'll write more about it when replying to
Michal's message. BTW, __memcg_kmem_get_cache() does seem a bit
heavy. I wonder whether indexing from cache side would make it
cheaper? e.g. something like the following.

	kmem_cache *__memcg_kmem_get_cache(cachep, gfp)
	{
		struct kmem_cache *c;

		c = cachep->memcg_params->caches[percpu_read(kmemcg_slab_idx)];
		if (likely(c))
			return c;
		/* try to create and then fall back to cachep */
	}

Page 65 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=935
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48140#msg_48140
https://new-forum.openvz.org/index.php?t=post&reply_to=48140
https://new-forum.openvz.org/index.php

where kmemcg_slab_idx is updated from sched notifier (or maybe add and
use current->kmemcg_slab_idx?). You would still need __GFP_* and
in_interrupt() tests but current->mm and PF_KTHREAD tests can be
rolled into index selection.

Thanks.

--
tejun

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Tejun Heo on Sun, 30 Sep 2012 08:47:50 GMT
View Forum Message <> Reply to Message

Hello, Michal.

On Thu, Sep 27, 2012 at 05:09:50PM +0200, Michal Hocko wrote:
> On Thu 27-09-12 07:33:00, Tejun Heo wrote:
> > I'm not too convinced. First of all, the overhead added by kmemcg
> > isn't big.
>
> You are probably talking about memory overhead which is indeed not that
> big (except for possible side effects as fragmentation which you mention
> bellow). But the runtime overhead is present, as far as I understand from
> what Glauber said. But, on the other hand, it is fair to say that those
> who _want_ use the feature should pay for it.

Yeah, as long as the overhead is reasonable and it doesn't affect
non-users, I think we should put more emphasis on simplicity. cgroup
is pretty hairy (from both implementation and interface POVs) to begin
with. Unfortunately, what's reasonable or how much more emphasis
varies widely depending on who one asks.

> > The hot path overhead is quite minimal - it doesn't do much more than
> > indirecting one more time. In terms of memory usage, it sure could
> > lead to a bit more fragmentation but even if it gets to several megs
> > per cgroup, I don't think that's something excessive. So, there is
> > overhead but I don't believe it to be prohibitive.
>
> Remember that users do not want to pay even "something minimal" when the
> feature is not needed.

Yeah but, if we can get it down to, say, around 1% under most
workloads for memcg users, it is quite questionable to introduce full
hierarchical configuration to allow avoiding that, isn't it?

Page 66 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=935
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48142#msg_48142
https://new-forum.openvz.org/index.php?t=post&reply_to=48142
https://new-forum.openvz.org/index.php

> > The distinction between "trusted" and "untrusted" is something
> > artificially created due to the assumed deficiency of kmemcg
> > implementation.
>
> Not really. It doesn't have to do anything with the overhead (be it
> memory or runtime). It really boils down to "do I need/want it at all".
> Why would I want to think about how much kernel memory is in use in the
> first place? Or do you think that user memory accounting should be
> deprecated?

But you can apply the same "do I need/want it at all" question to the
configuration parameter too. I can see your point but the decision
seems muddy to me, and if muddy, I prefer to err on the side of being
too conservative.

> > This is userland visible API.
>
> I am not sure which API visible part you have in mind but
> kmem.limit_in_bytes will be there whether we go with global knob or "no
> limit no accounting" approach.

I mean full hierarchical configuration of it. It becomes something
which each memcg user cares about instead of something which the base
system / admin flips on system boot.

> > We can always expand the flexibility. Let's do the simple thing
> > first. As an added bonus, it would enable using static_keys for
> > accounting branches too.
>
> While I do agree with you in general and being careful is at place in
> this area as time shown several times, this seems to be too restrictive
> in this particular case.
> We won't save almost no code with the global knob so I am not sure
> what we are actually saving here. Global knob will just give us all or
> nothing semantic without making the whole thing simpler. You will stick
> with static branches and checkes whether the group accountable anyway,
> right?

The thing is about the same argument can be made about .use_hierarchy
too. It doesn't necessarily make the code much harier. Especially
because the code is structured with that feature on mind, removing
.use_hierarchy might not remove whole lot of code; however, the wider
range of behavior which got exposed through that poses a much larger
problem when we try to make modifications on related behaviors. We
get a lot more locked down by seemingly not too much code and our long
term maintainability / sustainability suffers as a result.

I'm not trying to say this is as bad as .use_hierarchy but want to

Page 67 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

point out that memcg and cgroup in general have had pretty strong
tendency to choose overly flexible and complex designs and interfaces
and it's probably about time we become more careful especially about
stuff which is visible to userland.

Thanks.

