Subject: [PATCH 00/11] kmem controller for memcg: stripped down version
Posted by Glauber Costa on Mon, 25 Jun 2012 14:15:17 GMT

View Forum Message <> Reply to Message

Hi,

What | am proposing with this series is a stripped down version of the
kmem controller for memcg that would allow us to merge significant parts
of the infrastructure, while leaving out, for now, the polemic bits about
the slab while it is being reworked by Cristoph.

Me reasoning for that is that after the last change to introduce a gfp

flag to mark kernel allocations, it became clear to me that tracking other
resources like the stack would then follow extremely naturaly. | figured

that at some point we'd have to solve the issue pointed by David, and avoid
testing the Slab flag in the page allocator, since it would soon be made
more generic. | do that by having the callers to explicit mark it.

So to demonstrate how it would work, | am introducing a stack tracker here,
that is already a functionality per-se: it successfully stops fork bombs to
happen. (Sorry for doing all your work, Frederic =p). Note that after all
memcg infrastructure is deployed, it becomes very easy to track anything.
The last patch of this series is extremely simple.

The infrastructure is exactly the same we had in memcg, but stripped down
of the slab parts. And because what we have after those patches is a feature
per-se, | think it could be considered for merging.

Let me know what you think.

Glauber Costa (9):
memcg: change defines to an enum
kmem slab accounting basic infrastructure
Add a __ GFP_KMEMCG flag
memcg: kmem controller infrastructure
mm: Allocate kernel pages to the right memcg
memcg: disable kmem code when not in use.
memcg: propagate kmem limiting information to children
memcg: allow a memcg with kmem charges to be destructed.
protect architectures where THREAD_SIZE >= PAGE_SIZE against fork
bombs

Suleiman Souhlal (2):
memcg: Make it possible to use the stock for more than one page.
memcg: Reclaim when more than one page needed.

include/linux/gfp.h | 11 +-
include/linux/memcontrol.h | 46 +++++

Page 1 of 124 ---- Cenerated from QpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46916#msg_46916
https://new-forum.openvz.org/index.php?t=post&reply_to=46916
https://new-forum.openvz.org/index.php

include/linux/thread_info.h | 6 +

kernel/fork.c | 4+
mm/memcontrol.c | 395 ++++++++++++++++++++ bbb -
mm/page_alloc.c | 27 +++

6 files changed, 464 insertions(+), 25 deletions(-)

1.7.10.2

Subject: [PATCH 01/11] memcg: Make it possible to use the stock for more than
one page.
Posted by Glauber Costa on Mon, 25 Jun 2012 14:15:18 GMT

View Forum Message <> Reply to Message

From: Suleiman Souhlal <ssouhlal@FreeBSD.org>

Signed-off-by: Suleiman Souhlal <suleiman@google.com>
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
mm/memcontrol.c | 21 ++++++++++++---------

1 file changed, 12 insertions(+), 9 deletions(-)

diff --git a/mm/memcontrol.c b/mm/memcontrol.c

index f72b5e5..9304db2 100644

--- a/mm/memcontrol.c

+++ b/mm/memcontrol.c

@@ -1967,19 +1967,22 @@ static DEFINE_PER_CPU(struct memcg_stock_pcp,
memcg_stock);

static DEFINE_MUTEX(percpu_charge _mutex);

/*
- * Try to consume stocked charge on this cpu. If success, one page is consumed
- * from local stock and true is returned. If the stock is O or charges from a
- * cgroup which is not current target, returns false. This stock will be
- * refilled.
+ * Try to consume stocked charge on this cpu. If success, nr_pages pages are
+ * consumed from local stock and true is returned. If the stock is O or
+ * charges from a cgroup which is not current target, returns false.
+ * This stock will be refilled.
*/
-static bool consume_stock(struct mem_cgroup *memcg)
+static bool consume_stock(struct mem_cgroup *memcg, int nr_pages)
{
struct memcg_stock pcp *stock;
bool ret = true;

Page 2 of 124 ---- Cenerated from QpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46919#msg_46919
https://new-forum.openvz.org/index.php?t=post&reply_to=46919
https://new-forum.openvz.org/index.php

+if (nr_pages > CHARGE_BATCH)
+ return false;
+
stock = &get_cpu_var(memcg_stock);
- if (memcg == stock->cached && stock->nr_pages)
- stock->nr_pages--;
+ if (memcg == stock->cached && stock->nr_pages >= nr_pages)
+ stock->nr_pages -= nr_pages;
else /* need to call res_counter_charge */
ret = false;
put_cpu_var(memcg_stock);
@@ -2278,7 +2281,7 @@ again:
VM_BUG_ON(css_is_removed(&memcg->css));
if (mem_cgroup_is_root(memcg))
goto done;
- if (nr_pages == 1 && consume_stock(memcg))
+ if (consume_stock(memcg, nr_pages))
goto done;
css_get(&memcg->css);
} else {
@@ -2303,7 +2306,7 @@ again:
rcu_read_unlock();
goto done;
}
- if (nr_pages == 1 && consume_stock(memcg)) {
+ if (consume_stock(memcg, nr_pages)) {
/*
* |t seems dagerous to access memcg without css_get().
* But considering how consume_stok works, it's not

1.7.10.2

Subject: [PATCH 02/11] memcg: Reclaim when more than one page needed.
Posted by Glauber Costa on Mon, 25 Jun 2012 14:15:19 GMT

View Forum Message <> Reply to Message

From: Suleiman Souhlal <ssouhlal@FreeBSD.org>

mem_cgroup_do_charge() was written before slab accounting, and expects
three cases: being called for 1 page, being called for a stock of 32 pages,

or being called for a hugepage. If we call for 2 or 3 pages (and several

slabs used in process creation are such, at least with the debug options |
had), it assumed it's being called for stock and just retried without reclaiming.

Fix that by passing down a minsize argument in addition to the csize.

And what to do about that (csize == PAGE_SIZE && ret) retry? If it's

Page 3 of 124 ---- Cenerated from QpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46917#msg_46917
https://new-forum.openvz.org/index.php?t=post&reply_to=46917
https://new-forum.openvz.org/index.php

needed at all (and presumably is since it's there, perhaps to handle

races), then it should be extended to more than PAGE_SIZE, yet how far?
And should there be a retry count limit, of what? For now retry up to
COSTLY_ORDER (as page_alloc.c does), stay safe with a cond_resched(),
and make sure notto do itif __ GFP_NORETRY.

[v4: fixed nr pages calculation pointed out by Christoph Lameter |

Signed-off-by: Suleiman Souhlal <suleiman@google.com>
Signed-off-by: Glauber Costa <glommer@parallels.com>
Reviewed-by: Kamezawa Hiroyuki <kamezawa.hiroyu@ip.fujitsu.com>
mm/memcontrol.c | 23 +++++++++++++++t-------

1 file changed, 16 insertions(+), 7 deletions(-)

diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index 9304db2..8e601e8 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -2158,8 +2158,16 @@ enum {
CHARGE_OOM_DIE, /*the current is killed because of OOM */

8

+/*
+ * We need a number that is small enough to be likely to have been
+ * reclaimed even under pressure, but not too big to trigger unnecessary
+ * retries
+ */
+#define NR_PAGES_TO_RETRY 2
+
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
- unsigned int nr_pages, bool oom_check)
+ unsigned int nr_pages, unsigned int min_pages,
+ bool oom_check)
{
unsigned long csize = nr_pages * PAGE_SIZE;
struct mem_cgroup *mem_over_limit;
@@ -2182,18 +2190,18 @@ static int mem_cgroup_do_charge(struct mem_cgroup *memcg,
ofp_t gfp_mask,
} else
mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
/*
- *nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
- * of regular pages (CHARGE_BATCH), or a single regular page (1).
*
* Never reclaim on behalf of optional batching, retry with a
* single page instead.
*/