--
tejun

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by James Bottomley on Sun, 30 Sep 2012 08:56:28 GMT
View Forum Message <> Reply to Message

On Sun, 2012-09-30 at 17:02 +0900, Tejun Heo wrote:
> On Sun, Sep 30, 2012 at 04:57:00PM +0900, Tejun Heo wrote:
> > On Thu, Sep 27, 2012 at 10:45:01PM +0400, Glauber Costa wrote:
> > > > Can you please give other examples of cases where this type of issue
> > > > exists (plenty of shared kernel data structure which is inherent to
> > > > the workload at hand)? Until now, this has been the only example for
> > > > this type of issues.
> > >
> > > Yes. the namespace related caches (*), all kinds of sockets and network
> > > structures, other file system structures like file struct, vm areas, and
> > > pretty much everything a full container does.
> > >
> > > (*) we run full userspace, so we have namespaces + cgroups combination.
> >
> > This is probably me being dumb but wouldn't resources used by full
> > namespaces be mostly independent? Which parts get shared? Also, if
> > you do full namespace, isn't it more likely that you would want fuller
> > resource isolation too?
>
> Just a thought about dentry/inode. Would it make sense to count total
> number of references per cgroup and charge the total amount according
> to that? Reference counts are how the shared ownership is represented
> after all. Counting total per cgroup isn't accurate and pathological
> cases could be weird tho.

The beancounter approach originally used by OpenVZ does exactly this.
There are two specific problems, though, firstly you can't count
references in generic code, so now you have to extend the cgroup
tentacles into every object, an invasiveness which people didn't really
like. Secondly split accounting causes oddities too, like your total
kernel memory usage can appear to go down even though you do nothing
just because someone else added a share. Worse, if someone drops the
reference, your usage can go up, even though you did nothing, and push

Page 68 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=419
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48143#msg_48143
https://new-forum.openvz.org/index.php?t=post&reply_to=48143
https://new-forum.openvz.org/index.php

you over your limit, at which point action gets taken against the
container. This leads to nasty system unpredictability (The whole point
of cgroup isolation is supposed to be preventing resource usage in one
cgroup from affecting that in another).

We discussed this pretty heavily at the Containers Mini Summit in Santa
Rosa. The emergent consensus was that no-one really likes first use
accounting, but it does solve all the problems and it has the fewest
unexpected side effects.

If you have an alternative that wasn't considered then, I'm sure
everyone would be interested, but it isn't split accounting.

James

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Tejun Heo on Sun, 30 Sep 2012 10:37:32 GMT
View Forum Message <> Reply to Message

Hello, James.

On Sun, Sep 30, 2012 at 09:56:28AM +0100, James Bottomley wrote:
> The beancounter approach originally used by OpenVZ does exactly this.
> There are two specific problems, though, firstly you can't count
> references in generic code, so now you have to extend the cgroup
> tentacles into every object, an invasiveness which people didn't really
> like.

Yeah, it will need some hooks. For dentry and inode, I think it would
be pretty well isolated tho. Wasn't it?

> Secondly split accounting causes oddities too, like your total
> kernel memory usage can appear to go down even though you do nothing
> just because someone else added a share. Worse, if someone drops the
> reference, your usage can go up, even though you did nothing, and push
> you over your limit, at which point action gets taken against the
> container. This leads to nasty system unpredictability (The whole point
> of cgroup isolation is supposed to be preventing resource usage in one
> cgroup from affecting that in another).

In a sense, the fluctuating amount is the actual resource burden the
cgroup is putting on the system, so maybe it just needs to be handled
better or maybe we should charge fixed amount per refcnt? I don't
know.

> We discussed this pretty heavily at the Containers Mini Summit in Santa
> Rosa. The emergent consensus was that no-one really likes first use

Page 69 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=935
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48144#msg_48144
https://new-forum.openvz.org/index.php?t=post&reply_to=48144
https://new-forum.openvz.org/index.php

> accounting, but it does solve all the problems and it has the fewest
> unexpected side effects.

But that's like fitting the problem to the mechanism. Maybe that is
the best which can be done, but the side effect there is way-off
accounting under pretty common workload, which sounds pretty nasty to
me.

Thanks.

--
tejun

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by James Bottomley on Sun, 30 Sep 2012 11:25:52 GMT
View Forum Message <> Reply to Message

On Sun, 2012-09-30 at 19:37 +0900, Tejun Heo wrote:
> Hello, James.
>
> On Sun, Sep 30, 2012 at 09:56:28AM +0100, James Bottomley wrote:
> > The beancounter approach originally used by OpenVZ does exactly this.
> > There are two specific problems, though, firstly you can't count
> > references in generic code, so now you have to extend the cgroup
> > tentacles into every object, an invasiveness which people didn't really
> > like.
>
> Yeah, it will need some hooks. For dentry and inode, I think it would
> be pretty well isolated tho. Wasn't it?

But you've got to ask yourself who cares about accurate accounting per
container of dentry and inode objects? They're not objects that any
administrator is used to limiting. What we at parallels care about
isn't accurately accounting them, it's that one container can't DoS
another by exhausting system resources. That's achieved equally well by
first charge slab accounting, so we don't really have an interest in
pushing object accounting code for which there's no use case.

> > Secondly split accounting causes oddities too, like your total
> > kernel memory usage can appear to go down even though you do nothing
> > just because someone else added a share. Worse, if someone drops the
> > reference, your usage can go up, even though you did nothing, and push
> > you over your limit, at which point action gets taken against the
> > container. This leads to nasty system unpredictability (The whole point
> > of cgroup isolation is supposed to be preventing resource usage in one
> > cgroup from affecting that in another).
>

Page 70 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=419
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48145#msg_48145
https://new-forum.openvz.org/index.php?t=post&reply_to=48145
https://new-forum.openvz.org/index.php

> In a sense, the fluctuating amount is the actual resource burden the
> cgroup is putting on the system, so maybe it just needs to be handled
> better or maybe we should charge fixed amount per refcnt? I don't
> know.

Yes, we considered single charge per reference accounting as well
(although I don't believe anyone went as far as producing an
implementation). The problem here is now that the sum of the container
resources no-longer bears any relation to the host consumption. This
makes it very difficult for virtualisation orchestration systems to make
accurate decisions when doing dynamic resource scheduling (DRS).

Conversely, as ugly as you think it, first use accounting is actually
pretty good at identifying problem containers (at least with regard to
memory usage) for DRS because containers which are stretching the memory
tend to accumulate the greatest number of first charges over the system
lifetime.

> > We discussed this pretty heavily at the Containers Mini Summit in Santa
> > Rosa. The emergent consensus was that no-one really likes first use
> > accounting, but it does solve all the problems and it has the fewest
> > unexpected side effects.
>
> But that's like fitting the problem to the mechanism. Maybe that is
> the best which can be done, but the side effect there is way-off
> accounting under pretty common workload, which sounds pretty nasty to
> me.

All we need kernel memory accounting and limiting for is DoS prevention.
There aren't really any system administrators who care about Kernel
Memory accounting (at least until the system goes oom) because there are
no absolute knobs for it (all there is are a set of weird and wonderful
heuristics, like dirty limit ratio and drop caches). Kernel memory
usage has a whole set of regulatory infrastructure for trying to make it
transparent to the user.

Don't get me wrong: if there were some easy way to get proper memory
accounting for free, we'd be happy but, because it has no practical
application for any of our customers, there's a limited price we're
willing to pay to get it.

James

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Tejun Heo on Mon, 01 Oct 2012 00:57:17 GMT
View Forum Message <> Reply to Message

Page 71 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=935
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48150#msg_48150
https://new-forum.openvz.org/index.php?t=post&reply_to=48150
https://new-forum.openvz.org/index.php

Hello, James.

On Sun, Sep 30, 2012 at 12:25:52PM +0100, James Bottomley wrote:
> But you've got to ask yourself who cares about accurate accounting per
> container of dentry and inode objects? They're not objects that any
> administrator is used to limiting. What we at parallels care about
> isn't accurately accounting them, it's that one container can't DoS
> another by exhausting system resources. That's achieved equally well by
> first charge slab accounting, so we don't really have an interest in
> pushing object accounting code for which there's no use case.

Isn't it more because the use cases you have on mind don't share
dentries/inodes too much? Wildly incorrect accounting definitely
degrades container isolation and can lead to unexpected behaviors.

> All we need kernel memory accounting and limiting for is DoS prevention.
> There aren't really any system administrators who care about Kernel
> Memory accounting (at least until the system goes oom) because there are
> no absolute knobs for it (all there is are a set of weird and wonderful
> heuristics, like dirty limit ratio and drop caches). Kernel memory

I think that's because the mechanism currently doesn't exist. If one
wants to control how memory is distributed across different cgroups,
it's logical to control kernel memory too. The resource in question
is the actual memory after all. I think at least google would be
interested in it, so, no, I don't agree that nobody wants it. If that
is the case, we're working towards the wrong direction.

> usage has a whole set of regulatory infrastructure for trying to make it
> transparent to the user.
>
> Don't get me wrong: if there were some easy way to get proper memory
> accounting for free, we'd be happy but, because it has no practical
> application for any of our customers, there's a limited price we're
> willing to pay to get it.

Even on purely technical ground, it could be that first-use is the
right trade off if other more accurate approaches are too difficult
and most workloads are happy with such approach. I'm still a bit
weary to base userland interface decisions on that tho.

Thanks.