Page 4 of 124 ---- Cenerated from QpenVZ Forum

https://new-forum.openvz.org/index.php

- if (nr_pages == CHARGE_BATCH)
+if (nr_pages > min_pages)
return CHARGE_RETRY;

if (!(gfp_mask & _ GFP_WAIT))
return CHARGE_WOULDBLOCK;

+if (gfp_mask & _ GFP_NORETRY)
+ return CHARGE_NOMEM;
+
ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
return CHARGE_RETRY;
@@ -2206,7 +2214,7 @@ static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t
gfp_mask,
* unlikely to succeed so close to the limit, and we fall back
* to regular pages anyway in case of failure.
*/
- if (nr_pages == 1 && ret)
+if (nr_pages <= NR_PAGES_TO_RETRY && ret)
return CHARGE_RETRY;

/*
@@ -2341,7 +2349,8 @@ again:
nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
}

- ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
+ ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
+ oom_check);

switch (ret) {

case CHARGE_OK:

break;

1.7.10.2

Subject: [PATCH 03/11] memcg: change defines to an enum
Posted by Glauber Costa on Mon, 25 Jun 2012 14:15:20 GMT

View Forum Message <> Reply to Message

This is just a cleanup patch for clarity of expression.
In earlier submissions, people asked it to be in a separate
patch, so here it is.

Signed-off-by: Glauber Costa <glommer@parallels.com>
CC: Michal Hocko <mhocko@suse.cz>
CC: Johannes Weiner <hannes@cmpxchg.org>

Page 5 of 124 ---- Cenerated from QpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46918#msg_46918
https://new-forum.openvz.org/index.php?t=post&reply_to=46918
https://new-forum.openvz.org/index.php

Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
mm/memcontrol.c | 9 ++++++---
1 file changed, 6 insertions(+), 3 deletions(-)

diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index 8e601e8..9352d40 100644

--- a/mm/memcontrol.c

+++ b/mm/memcontrol.c

@@ -387,9 +387,12 @@ enum charge_type {
3

[* for encoding cft->private value on file */

-#define _MEM (0)

-#define _MEMSWAP (1)

-#define _OOM_TYPE (2)

+enum res_type {

+ _MEM,

+ _MEMSWAP,

+_OOM_TYPE,

+};

+

#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
#define MEMFILE_TYPE(val) ((val) >> 16 & Oxffff)
#define MEMFILE_ATTR(val) ((val) & Oxffff)

1.7.10.2

Subject: [PATCH 04/11] kmem slab accounting basic infrastructure
Posted by Glauber Costa on Mon, 25 Jun 2012 14:15:21 GMT

View Forum Message <> Reply to Message

This patch adds the basic infrastructure for the accounting of the slab
caches. To control that, the following files are created:

* memory.kmem.usage_in_bytes

* memory.kmem.limit_in_bytes

* memory.kmem.failcnt

* memory.kmem.max_usage_in_bytes

They have the same meaning of their user memory counterparts. They reflect
the state of the "kmem" res_counter.

The code is not enabled until a limit is set. This can be tested by the flag
"kmem_accounted". This means that after the patch is applied, no behavioral
changes exists for whoever is still using memcg to control their memory usage.

Page 6 of 124 ---- Cenerated from QpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46921#msg_46921
https://new-forum.openvz.org/index.php?t=post&reply_to=46921
https://new-forum.openvz.org/index.php

We always account to both user and kernel resource_counters. This effectively
means that an independent kernel limit is in place when the limit is set

to a lower value than the user memory. A equal or higher value means that the
user limit will always hit first, meaning that kmem is effectively unlimited.

People who want to track kernel memory but not limit it, can set this limit
to a very high number (like RESOURCE_MAX - 1page - that no one will ever hit,
or equal to the user memory)

Signed-off-by: Glauber Costa <glommer@parallels.com>

CC: Michal Hocko <mhocko@suse.cz>

CC: Johannes Weiner <hannes@cmpxchg.org>

Reviewed-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>

mm/memcontrol.c | 78 +++++++++++++++++++++++H+H -
1 file changed, 77 insertions(+), 1 deletion(-)

diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index 9352d40..6f34b77 100644

--- a/mm/memcontrol.c

+++ b/mm/memcontrol.c

@@ -265,6 +265,10 @@ struct mem_cgroup {

5

/*
+ * the counter to account for kernel memory usage.
+ */
+ struct res_counter kmem;
+ [*
* Per cgroup active and inactive list, similar to the
* per zone LRU lists.
*/
@@ -279,6 +283,7 @@ struct mem_cgroup {
* Should the accounting and control be hierarchical, per subtree?
*/
bool use_hierarchy;
+ bool kmem_accounted;

bool oom_lock;

atomic_t under_oom,;

@@ -391,6 +396,7 @@ enum res_type {
_MEM,

_MEMSWAP,

_OOM_TYPE,
+ KMEM,

|8

#define MEMFILE_PRIVATE(X, val) ((x) << 16 | (val))

Page 7 of 124 ---- Cenerated from QpenVZ Forum

https://new-forum.openvz.org/index.php

@@ -1438,6 +1444,10 @@ done:
res_counter_read u64(&memcg->memsw, RES USAGE) >> 10,
res_counter_read u64(&memcg->memsw, RES_LIMIT) >> 10,
res_counter_read_u64(&memcg->memsw, RES_FAILCNT));

+ printk(KERN_INFO "kmem: usage %llukB, limit %llukB, failcnt %llu\n",

+ res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,

+ res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,

+ res_counter_read_u64(&memcg->kmem, RES_FAILCNT));

}

/*
@@ -3879,6 +3889,11 @@ static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype
*cft,
else
val = res_counter_read_u64(&memcg->memsw, name);
break;
+#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
+ case _KMEM:
+ val = res_counter_read_u64(&memcg->kmem, name);
+ break;
+#endif
default:
BUG();
}
@@ -3916,8 +3931,26 @@ static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
break;
if (type == _MEM)
ret = mem_cgroup_resize_limit(memcg, val);
- else
+ else if (type == _MEMSWAP)
ret = mem_cgroup_resize_memsw_limit(memcg, val);
+#ifdef CONFIG_CGROUP_MEM_RES CTLR_KMEM
+ else if (type == _KMEM) {
+ ret =res_counter_set_limit(&memcg->kmem, val);
+ if (ret)
+ break;
+ [*
+ *Once enabled, can't be disabled. We could in theory
+ *disable it if we haven't yet created any caches, or
+ *if we can shrink them all to death.
+ *
+ *But it is not worth the trouble
+ %
+ if (Imemcg->kmem_accounted && val '= RESOURCE_MAX)
+ memcg->kmem_accounted = true;
+}
+#endif
+ else

Page 8 of 124 ---- Cenerated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+ return -EINVAL;
break;
case RES_SOFT_LIMIT:
ret = res_counter_memparse_write_strategy(buffer, &val);
@@ -3982,12 +4015,20 @@ static int mem_cgroup_reset(struct cgroup *cont, unsigned int
event)
case RES_MAX_USAGE:
if (type == _MEM)
res_counter_reset_max(&memcg->res);
+#ifdef CONFIG_CGROUP_MEM_RES _CTLR_KMEM
+ else if (type == _KMEM)
+ res_counter_reset_max(&memcg->kmem);
+#endif
else
res_counter_reset_max(&memcg->memsw);
break;
case RES_FAILCNT:
if (type == _MEM)
res_counter_reset_failcnt(&memcg->res);
+#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
+ else if (type == _KMEM)
+ res_counter_reset_failcnt(&memcg->kmem);
+#endif
else
res_counter_reset_failcnt(&memcg->memsw);
break;
@@ -4549,6 +4590,33 @@ static int mem_cgroup_oom_control_write(struct cgroup *cgrp,