--
tejun

Page 72 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Glauber Costa on Mon, 01 Oct 2012 08:36:37 GMT
View Forum Message <> Reply to Message

On 09/30/2012 11:57 AM, Tejun Heo wrote:
> Hello, Glauber.
>
> On Thu, Sep 27, 2012 at 10:45:01PM +0400, Glauber Costa wrote:
>>> Can you please give other examples of cases where this type of issue
>>> exists (plenty of shared kernel data structure which is inherent to
>>> the workload at hand)? Until now, this has been the only example for
>>> this type of issues.
>>
>> Yes. the namespace related caches (*), all kinds of sockets and network
>> structures, other file system structures like file struct, vm areas, and
>> pretty much everything a full container does.
>>
>> (*) we run full userspace, so we have namespaces + cgroups combination.
>
> This is probably me being dumb but wouldn't resources used by full
> namespaces be mostly independent? Which parts get shared? Also, if
> you do full namespace, isn't it more likely that you would want fuller
> resource isolation too?
>

Not necessarily. Namespaces are pretty flexible. If you are using the
network namespace, for instance, you can create interfaces, routes,
addresses, etc. But because this deals with the network only, there is
nothing unreasonable in saying that your webserver and database lives in
the same network (which is a different network namespace), but are
entitled to different memory limits - which is cgroups realm. With
application-only containers being championed these days by multiple
users, I would expect this situation to become non-negligible.

The full container scenario, of course, is very different. Most of the
accesses tends to be local.

I will second what Michal said, since I believe this is also very
important: User memory is completely at the control of the application,
while kernel memory is not, and never will. It is perfectly fine to
imagine applications that want its memory to be limited by a very
predictable amount, and there are no reasons to believe that those
cannot live in the same box as full containers - the biggest example of
kmem interested folks. It could be, for instance, that a management tool
for containers lives in there, and that application wants to be umem
limited but not kmem limited. (If it goes touching files and data inside
each container, for instance, it is obviously not local)

>>>> Mel suggestion of not allowing this to happen once the cgroup has tasks

Page 73 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48152#msg_48152
https://new-forum.openvz.org/index.php?t=post&reply_to=48152
https://new-forum.openvz.org/index.php

>>>> takes care of this, and is something I thought of myself.
>>>
>>> You mean Michal's? It should also disallow switching if there are
>>> children cgroups, right?
>>
>> No, I meant Mel, quoting this:
>>
>> "Further I would expect that an administrator would be aware of these
>> limitations and set kmem_accounting at cgroup creation time before any
>> processes start. Maybe that should be enforced but it's not a
>> fundamental problem."
>>
>> But I guess it is pretty much the same thing Michal proposes, in essence.
>>
>> Or IOW, if your concern is with the fact that charges may have happened
>> in the past before this is enabled, we can make sure this cannot happen
>> by disallowing the limit to be set if currently unset (value changes are
>> obviously fine) if you have children or any tasks already in the group.
>
> Yeah, please do that.
>

I did already, patches soon! =)

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Glauber Costa on Mon, 01 Oct 2012 08:43:24 GMT
View Forum Message <> Reply to Message

On 10/01/2012 04:57 AM, Tejun Heo wrote:
> Hello, James.
>
> On Sun, Sep 30, 2012 at 12:25:52PM +0100, James Bottomley wrote:
>> But you've got to ask yourself who cares about accurate accounting per
>> container of dentry and inode objects? They're not objects that any
>> administrator is used to limiting. What we at parallels care about
>> isn't accurately accounting them, it's that one container can't DoS
>> another by exhausting system resources. That's achieved equally well by
>> first charge slab accounting, so we don't really have an interest in
>> pushing object accounting code for which there's no use case.
>
> Isn't it more because the use cases you have on mind don't share
> dentries/inodes too much? Wildly incorrect accounting definitely
> degrades container isolation and can lead to unexpected behaviors.
>
>> All we need kernel memory accounting and limiting for is DoS prevention.
>> There aren't really any system administrators who care about Kernel
>> Memory accounting (at least until the system goes oom) because there are

Page 74 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48153#msg_48153
https://new-forum.openvz.org/index.php?t=post&reply_to=48153
https://new-forum.openvz.org/index.php

>> no absolute knobs for it (all there is are a set of weird and wonderful
>> heuristics, like dirty limit ratio and drop caches). Kernel memory
>
> I think that's because the mechanism currently doesn't exist. If one
> wants to control how memory is distributed across different cgroups,
> it's logical to control kernel memory too. The resource in question
> is the actual memory after all. I think at least google would be
> interested in it, so, no, I don't agree that nobody wants it. If that
> is the case, we're working towards the wrong direction.
>
>> usage has a whole set of regulatory infrastructure for trying to make it
>> transparent to the user.
>>
>> Don't get me wrong: if there were some easy way to get proper memory
>> accounting for free, we'd be happy but, because it has no practical
>> application for any of our customers, there's a limited price we're
>> willing to pay to get it.
>
> Even on purely technical ground, it could be that first-use is the
> right trade off if other more accurate approaches are too difficult
> and most workloads are happy with such approach. I'm still a bit
> weary to base userland interface decisions on that tho.
>

For the record, user memory also suffers a bit from being always
constrained to first-touch accounting. Greg Thelen is working on
alternative solutions to make first-accounting the default in a
configurable environment, as he explained in the kernel summit.

When that happens, kernel memory can take advantage of it for free.

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Glauber Costa on Mon, 01 Oct 2012 08:45:11 GMT
View Forum Message <> Reply to Message

On 09/30/2012 12:23 PM, Tejun Heo wrote:
> Hello, Glauber.
>
> On Thu, Sep 27, 2012 at 10:30:36PM +0400, Glauber Costa wrote:
>>> But that happens only when pages enter and leave slab and if it still
>>> is significant, we can try to further optimize charging. Given that
>>> this is only for cases where memcg is already in use and we provide a
>>> switch to disable it globally, I really don't think this warrants
>>> implementing fully hierarchy configuration.
>>
>> Not totally true. We still have to match every allocation to the right
>> cache, and that is actually our heaviest hit, responsible for the 2, 3 %

Page 75 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48154#msg_48154
https://new-forum.openvz.org/index.php?t=post&reply_to=48154
https://new-forum.openvz.org/index.php

>> we're seeing when this is enabled. It is the kind of path so hot that
>> people frown upon branches being added, so I don't think we'll ever get
>> this close to being free.
>
> Sure, depening on workload, any addition to alloc/free could be
> noticeable. I don't know. I'll write more about it when replying to
> Michal's message. BTW, __memcg_kmem_get_cache() does seem a bit
> heavy. I wonder whether indexing from cache side would make it
> cheaper? e.g. something like the following.
>
> 	kmem_cache *__memcg_kmem_get_cache(cachep, gfp)
> 	{
> 		struct kmem_cache *c;
>
> 		c = cachep->memcg_params->caches[percpu_read(kmemcg_slab_idx)];
> 		if (likely(c))
> 			return c;
> 		/* try to create and then fall back to cachep */
> 	}
>
> where kmemcg_slab_idx is updated from sched notifier (or maybe add and
> use current->kmemcg_slab_idx?). You would still need __GFP_* and
> in_interrupt() tests but current->mm and PF_KTHREAD tests can be
> rolled into index selection.
>

How big would this array be? there can be a lot more kmem_caches than
there are memcgs. That is why it is done from memcg side.

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Glauber Costa on Mon, 01 Oct 2012 08:46:02 GMT
View Forum Message <> Reply to Message

On 09/30/2012 02:37 PM, Tejun Heo wrote:
> Hello, James.
>
> On Sun, Sep 30, 2012 at 09:56:28AM +0100, James Bottomley wrote:
>> The beancounter approach originally used by OpenVZ does exactly this.
>> There are two specific problems, though, firstly you can't count
>> references in generic code, so now you have to extend the cgroup
>> tentacles into every object, an invasiveness which people didn't really
>> like.
>
> Yeah, it will need some hooks. For dentry and inode, I think it would
> be pretty well isolated tho. Wasn't it?
>

Page 76 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48155#msg_48155
https://new-forum.openvz.org/index.php?t=post&reply_to=48155
https://new-forum.openvz.org/index.php

We would still need something for the stack. For open files, and for
everything that becomes a potential problem. We then end up with 35
different knobs instead of one. One of the perceived advantages of this
approach, is that it condenses as much data as a single knob as
possible, reducing complexity and over flexibility.

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Michal Hocko on Mon, 01 Oct 2012 09:27:56 GMT
View Forum Message <> Reply to Message

Hi,

On Sun 30-09-12 17:47:50, Tejun Heo wrote:
[...]
> > > The hot path overhead is quite minimal - it doesn't do much more than
> > > indirecting one more time. In terms of memory usage, it sure could
> > > lead to a bit more fragmentation but even if it gets to several megs
> > > per cgroup, I don't think that's something excessive. So, there is
> > > overhead but I don't believe it to be prohibitive.
> >
> > Remember that users do not want to pay even "something minimal" when the
> > feature is not needed.
>
> Yeah but, if we can get it down to, say, around 1% under most
> workloads for memcg users, it is quite questionable to introduce full
> hierarchical configuration to allow avoiding that, isn't it?

Remember that the kmem memory is still accounted to u+k if it is enabled
which could be a no-go because some workloads (I have provided an
example that those which are trusted are generally safe to ignore kernel
memory overhead) simply don't want to consider additional memory which
is mostly invisible for them.