}

#ifdef CONFIG_CGROUP_MEM_RES CTLR_KMEM
+static struct cftype kmem_cgroup_files[] = {

+{

+ .name = "kmem.limit_in_bytes",

+ .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),

+ .write_string = mem_cgroup_write,

+ .read = mem_cgroup_read,

+1}

+{

+ .name = "kmem.usage_in_bytes",

+ .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
+ .read = mem_cgroup_read,

+1},

+{

+ .name = "kmem.failcnt",

+ .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
+ .trigger = mem_cgroup_reset,

+ .read = mem_cgroup_read,

+}

Page 9 of 124 ---- Cenerated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+{

+ .name = "kmem.max_usage_in_bhytes",

+ .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),

+ .trigger = mem_cgroup_reset,

+ .read = mem_cgroup_read,

+1},

+{,

+};

+

static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)

{
return mem_cgroup_sockets_init(memcg, sS);

@@ -4892,6 +4960,12 @@ mem_cgroup_create(struct cgroup *cont)
int cpu;
enable_swap_cgroup();
parent = NULL,;

+

+#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM

+ WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys,

+ kmem_cgroup_files));

+#endif

+
if (mem_cgroup_soft_limit_tree_init())

goto free_out;
root_mem_cgroup = memcg;

@@ -4910,6 +4984,7 @@ mem_cgroup_create(struct cgroup *cont)
if (parent && parent->use_hierarchy) {
res_counter_init(&memcg->res, &parent->res);
res_counter_init(&memcg->memsw, &parent->memsw);

+ res_counter_init(&memcg->kmem, &parent->kmem);

/*
* We increment refcnt of the parent to ensure that we can
* safely access it on res_counter_charge/uncharge.

@@ -4920,6 +4995,7 @@ mem_cgroup_create(struct cgroup *cont)
} else {
res_counter_init(&memcg->res, NULL);
res_counter_init(&memcg->memsw, NULL);

+ res_counter_init(&memcg->kmem, NULL);

}
memcg->last_scanned_node = MAX_NUMNODES;
INIT_LIST_HEAD(&memcg->o00m_notify);

1.7.10.2

Subject: [PATCH 05/11] Add a __ GFP_KMEMCSG flag
Posted by Glauber Costa on Mon, 25 Jun 2012 14:15:22 GMT

Page 10 of 124 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php

View Forum Message <> Reply to Message

This flag is used to indicate to the callees that this allocation will be
serviced to the kernel. It is not supposed to be passed by the callers
of kmem_cache_alloc, but rather by the cache core itself.

CC: Christoph Lameter <cl@linux.com>

CC: Pekka Enberg <penberg@cs.helsinki.fi>

CC: Michal Hocko <mhocko@suse.cz>

CC: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
CC: Johannes Weiner <hannes@cmpxchg.org>

CC: Suleiman Souhlal <suleiman@google.com>

include/linux/gfp.h | 8 +++++++-
1 file changed, 7 insertions(+), 1 deletion(-)

diff --git a/include/linux/gfp.h b/include/linux/gfp.h
index 1e49be4..8f4079f 100644

--- a/include/linux/gfp.h

+++ b/include/linux/gfp.h

@@ -37,6 +37,9 @@ struct vm_area_struct;
#define _ GFP_NO_KSWAPD 0x400000u
#define _ GFP_OTHER_NODE 0x800000u
#define _ GFP_WRITE 0x1000000u

+#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
+#define __ GFP_KMEMCG 0x2000000u
+#endif

/*
* GFP bitmasks..
@@ -88,13 +91,16 @@ struct vm_area_struct;
#define _ GFP_OTHER_NODE ((__force gfp_t) GFP_OTHER_NODE) /* On behalf of other
node */
#define _ GFP_WRITE ((__force gfp_t) GFP_WRITE) /* Allocator intends to dirty page */

+#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
+#define _ GFP_KMEMCG ((__force gfp_t) GFP_KMEMCG)/* Allocation comes from a
memcg-accounted resource */
+#endif
/*
* This may seem redundant, but it's a way of annotating false positives vs.
* allocations that simply cannot be supported (e.g. page tables).
*/
#define __ GFP_NOTRACK_FALSE_POSITIVE (__GFP_NOTRACK)

-#define __ GFP_BITS_SHIFT 25 /* Room for N_GFP_FOO bits */
+#define__ GFP_BITS_SHIFT 26 /* Room for N_ GFP_FOO bits */
#define __GFP_BITS_MASK ((__force gfp_t)((1 << _ GFP_BITS_SHIFT) - 1))

Page 11 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46920#msg_46920
https://new-forum.openvz.org/index.php?t=post&reply_to=46920
https://new-forum.openvz.org/index.php

[* This equals 0, but use constants in case they ever change */

1.7.10.2

Subject: [PATCH 06/11] memcg: kmem controller infrastructure
Posted by Glauber Costa on Mon, 25 Jun 2012 14:15:23 GMT

View Forum Message <> Reply to Message

This patch introduces infrastructure for tracking kernel memory pages
to a given memcg. This will happen whenever the caller includes the
flag _GFP_KMEMCG flag, and the task belong to a memcg other than
the root.

In memcontrol.h those functions are wrapped in inline acessors.
The idea is to later on, patch those with jump labels, so we don't
incur any overhead when no mem cgroups are being used.

Signed-off-by: Glauber Costa <glommer@parallels.com>

CC: Christoph Lameter <cl@linux.com>

CC: Pekka Enberg <penberg@cs.helsinki.fi>

CC: Michal Hocko <mhocko@suse.cz>

CC: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>

CC: Johannes Weiner <hannes@cmpxchg.org>

include/linux/memcontrol.h | 44 ++++++++++++

mm/memcontrol.c | 172 ++++++++++++++++++++H++H+H AR

2 files changed, 216 insertions(+)

diff --git a/include/linux/memcontrol.h b/include/linux/memcontrol.h
index 83e7ba9..22479eb 100644

--- al/include/linux/memcontrol.h

+++ b/include/linux/memcontrol.h

@@ -21,6 +21,7 @@

#define _LINUX_MEMCONTROL_H

#include <linux/cgroup.h>

#include <linux/vm_event_item.h>

+#include <linux/hardirg.h>

struct mem_cgroup;

struct page_cgroup;

@@ -409,6 +410,12 @@ struct sock;

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM

void sock_update _memcg(struct sock *sk);

void sock_release_memcg(struct sock *sk);

+

+#define mem_cgroup_kmem_on 1

+bool __mem_cgroup_new_kmem_page(gfp_t gfp, void *handle, int order);

Page 12 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46925#msg_46925
https://new-forum.openvz.org/index.php?t=post&reply_to=46925
https://new-forum.openvz.org/index.php

+void __mem_cgroup_commit_kmem_page(struct page *page, void *handle, int order);
+void __mem_cgroup_free_kmem_page(struct page *page, int order);

+#define is_kmem_tracked_alloc (gfp & GFP_KMEMCG)

#else

static inline void sock_update_memcg(struct sock *sk)

{

@@ -416,6 +423,43 @@ static inline void sock update_memcg(struct sock *sk)

static inline void sock_release_memcg(struct sock *sk)