> > > The distinction between "trusted" and "untrusted" is something
> > > artificially created due to the assumed deficiency of kmemcg
> > > implementation.
> >
> > Not really. It doesn't have to do anything with the overhead (be it
> > memory or runtime). It really boils down to "do I need/want it at all".
> > Why would I want to think about how much kernel memory is in use in the
> > first place? Or do you think that user memory accounting should be
> > deprecated?
>
> But you can apply the same "do I need/want it at all" question to the
> configuration parameter too.

Yes but, as I've said, the global configuration parameter is too

Page 77 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5820
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48156#msg_48156
https://new-forum.openvz.org/index.php?t=post&reply_to=48156
https://new-forum.openvz.org/index.php

coarse. You can have a mix of trusted and untrusted workloads at the
same machine (e.g. web server which is inherently untrusted) and trusted
(local batch jobs which just needs a special LRU aging).

> I can see your point but the decision seems muddy to me, and if muddy,
> I prefer to err on the side of being too conservative.
>
> > > This is userland visible API.
> >
> > I am not sure which API visible part you have in mind but
> > kmem.limit_in_bytes will be there whether we go with global knob or "no
> > limit no accounting" approach.
>
> I mean full hierarchical configuration of it. It becomes something
> which each memcg user cares about instead of something which the base
> system / admin flips on system boot.
>
> > > We can always expand the flexibility. Let's do the simple thing
> > > first. As an added bonus, it would enable using static_keys for
> > > accounting branches too.
> >
> > While I do agree with you in general and being careful is at place in
> > this area as time shown several times, this seems to be too restrictive
> > in this particular case.
> > We won't save almost no code with the global knob so I am not sure
> > what we are actually saving here. Global knob will just give us all or
> > nothing semantic without making the whole thing simpler. You will stick
> > with static branches and checkes whether the group accountable anyway,
> > right?
>
> The thing is about the same argument can be made about .use_hierarchy
> too. It doesn't necessarily make the code much harier. Especially
> because the code is structured with that feature on mind, removing
> .use_hierarchy might not remove whole lot of code; however, the wider
> range of behavior which got exposed through that poses a much larger
> problem when we try to make modifications on related behaviors. We
> get a lot more locked down by seemingly not too much code and our long
> term maintainability / sustainability suffers as a result.

I think that comparing kmem accounting with use_hierarchy is not fair.
Glauber tried to explain why already so I will not repeat it here.
I will just mention one thing. use_hierarchy has been introduces becuase
hierarchies were expensive at the time. kmem accounting is about should
we do u or u+k accounting. So there is a crucial difference.

> I'm not trying to say this is as bad as .use_hierarchy but want to
> point out that memcg and cgroup in general have had pretty strong
> tendency to choose overly flexible and complex designs and interfaces

Page 78 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> and it's probably about time we become more careful especially about
> stuff which is visible to userland.

That is right but I think that the current discussion shows that a mixed
(kmem disabled and kmem enabled hierarchies) workloads are far from
being theoretical and a global knob is just too coarse. I am afraid we
will see "we want that per hierarchy" requests shortly and that would
just add a new confusion where global knob would complicate it
considerably (do we really want on/off/per_hierarchy global knob?).
--
Michal Hocko
SUSE Labs

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Tejun Heo on Wed, 03 Oct 2012 22:43:16 GMT
View Forum Message <> Reply to Message

Hey, Michal.

On Mon, Oct 01, 2012 at 11:27:56AM +0200, Michal Hocko wrote:
> > Yeah but, if we can get it down to, say, around 1% under most
> > workloads for memcg users, it is quite questionable to introduce full
> > hierarchical configuration to allow avoiding that, isn't it?
>
> Remember that the kmem memory is still accounted to u+k if it is enabled
> which could be a no-go because some workloads (I have provided an
> example that those which are trusted are generally safe to ignore kernel
> memory overhead) simply don't want to consider additional memory which
> is mostly invisible for them.

Maybe it's because my exposure to cgroup usage is different from yours
but the argument that not accounting kernel memory is something
inherently beneficial is lost on me. For compatibility, overhead
and/or implementation complexity issues, yeah, sure, we can't always
(well more like usually) have all we want but I don't get how not
accounting kernel memory is something inherently necessary or
beneficial. This is all about provisioning physical memory to
different groups of users and memory is memory (that's why u+k makes
sense, right?). Without kmemcg enabled, we not only lack a way to
control kernel memory usage but also a way to even watch per-group
usages.

> > But you can apply the same "do I need/want it at all" question to the
> > configuration parameter too.
>
> Yes but, as I've said, the global configuration parameter is too
> coarse. You can have a mix of trusted and untrusted workloads at the

Page 79 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=935
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48200#msg_48200
https://new-forum.openvz.org/index.php?t=post&reply_to=48200
https://new-forum.openvz.org/index.php

> same machine (e.g. web server which is inherently untrusted) and trusted
> (local batch jobs which just needs a special LRU aging).