{
}

+

+#define mem_cgroup_kmem_on 0

+#define __mem_cgroup_new_kmem_page(a, b, c) false
+#define __mem_cgroup_free_kmem_page(a,b)

+#define __mem_cgroup_commit_kmem_page(a, b, c¢)
+#define is_kmem_tracked_alloc (false)

#endif /* CONFIG_CGROUP_MEM_RES _CTLR_KMEM */

+

+static __always_inline

+bool mem_cgroup_new_kmem_page(gfp_t gfp, void *handle, int order)
H

+ if (!Imem_cgroup_kmem_on)

+ return true;

+ if (lis_kmem_tracked_alloc)

+ return true;

+ if (lcurrent->mm)

+ return true;

+ if (in_interrupt())

+ return true;

+if (gfp & __ GFP_NOFAIL)

+ return true;

+return __mem_cgroup_new_kmem_page(gfp, handle, order);
+}

+

+static __always_inline

+void mem_cgroup_free_kmem_page(struct page *page, int order)
H

+ if (mem_cgroup_kmem_on)

+ __mem_cgroup_free_kmem_page(page, order);

+}

+

+static ___always_inline

+void mem_cgroup_commit_kmem_page(struct page *page, struct mem_cgroup *handle,
+ int order)

+

+ if (mem_cgroup_kmem_on)

+ ___mem_cgroup_commit_kmem_page(page, handle, order);

+}

Page 13 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

#endif /* _LINUX_MEMCONTROL_H */

diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index 6f34b77..27b2b6f 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -10,6 +10,10 @@
* Copyright (C) 2009 Nokia Corporation
* Author: Kirill A. Shutemov
*
+ * Kernel Memory Controller
+ * Copyright (C) 2012 Parallels Inc. and Google Inc.
+ * Authors: Glauber Costa and Suleiman Souhlal
+ *
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
@@ -422,6 +426,9 @@ static void mem_cgroup_put(struct mem_cgroup *memcg);
#include <net/ip.h>

static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
+static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, s64 delta);
+static void memcg_uncharge _kmem(struct mem_cgroup *memcg, s64 delta);
+
void sock_update_memcg(struct sock *sk)
{
if (mem_cgroup_sockets_enabled) {
@@ -476,6 +483,105 @@ struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
}
EXPORT_SYMBOL(tcp_proto_cgroup);
#endif /* CONFIG_INET */
+
+static inline bool mem_cgroup_kmem_enabled(struct mem_cgroup *memcg)
H
+ return !'mem_cgroup_disabled() && memcg &&
+ Imem_cgroup_is_root(memcg) && memcg->kmem_accounted,;
+}
+
+bool __mem_cgroup_new_kmem_page(gfp_t gfp, void *_handle, int order)
+
+ struct mem_cgroup *memcg;
+ struct mem__cgroup **handle = (struct mem_cgroup **) handle;
+ bool ret = true;
+ size_t size;
+ struct task_struct *p;
+
+ *handle = NULL,;
+ rcu_read_lock();

Page 14 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+ p = rcu_dereference(current->mm->owner);
+ memcg = mem_cgroup_from_task(p);

+if ('mem_cgroup_kmem_enabled(memcqg))
+ goto out;

+

+ mem_cgroup_get(memcg);

+

+ size = (1 << order) << PAGE_SHIFT;

+ ret = memcg_charge_kmem(memcg, gfp, size) == 0;
+if (Iret) {

+ mem_cgroup_put(memcg);

+ goto out;

+}

+

+ *handle = memcg;

+out:

+ rcu_read_unlock();

+ return ret;

+}

+EXPORT_SYMBOL(__mem_cgroup_new_kmem_page);

+

+void __mem_cgroup_commit_kmem_page(struct page *page, void *handle, int order)
gl

+ struct page_cgroup *pc;

+ struct mem_cgroup *memcg = handle;

+ size_t size;

+

+ if (!lmemcg)

+ return;

+

+ WARN_ON(mem_cgroup_is_root(memcg));
+ /* The page allocation must have failed. Revert */
+if (Ipage) {

+ size = (1 << order) << PAGE_SHIFT,;

+ memcg_uncharge_kmem(memcg, size);

+ mem_cgroup_put(memcg);

+ return;

+}

+

+ pc = lookup_page_cgroup(page);

+ lock_page_cgroup(pc);

+ pc->mem_cgroup = memcg;

+ SetPageCgroupUsed(pc);

+ unlock_page_cgroup(pc);

+}

+void __mem_cgroup_free_kmem_page(struct page *page, int order)
gl

+ struct mem_cgroup *memcg;

Page 15 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+ size_t size;

+ struct page_cgroup *pc;

+

+ if (mem_cgroup_disabled())

+ return;

+

+ pc = lookup_page_cgroup(page);
+ lock_page_cgroup(pc);

+ memcg = pc->mem_cgroup;

+ pc->mem_cgroup = NULL;

+ if ('PageCgroupUsed(pc)) {

+ unlock_page_cgroup(pc);

+ return;

+}

+ ClearPageCgroupUsed(pc);

+ unlock_page_cgroup(pc);

+

+ [*

+ * The classical disabled check won't work

+ *for uncharge, since it is possible that the user enabled
+ * kmem tracking, allocated, and then disabled.

+ *

+ * We trust if there is a memcg associated with the page,
+ *itis a valid allocation

+ */

+if ('memcg)

+ return;

+

+ WARN_ON(mem_cgroup_is_root(memcg));

+ size = (1 << order) << PAGE_SHIFT;

+ memcg_uncharge_kmem(memcg, size);

+ mem_cgroup_put(memcg);

+}
+EXPORT_SYMBOL(__mem_cgroup_free_kmem_page);
#endif /* CONFIG_CGROUP_MEM_RES _CTLR_KMEM */

#if defined(CONFIG_INET) && defined(CONFIG_CGROUP_MEM_RES_CTLR_KMEM)
@@ -5645,3 +5751,69 @@ static int __init enable_swap_account(char *s)
__setup("swapaccount=", enable_swap_account);

#endif

+

+#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM

+int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, s64 delta)
gl

+ struct res_counter *fail_res;

+ struct mem_cgroup *_memcg;

+int may_oom, ret;

Page 16 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+ bool nofail = false;

+

+ may_oom = (gfp & _ GFP_WAIT) && (gfp & __ GFP_FS) &&
+ I(gfp & __ GFP_NORETRY);

+

+ret=0;

+

+if ('memcg)
+ return ret;
+

+ _memcg = memcg;

+ret=__mem_cgroup_try charge(NULL, gfp, delta / PAGE_SIZE,

+ & _memcg, may_oom),

+

+if (ret == -EINTR) {

+ nofalil = true;

+ [*

* _mem_cgroup_try_charge() chose to bypass to root due

* to OOM Kill or fatal signal.

* Since our only options are to either fail the

* allocation or charge it to this cgroup, do it as

* a temporary condition. But we can't fail. From a kmem/slab

* perspective, the cache has already been selected, by

* mem_cgroup_get_kmem_cache(), so it is too late to change our

* minds

*/

res_counter_charge_nofail(&memcg->res, delta, &fail_res);

if (do_swap_account)

res_counter_charge_nofail(&memcg->memsw, delta,
&fail_res);

+ ret=0;

+} else if (ret == -ENOMEM)

+ return ret;

+

+ if (nofail)

+ res_counter_charge_nofail(&memcg->kmem, delta, &fail_res);

+ else

+ ret = res_counter_charge(&memcg->kmem, delta, &fail_res);

+

+if (ret) {

+ res_counter_uncharge(&memcg->res, delta);

+ if (do_swap_account)

+ res_counter_uncharge(&memcg->memsw, delta);

+}
+

+ 4+ +++ A+ ++

+ return ret;

+}

+

Page 17 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+void memcg_uncharge_kmem(struct mem_cgroup *memcg, s64 delta)
H

+ if ('memcg)

+ return;

+

+ res_counter_uncharge(&memcg->kmem, delta);

+ res_counter_uncharge(&memcg->res, delta);

+ if (do_swap_account)

+ res_counter_uncharge(&memcg->memsw, delta);

+}

+#endif /* CONFIG_CGROUP_MEM_RES CTLR_KMEM */

1.7.10.2

Subject: [PATCH 07/11] mm: Allocate kernel pages to the right memcg
Posted by Glauber Costa on Mon, 25 Jun 2012 14:15:24 GMT

View Forum Message <> Reply to Message

When a process tries to allocate a page with the _ GFP_KMEMCG flag,
the page allocator will call the corresponding memcg functions to
validate the allocation. Tasks in the root memcg can always proceed.

To avoid adding markers to the page - and a kmem flag that would
necessarily follow, as much as doing page_cgroup lookups for no
reason, whoever is marking its allocations with __ GFP_KMEMCG flag
is responsible for telling the page allocator that this is such an
allocation at free_pages() time. This is done by the invocation of
__free_accounted_pages() and free_accounted_pages().

Signed-off-by: Glauber Costa <glommer@parallels.com>
CC: Christoph Lameter <cl@linux.com>

CC: Pekka Enberg <penberg@cs.helsinki.fi>

CC: Michal Hocko <mhocko@suse.cz>

CC: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
CC: Johannes Weiner <hannes@cmpxchg.org>

CC: Suleiman Souhlal <suleiman@google.com>

include/linux/gfp.h | 3 +++
mm/page_alloc.c | 27 ++++++++++++ttttrtttbt b+
2 files changed, 30 insertions(+)

diff --git a/include/linux/gfp.h b/include/linux/gfp.h

index 8f4079f..4e27cd8 100644

--- al/include/linux/gfp.h

+++ b/include/linux/gfp.h

@@ -368,6 +368,9 @@ extern void free_pages(unsigned long addr, unsigned int order);
extern void free_hot_cold_page(struct page *page, int cold);

Page 18 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46923#msg_46923
https://new-forum.openvz.org/index.php?t=post&reply_to=46923
https://new-forum.openvz.org/index.php

extern void free_hot_cold_page_list(struct list_head *list, int cold);

+extern void __ free_accounted_pages(struct page *page, unsigned int order);
+extern void free_accounted_pages(unsigned long addr, unsigned int order);
+

#define _ free_page(page) _ free pages((page), 0)

#define free_page(addr) free_pages((addr), 0)

diff --git a/mm/page_alloc.c b/mm/page_alloc.c

index 4403009..cb8867e 100644

--- a/mm/page_alloc.c

+++ b/mm/page_alloc.c

@@ -2479,6 +2479,7 @@ __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
struct page *page = NULL;
int migratetype = allocflags_to_migratetype(gfp_mask);
unsigned int cpuset_mems_cookie;

+ void *handle = NULL;

gfp_mask &= gfp_allowed_mask;

@@ -2490,6 +2491,13 @@ __ alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
return NULL;

/*
+ * Will only have any effect when _ GFP_KMEMCG is set.
+ * This is verified in the (always inline) callee
+ */
+if ('mem_cgroup_new_kmem_page(gfp_mask, &handle, order))
+ return NULL;
+
+ [*
* Check the zones suitable for the gfp_mask contain at least one
* valid zone. It's possible to have an empty zonelist as a result
* of GFP_THISNODE and a memoryless node
@@ -2528,6 +2536,8 @@ out:
if (unlikely(put_mems_allowed(cpuset_mems_cookie) && !'page))
goto retry_cpuset;

+ mem_cgroup_commit_kmem_page(page, handle, order);
+
return page;
}
EXPORT_SYMBOL(__alloc_pages_nodemask);
@@ -2580,6 +2590,23 @@ void free_pages(unsigned long addr, unsigned int order)

EXPORT_SYMBOL(free_pages);

+void __free_accounted_pages(struct page *page, unsigned int order)

Page 19 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

H
+ mem_cgroup_free_kmem_page(page, order);
+ _free_pages(page, order);

+}

+EXPORT_SYMBOL(__free_accounted_pages);

+

+void free_accounted_pages(unsigned long addr, unsigned int order)
+

+if (addr = 0) {

+ VM_BUG_ON(!virt_addr_valid((void *)addr));

+ mem_cgroup_free_kmem_page(virt_to_page((void *)addr), order);

+ _ free_pages(virt_to_page((void *)addr), order);

+}

+}

+EXPORT_SYMBOL(free_accounted_pages);

+

static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)

{
if (addr) {

1.7.10.2

Subject: [PATCH 08/11] memcg: disable kmem code when not in use.
Posted by Glauber Costa on Mon, 25 Jun 2012 14:15:25 GMT

View Forum Message <> Reply to Message

We can use jump labels to patch the code in or out
when not used.

Because the assignment: memcg->kmem_accounted = true
is done after the jump labels increment, we guarantee

that the root memcg will always be selected until

all call sites are patched (see mem_cgroup_kmem_enabled).
This guarantees that no mischarges are applied.

Jump label decrement happens when the last reference
count from the memcg dies. This will only happen when
the caches are all dead.

Signed-off-by: Glauber Costa <glommer@parallels.com>
CC: Christoph Lameter <cl@linux.com>

CC: Pekka Enberg <penberg@cs.helsinki.fi>

CC: Michal Hocko <mhocko@suse.cz>

CC: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
CC: Johannes Weiner <hannes@cmpxchg.org>

CC: Suleiman Souhlal <suleiman@google.com>

Page 20 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46927#msg_46927
https://new-forum.openvz.org/index.php?t=post&reply_to=46927
https://new-forum.openvz.org/index.php

include/linux/memcontrol.h | 4 +++-
mm/memcontrol.c | 28 ++++++++++++++H++Ht b

2 files changed, 29 insertions(+), 3 deletions(-)

diff --git a/include/linux/memcontrol.h b/include/linux/memcontrol.h
index 22479eb..4d69ff8 100644

--- a/include/linux/memcontrol.h

+++ b/include/linux/memcontrol.h

@@ -22,6 +22,7 @@

#include <linux/cgroup.h>

#include <linux/vm_event_item.h>

#include <linux/hardirg.h>

+#include <linux/jump_label.h>

struct mem_cgroup;

struct page_cgroup;

@@ -411,7 +412,8 @@ struct sock;

void sock_update _memcg(struct sock *sk);
void sock_release_memcg(struct sock *sk);

-#define mem_cgroup_kmem_on 1

+extern struct static_key mem_cgroup_kmem_enabled_key;

+#define mem_cgroup_kmem_on static_key false(&mem_cgroup_kmem_enabled_key)
bool __mem_cgroup_new_kmem_page(gfp_t gfp, void *handle, int order);

void __mem_cgroup_commit_kmem_page(struct page *page, void *handle, int order);
void __mem_cgroup_free_kmem_page(struct page *page, int order);

diff --git a/mm/memcontrol.c b/mm/memcontrol.c

index 27b2b6f..fe5388e 100644

--- a/mm/memcontrol.c

+++ b/mm/memcontrol.c

@@ -425,6 +425,10 @@ static void mem_cgroup_put(struct mem_cgroup *memcg);
#include <net/sock.h>