This too stems from the same difference stated above. You think
there's inherent distinction between trusted and untrusted workloads
and they need different features from the kernel while I think why
trust anyone if you can untrust everyone and consider the knob as a
compatibility thing.

> I think that comparing kmem accounting with use_hierarchy is not fair.
> Glauber tried to explain why already so I will not repeat it here.
> I will just mention one thing. use_hierarchy has been introduces becuase
> hierarchies were expensive at the time. kmem accounting is about should
> we do u or u+k accounting. So there is a crucial difference.

It may be less crazy but I think there are enough commonalities to at
least make a comparison. Mel seems to think it's mostly about
performance overhead. You think that not accounting kmem is something
inherently necessary.

> That is right but I think that the current discussion shows that a mixed
> (kmem disabled and kmem enabled hierarchies) workloads are far from
> being theoretical and a global knob is just too coarse. I am afraid we

I'm not sure there's much evidence in this thread. The strongest upto
this point seems to be performance overhead / difficulty of general
enough implementation. As for "trusted" workload, what are the
inherent benefits of trusting if you don't have to?

> will see "we want that per hierarchy" requests shortly and that would
> just add a new confusion where global knob would complicate it
> considerably (do we really want on/off/per_hierarchy global knob?).

Hmmm? The global knob is just the same per_hierarchy knob at the
root. It's hierarchical after all.

Anyways, as long as the "we silently ignore what happened before being
enabled" is gone, I won't fight this anymore. It isn't broken after
all. But, please think about making things simpler in general, cgroup
is riddled with mis-designed complexities and memcg seems to be
leading the charge at times.

Thanks.

--
tejun

Page 80 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Tejun Heo on Wed, 03 Oct 2012 22:54:58 GMT
View Forum Message <> Reply to Message

Hello, Glauber.

On Mon, Oct 01, 2012 at 12:45:11PM +0400, Glauber Costa wrote:
> > where kmemcg_slab_idx is updated from sched notifier (or maybe add and
> > use current->kmemcg_slab_idx?). You would still need __GFP_* and
> > in_interrupt() tests but current->mm and PF_KTHREAD tests can be
> > rolled into index selection.
>
> How big would this array be? there can be a lot more kmem_caches than
> there are memcgs. That is why it is done from memcg side.

The total number of memcgs are pretty limited due to the ID thing,
right? And kmemcg is only applied to subset of caches. I don't think
the array size would be a problem in terms of memory overhead, would
it? If so, RCU synchronize and dynamically grow them?

Thanks.

--
tejun

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Tejun Heo on Wed, 03 Oct 2012 22:59:30 GMT
View Forum Message <> Reply to Message

Hello, Glauber.

On Mon, Oct 01, 2012 at 12:46:02PM +0400, Glauber Costa wrote:
> > Yeah, it will need some hooks. For dentry and inode, I think it would
> > be pretty well isolated tho. Wasn't it?
>
> We would still need something for the stack. For open files, and for
> everything that becomes a potential problem. We then end up with 35
> different knobs instead of one. One of the perceived advantages of this
> approach, is that it condenses as much data as a single knob as
> possible, reducing complexity and over flexibility.

Oh, I didn't mean to use object-specific counting for all of them.
Most resources don't have such common misaccounting problem. I mean,
for stack, it doesn't exist by definition (other than cgroup
migration). There's no reason to use anything other than first-use
kmem based accounting for them. My point was that for particularly
problematic ones like dentry/inode, it might be better to treat them

Page 81 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=935
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48201#msg_48201
https://new-forum.openvz.org/index.php?t=post&reply_to=48201
https://new-forum.openvz.org/index.php?t=usrinfo&id=935
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48202#msg_48202
https://new-forum.openvz.org/index.php?t=post&reply_to=48202
https://new-forum.openvz.org/index.php

differently.

Thanks.

--
tejun

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Glauber Costa on Thu, 04 Oct 2012 11:55:14 GMT
View Forum Message <> Reply to Message

On 10/04/2012 02:54 AM, Tejun Heo wrote:
> Hello, Glauber.
>
> On Mon, Oct 01, 2012 at 12:45:11PM +0400, Glauber Costa wrote:
>>> where kmemcg_slab_idx is updated from sched notifier (or maybe add and
>>> use current->kmemcg_slab_idx?). You would still need __GFP_* and
>>> in_interrupt() tests but current->mm and PF_KTHREAD tests can be
>>> rolled into index selection.
>>
>> How big would this array be? there can be a lot more kmem_caches than
>> there are memcgs. That is why it is done from memcg side.
>
> The total number of memcgs are pretty limited due to the ID thing,
> right? And kmemcg is only applied to subset of caches. I don't think
> the array size would be a problem in terms of memory overhead, would
> it? If so, RCU synchronize and dynamically grow them?
>
> Thanks.
>

I don't want to assume the number of memcgs will always be that limited.
Sure, the ID limitation sounds pretty much a big one, but people doing
VMs usually want to stack as many VMs as they possibly can in an
environment, and the less things preventing that from happening, the better.