#include <net/ip.h>

+struct static_key mem_cgroup_kmem_enabled_key;

+/* so modules can inline the checks */

+EXPORT_SYMBOL(mem_cgroup_kmem_enabled_key);

+

static bool mem_cgroup_is_root(struct mem_cgroup *memcg);

static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, s64 delta);

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, s64 delta);

@@ -582,6 +586,16 @@ void __mem_cgroup_free_kmem_page(struct page *page, int order)
mem_cgroup_put(memcg);

}

EXPORT_SYMBOL(__mem_cgroup_free_kmem_page);

+

+static void disarm_kmem_keys(struct mem_cgroup *memcg)
+H

Page 21 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+ if (memcg->kmem_accounted)

+ static_key slow_dec(&mem_cgroup_kmem_enabled_key);
+}

+#else

+static void disarm_kmem_keys(struct mem_cgroup *memcg)
H

+}

#endif /* CONFIG_CGROUP_MEM_RES CTLR_KMEM */

#if defined(CONFIG_INET) && defined(CONFIG_CGROUP_MEM_RES CTLR_KMEM)
@@ -597,6 +611,12 @@ static void disarm_sock_keys(struct mem_cgroup *memcg)

}
#endif

+static void disarm_static_keys(struct mem_cgroup *memcg)

H

+ disarm_sock_keys(memcg);

+ disarm_kmem_keys(memcg);

+}

+

static void drain_all_stock async(struct mem_cgroup *memcg);

static struct mem_cgroup_per_zone *
@@ -4051,8 +4071,12 @@ static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
*

* But it is not worth the trouble
*/
- if (Imemcg->kmem_accounted && val '= RESOURCE_MAX)
+ mutex_lock(&set_limit_mutex);
+ if (lmemcg->kmem_accounted && val I= RESOURCE_MAX) {
+ static_key_slow_inc(&mem_cgroup_kmem_enabled_key);
memcg->kmem_accounted = true;
+ }
+ mutex_unlock(&set_limit_mutex);
}
#endif
else
@@ -4927,7 +4951,7 @@ static void free_work(struct work_struct *work)
* to move this code around, and make sure it is outside
* the cgroup_lock.
*/
- disarm_sock_keys(memcg);
+ disarm_static_keys(memcg);
if (size < PAGE_SIZE)
kfree(memcg);
else

1.7.10.2

https://new-forum.openvz.org/index.php

Subject: [PATCH 09/11] memcg: propagate kmem limiting information to children
Posted by Glauber Costa on Mon, 25 Jun 2012 14:15:26 GMT

View Forum Message <> Reply to Message

The current memcg slab cache management fails to present satisfatory hierarchical
behavior in the following scenario:

-> [cgroups/memory/A/B/C

* kmem limit set at A
* A and B empty taskwise
* pash in C does find /

Because kmem_accounted is a boolean that was not set for C, no accounting
would be done. This is, however, not what we expect.

The basic idea, is that when a cgroup is limited, we walk the tree

upwards (something Kame and | already thought about doing for other purposes),
and make sure that we store the information about the parent being limited in
kmem_accounted (that is turned into a bitmap: two booleans would not be space
efficient). The code for that is taken from sched/core.c. My reasons for not

putting it into a common place is to dodge the type issues that would arise

from a common implementation between memcg and the scheduler - but | think
that it should ultimately happen, so if you want me to do it now, let me

know.

We do the reverse operation when a formerly limited cgroup becomes unlimited.

Signed-off-by: Glauber Costa <glommer@parallels.com>
CC: Christoph Lameter <cl@linux.com>

CC: Pekka Enberg <penberg@cs.helsinki.fi>

CC: Michal Hocko <mhocko@suse.cz>

CC: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
CC: Johannes Weiner <hannes@cmpxchg.org>

CC: Suleiman Souhlal <suleiman@google.com>

mm/memcontrol.c | 86 +++++++++++++++++++ b+ttt bbb
1 file changed, 71 insertions(+), 15 deletions(-)

diff --git a/mm/memcontrol.c b/mm/memcontrol.c

index fe5388e..a6a440b 100644

--- a/mm/memcontrol.c

+++ b/mm/memcontrol.c

@@ -287,7 +287,11 @@ struct mem_cgroup {
* Should the accounting and control be hierarchical, per subtree?
*/
bool use_hierarchy;

- bool kmem_accounted;

+ [*

Page 23 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46926#msg_46926
https://new-forum.openvz.org/index.php?t=post&reply_to=46926
https://new-forum.openvz.org/index.php

+ * bit0: accounted by this cgroup

+ * bitl: accounted by a parent.

+ */

+ volatile unsigned long kmem_accounted;

bool oom_lock;

atomic_t under_oom,;
@@ -340,6 +344,9 @@ struct mem_cgroup {
#endif

|8

+#define KMEM_ACCOUNTED_THIS 0
+#define KMEM_ACCOUNTED PARENT 1
+
[* Stuffs for move charges at task migration. */
/*
* Types of charges to be moved. "move_charge_at_immitgrate” is treated as a
@@ -589,7 +596,7 @@ EXPORT_SYMBOL(__mem_cgroup_free_kmem_page);

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
- if (memcg->kmem_accounted)
+ if (test_bit(KMEM_ACCOUNTED_THIS, &memcg->kmem_accounted))
static_key slow_dec(&mem_cgroup_kmem_enabled_key);
}
#else
@@ -4027,6 +4034,66 @@ static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype
*cft,
len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
return simple_read_from_buffer(buf, nbytes, ppos, str, len);

}

+

+#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM

+static void mem_cgroup_update_kmem_limit(struct mem_cgroup *memcg, u64 val)
gl

+ struct mem_cgroup *iter;

+

+ mutex_lock(&set_limit_mutex);

+ if ('test_and_set_bit(KMEM_ACCOUNTED_THIS, &memcg->kmem_accounted) &&
+ val = RESOURCE_MAX) {

+

/*

* Once enabled, can't be disabled. We could in theory

* disable it if we haven't yet created any caches, or

* if we can shrink them all to death.

*

* But it is not worth the trouble

*/

+ + + + + + +

Page 24 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

static_key_slow_inc(&mem_cgroup_kmem_enabled_key);

if (!lmemcg->use_hierarchy)
goto out;

for_each_mem_cgroup_tree(iter, memcg) {
if (iter == memcg)
continue;
set_bit(KMEM_ACCOUNTED_PARENT, &iter->kmem_accounted);

}

} else if (test_and_clear_bit(KMEM_ACCOUNTED_THIS, &memcg->kmem_accounted)
&& val == RESOURCE_MAX) {

if (!lmemcg->use_hierarchy)
goto out;

struct mem_cgroup *parent;

if (iter == memcq)

continue;

/*

* We should only have our parent bit cleared if none of
* ouri parents are accounted. The transversal order of
* our iter function forces us to always look at the

* parents.

*/

parent = parent_mem_cgroup(iter);

while (parent && (parent '= memcg)) {

if (test_bit(KMEM_ACCOUNTED_THIS, &parent->kmem_accounted))
goto noclear;

parent = parent_mem_cgroup(parent);
}
clear_bit(KMEM_ACCOUNTED_PARENT, &iter->kmem_accounted);
+noclear:
+ continue;
+}
+}
+out:
+ mutex_unlock(&set_limit_mutex);
+}
+#endif
/*
* The user of this function is...
*RES_LIMIT.
@@ -4064,19 +4131,8 @@ static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
ret = res_counter_set_limit(&memcg->kmem, val);

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ for_each_mem_cgroup_tree(iter, memcg) {
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

Page 25 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

if (ret)

break;
-
- *Once enabled, can't be disabled. We could in theory
- *disable it if we haven't yet created any caches, or
- *if we can shrink them all to death.

*

- *Butitis not worth the trouble
.
- mutex_lock(&set_limit_mutex);
- if (Imemcg->kmem_accounted && val != RESOURCE_MAX) {
- static_key_slow_inc(&mem_cgroup_kmem_enabled_key);
- memcg->kmem_accounted = true;
-}
- mutex_unlock(&set_limit_mutex);
+ mem_cgroup_update_kmem_limit(memcg, val);
+ break;

}
#endif

else

1.7.10.2

Subject: [PATCH 10/11] memcg: allow a memcg with kmem charges to be
destructed.
Posted by Glauber Costa on Mon, 25 Jun 2012 14:15:27 GMT

View Forum Message <> Reply to Message

Because the ultimate goal of the kmem tracking in memcg is to
track slab pages as well, we can't guarantee that we'll always
be able to point a page to a particular process, and migrate
the charges along with it - since in the common case, a page
will contain data belonging to multiple processes.

Because of that, when we destroy a memcg, we only make sure
the destruction will succeed by discounting the kmem charges
from the user charges when we try to empty the cgroup.

Signed-off-by: Glauber Costa <glommer@parallels.com>
CC: Christoph Lameter <cl@linux.com>

CC: Pekka Enberg <penberg@cs.helsinki.fi>

CC: Michal Hocko <mhocko@suse.cz>

CC: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
CC: Johannes Weiner <hannes@cmpxchg.org>

CC: Suleiman Souhlal <suleiman@google.com>

mm/memcontrol.c | 10 +++++++++-

Page 26 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46922#msg_46922
https://new-forum.openvz.org/index.php?t=post&reply_to=46922
https://new-forum.openvz.org/index.php

1 file changed, 9 insertions(+), 1 deletion(-)

diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index a6a440b..bb9b6fe 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -598,6 +598,11 @@ static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
if (test_bit(KMEM_ACCOUNTED_THIS, &memcg->kmem_accounted))
static_key_slow_dec(&mem_cgroup_kmem_enabled_key);
+ [*
+ * This check can't live in kmem destruction function,
+ * since the charges will outlive the cgroup
+ */
+ BUG_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
@@ -3838,6 +3843,7 @@ static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool
free_all)
int node, zid, shrink;
int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
struct cgroup *cgrp = memcg->css.cgroup;
+ u64 usage;

css_get(&memcg->css);

@@ -3877,8 +3883,10 @@ move_account:

if (ret == -ENOMEM)

goto try_to_free;

cond_resched();
+ usage =res_counter_read_u64(&memcg->res, RES_USAGE) -
+ res_counter_read_u64(&memcg->kmem, RES_USAGE);

/* "ret" should also be checked to ensure all lists are empty. */
- } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
+ } while (usage > 0 || ret);

out:

CSS_put(&memcg->css);

return ret;

1.7.10.2

Subject: [PATCH 11/11] protect architectures where THREAD_SIZE >=
PAGE_SIZE against fork bombs
Posted by Glauber Costa on Mon, 25 Jun 2012 14:15:28 GMT

View Forum Message <> Reply to Message

Page 27 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46924#msg_46924
https://new-forum.openvz.org/index.php?t=post&reply_to=46924
https://new-forum.openvz.org/index.php

Because those architectures will draw their stacks directly from
the page allocator, rather than the slab cache, we can directly
pass __GFP_KMEMCG flag, and issue the corresponding free_pages.

This code path is taken when the architecture doesn't define
CONFIG_ARCH_THREAD_INFO_ALLOCATOR (only ia64 seems to), and has
THREAD_SIZE >= PAGE_SIZE. Luckily, most - if not all - of the

remaining architectures fall in this category.

This will guarantee that every stack page is accounted to the memcg
the process currently lives on, and will have the allocations to fail
if they go over limit.

For the time being, | am defining a new variant of THREADINFO_GFP, not
to mess with the other path. Once the slab is also tracked by memcg,
we can get rid of that flag.

Tested to successfully protect against :(){ :|:& };:

Signed-off-by: Glauber Costa <glommer@parallels.com>
CC: Christoph Lameter <cl@linux.com>

CC: Pekka Enberg <penberg@cs.helsinki.fi>

CC: Michal Hocko <mhocko@suse.cz>

CC: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
CC: Johannes Weiner <hannes@cmpxchg.org>

CC: Suleiman Souhlal <suleiman@google.com>

CC: Frederic Weisbecker <fweisbec@redhat.com>
include/linux/thread_info.h | 6 ++++++

kernel/fork.c | 4 ++--

2 files changed, 8 insertions(+), 2 deletions(-)

diff --git a/include/linux/thread_info.h b/include/linux/thread_info.h

index ccc1899..914ec07 100644

--- al/include/linux/thread_info.h

+++ b/include/linux/thread_info.h

@@ -61,6 +61,12 @@ extern long do_no_restart_syscall(struct restart_block *parm);
define THREADINFO_GFP (GFP_KERNEL | _ GFP_NOTRACK)

#endif

+#ifdef CONFIG_CGROUP_MEM_RES CTLR_KMEM
+# define THREADINFO_GFP_ACCOUNTED (THREADINFO_GFP | _ GFP_KMEMCG)
+#else
+# define THREADINFO_GFP_ACCOUNTED (THREADINFO_GFP)
+#endif
+
/~k
* flag set/clear/test wrappers

Page 28 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

* - pass TIF_xxxx constants to these functions
diff --git a/kernel/fork.c b/kernel/fork.c
index ab5211b..06b414f 100644
--- a/kernel/fork.c
+++ b/kernel/fork.c
@@ -142,7 +142,7 @@ void __weak arch_release_thread_info(struct thread_info *ti) { }
static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,

int node)
{

- struct page *page = alloc_pages _node(node, THREADINFO_GFP,
+ struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
THREAD_SIZE_ORDER);

return page ? page_address(page) : NULL;
@@ -151,7 +151,7 @@ static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
static inline void free_thread_info(struct thread_info *ti)
{
arch_release_thread_info(ti);
- free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
+ free_accounted_pages((unsigned long)ti, THREAD_SIZE ORDER);
}
else
static struct kmem_cache *thread_info_cache;

1.7.10.2

Subject: Re: [PATCH 11/11] protect architectures where THREAD_SIZE >=
PAGE_SIZE against fork bombs
Posted by Frederic Weisbecker on Mon, 25 Jun 2012 16:55:35 GMT

View Forum Message <> Reply to Message

On 06/25/2012 04:15 PM, Glauber Costa wrote:

> Because those architectures will draw their stacks directly from

> the page allocator, rather than the slab cache, we can directly

> pass ___GFP_KMEMCSG flag, and issue the corresponding free_pages.
>

> This code path is taken when the architecture doesn't define

> CONFIG_ARCH_THREAD_INFO_ALLOCATOR (only ia64 seems to), and has
> THREAD_SIZE >= PAGE_SIZE. Luckily, most - if not all - of the

> remaining architectures fall in this category.

>

> This will guarantee that every stack page is accounted to the memcg
> the process currently lives on, and will have the allocations to fail

> if they go over limit.

>

> For the time being, | am defining a new variant of THREADINFO_GFP, not

Page 29 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=6199
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=47020#msg_47020
https://new-forum.openvz.org/index.php?t=post&reply_to=47020
https://new-forum.openvz.org/index.php

> to mess with the other path. Once the slab is also tracked by memcg,
> we can get rid of that flag.