That said, now that I've experimented with this a bit, indexing from the
cache may have some advantages: it can get too complicated to propagate
new caches appearing to all memcgs that already in-flight. We don't have
this problem from the cache side, because instances of it are guaranteed
not to exist at this point by definition.

I don't want to bloat unrelated kmem_cache structures, so I can't embed
a memcg array in there: I would have to have a pointer to a memcg array
that gets assigned at first use. But if we don't want to have a static
number, as you and christoph already frowned upon heavily, we may have
to do that memcg side as well.

Page 82 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48207#msg_48207
https://new-forum.openvz.org/index.php?t=post&reply_to=48207
https://new-forum.openvz.org/index.php

The array gets bigger, though, because it pretty much has to be enough
to accomodate all css_ids. Even now, they are more than the 400 I used
in this patchset. Not allocating all of them at once will lead to more
complication and pointer chasing in here.

I'll take a look at the alternatives today and tomorrow.

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Michal Hocko on Fri, 05 Oct 2012 13:47:23 GMT
View Forum Message <> Reply to Message

On Thu 04-10-12 07:43:16, Tejun Heo wrote:
[...]
> > That is right but I think that the current discussion shows that a mixed
> > (kmem disabled and kmem enabled hierarchies) workloads are far from
> > being theoretical and a global knob is just too coarse. I am afraid we
>
> I'm not sure there's much evidence in this thread. The strongest upto
> this point seems to be performance overhead / difficulty of general
> enough implementation. As for "trusted" workload, what are the
> inherent benefits of trusting if you don't have to?

One advantage is that you do _not have_ to consider kernel memory
allocations (which are inherently bound to the kernel version) so the
sizing is much easier and version independent. If you set a limit to XY
because you know what you are doing you certainly do not want to regress
(e.g. because of unnecessary reclaim) just because a certain kernel
allocation got bigger, right?

> > will see "we want that per hierarchy" requests shortly and that would
> > just add a new confusion where global knob would complicate it
> > considerably (do we really want on/off/per_hierarchy global knob?).
>
> Hmmm? The global knob is just the same per_hierarchy knob at the
> root. It's hierarchical after all.

When you said global knob I imagined mount or boot option. If you want
to have yet another memory.enable_kmem then IMHO it is much easier to
use set-accounted semantic (which is hierarchical as well).

> Anyways, as long as the "we silently ignore what happened before being
> enabled" is gone, I won't fight this anymore. It isn't broken after
> all.

OK, it is good that we settled this.

Page 83 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5820
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48214#msg_48214
https://new-forum.openvz.org/index.php?t=post&reply_to=48214
https://new-forum.openvz.org/index.php

> But, please think about making things simpler in general, cgroup
> is riddled with mis-designed complexities and memcg seems to be
> leading the charge at times.

Yes this is an evolution and it seems that we are slowly getting there.

>
> Thanks.

--
Michal Hocko
SUSE Labs

Subject: Re: [PATCH v3 04/13] kmem accounting basic infrastructure
Posted by Tejun Heo on Sat, 06 Oct 2012 02:19:24 GMT
View Forum Message <> Reply to Message

Hello, Glauber.

On Thu, Oct 04, 2012 at 03:55:14PM +0400, Glauber Costa wrote:
> I don't want to bloat unrelated kmem_cache structures, so I can't embed
> a memcg array in there: I would have to have a pointer to a memcg array
> that gets assigned at first use. But if we don't want to have a static
> number, as you and christoph already frowned upon heavily, we may have
> to do that memcg side as well.
>
> The array gets bigger, though, because it pretty much has to be enough
> to accomodate all css_ids. Even now, they are more than the 400 I used
> in this patchset. Not allocating all of them at once will lead to more
> complication and pointer chasing in here.

I don't think it would require more pointer chasing. At the simplest,
we can just compare the array size each time. If you wanna be more
efficient, all arrays can be kept at the same size and resized when
the number of memcgs cross the current number. The only runtime
overhead would be one pointer deref which I don't think can be avoided
regardless of the indexing direction.

Thanks.

--
tejun

Page 84 of 84 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=935
https://new-forum.openvz.org/index.php?t=rview&th=11134&goto=48216#msg_48216
https://new-forum.openvz.org/index.php?t=post&reply_to=48216
https://new-forum.openvz.org/index.php