>

> Tested to successfully protect against :(){ :|:& };:

>

> Signed-off-by: Glauber Costa <glommer@parallels.com>

> CC: Christoph Lameter <cl@linux.com>

> CC: Pekka Enberg <penberg@cs.helsinki.fi>

> CC: Michal Hocko <mhocko@suse.cz>

> CC: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
> CC: Johannes Weiner <hannes@cmpxchg.org>

> CC: Suleiman Souhlal <suleiman@google.com>

Acked-by: Frederic Weisbecker <fweisbec@redhat.com>

Thanks!

Subject: Re: [PATCH 01/11] memcg: Make it possible to use the stock for more
than one page.
Posted by Tejun Heo on Mon, 25 Jun 2012 17:44:37 GMT

View Forum Message <> Reply to Message

Hey, Glauber.
Just a couple nits.

On Mon, Jun 25, 2012 at 06:15:18PM +0400, Glauber Costa wrote:
> From: Suleiman Souhlal <ssouhlal@FreeBSD.org>

It would be nice to explain why this is being done. Just a simple
statement like - "prepare for XXX" or "will be needed by XXX".

> [*

> - * Try to consume stocked charge on this cpu. If success, one page is consumed
> - * from local stock and true is returned. If the stock is O or charges from a

> - * cgroup which is not current target, returns false. This stock will be

> - * refilled.

> + * Try to consume stocked charge on this cpu. If success, nr_pages pages are

> + * consumed from local stock and true is returned. If the stock is O or

> + * charges from a cgroup which is not current target, returns false.

> + * This stock will be refilled.

| hope this were converted to proper /** function comment with
arguments and return value description.

Page 30 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=935
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46928#msg_46928
https://new-forum.openvz.org/index.php?t=post&reply_to=46928
https://new-forum.openvz.org/index.php

Thanks.

tejun

Subject: Re: [PATCH 06/11] memcg: kmem controller infrastructure
Posted by Tejun Heo on Mon, 25 Jun 2012 18:06:19 GMT

View Forum Message <> Reply to Message

Again, nits.

On Mon, Jun 25, 2012 at 06:15:23PM +0400, Glauber Costa wrote:

> +#define mem_cgroup_kmem_on 1

> +bool __mem_cgroup_new_kmem_page(gfp_t gfp, void *handle, int order);

> +void __mem_cgroup_commit_kmem_page(struct page *page, void *handle, int order);
> +void __mem_cgroup_free_kmem_page(struct page *page, int order);

> +#define is_kmem_tracked_alloc (gfp & _ GFP_KMEMCG)

Ugh... please do the following instead.

static inline bool is_kmem_tracked_alloc(gfp_t gfp)

{

return gfp & _ GFP_KMEMCG;

}

> #Helse

> static inline void sock_update_memcg(struct sock *sk)
>

> @@ -416,6 +423,43 @@ static inline void sock_update_memcg(struct sock *sk)
> static inline void sock_release_memcg(struct sock *sk)

> {

> }

>+

> +#define mem_cgroup_kmem_on O

> +#define __mem_cgroup_new_kmem_page(a, b, c) false

> +#define __mem_cgroup_free_kmem_page(a,b)

> +#define __mem_cgroup_commit_kmem_page(a, b, c)

> +#define is_kmem_tracked_alloc (false)

| would prefer static inlines here too. It's a bit more code in the
header but leads to less surprises (e.g. arg evals w/ side effects or
compiler warning about unused vars) and makes it easier to avoid
cosmetic errors.

Thanks.

Page 31 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=935
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46929#msg_46929
https://new-forum.openvz.org/index.php?t=post&reply_to=46929
https://new-forum.openvz.org/index.php

tejun

Subject: Re: [PATCH 07/11] mm: Allocate kernel pages to the right memcg
Posted by Tejun Heo on Mon, 25 Jun 2012 18:07:47 GMT

View Forum Message <> Reply to Message

On Mon, Jun 25, 2012 at 06:15:24PM +0400, Glauber Costa wrote:

> When a process tries to allocate a page with the _ GFP_KMEMCG flag,
> the page allocator will call the corresponding memcg functions to

> validate the allocation. Tasks in the root memcg can always proceed.
>

> To avoid adding markers to the page - and a kmem flag that would

> necessarily follow, as much as doing page_cgroup lookups for no

> reason, whoever is marking its allocations with __ GFP_KMEMCG flag
> is responsible for telling the page allocator that this is such an

> allocation at free_pages() time. This is done by the invocation of

> free_accounted_pages() and free_accounted_pages().

Shouldn't we be documenting that in the code somewhere, preferably in
the function comments?

tejun

Subject: Re: [PATCH 09/11] memcg: propagate kmem limiting information to
children
Posted by Tejun Heo on Mon, 25 Jun 2012 18:29:07 GMT

View Forum Message <> Reply to Message

Feeling like a nit pervert but..

On Mon, Jun 25, 2012 at 06:15:26PM +0400, Glauber Costa wrote:
> @@ -287,7 +287,11 @@ struct mem_cgroup {

> * Should the accounting and control be hierarchical, per subtree?
> ¥

> bool use_hierarchy;

> - bool kmem_accounted;

>+ [*

>+ * bit0: accounted by this cgroup

>+ * bitl: accounted by a parent.

>+ %

> + volatile unsigned long kmem_accounted;

Is the volatile declaration really necessary? Why is it necessary?
Why no comment explaining it?

Page 32 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=935
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46930#msg_46930
https://new-forum.openvz.org/index.php?t=post&reply_to=46930
https://new-forum.openvz.org/index.php?t=usrinfo&id=935
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46931#msg_46931
https://new-forum.openvz.org/index.php?t=post&reply_to=46931
https://new-forum.openvz.org/index.php

> +#ifdef CONFIG_CGROUP_MEM_RES _CTLR_KMEM

> +static void mem_cgroup_update_kmem_limit(struct mem_cgroup *memcg, u64 val)
> +{

> + struct mem_cgroup *iter;

>+

> + mutex_lock(&set_limit_mutex);

> + if (Itest_and_set_bit(KMEM_ACCOUNTED_THIS, &memcg->kmem_accounted) &&
>+ val I= RESOURCE_MAX) {

>+

>+ [*

>+ *Once enabled, can't be disabled. We could in theory

>+ *disable it if we haven't yet created any caches, or

>+ *if we can shrink them all to death.

>+

>+ * But it is not worth the trouble

>+ ¥

> + static_key_slow_inc(&mem_cgroup_kmem_enabled_key);

>+

> + if (lmemcg->use_hierarchy)

>+ goto out;

>+

>+ for_each_mem_cgroup_tree(iter, memcg) {

>+ if (iter == memcqg)

>+ continue;

>+ set bit(KMEM_ACCOUNTED_PARENT, &iter->kmem_accounted);
>+ }

>+

> + } else if (test_and_clear_bit(KMEM_ACCOUNTED_THIS, &memcg->kmem_accounted)
>+ && val == RESOURCE_MAX) {

>+

> + if (!Imemcg->use_hierarchy)

>+ goto out;

>+

>+ for_each_mem_cgroup_tree(iter, memcg) {

>+ struct mem_cgroup *parent;

Blank line between decl and body please.
>+ if (iter == memcg)

>+ continue;

>+ [

>+ *We should only have our parent bit cleared if none of
>+ *ouri parents are accounted. The transversal order of

N type

>+ *our iter function forces us to always look at the

Page 33 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

>+ * parents.

Also, it's okay here but the text filling in comments and patch
descriptions tend to be quite inconsistent. If you're on emacs, alt-q
is your friend and I'm sure vim can do text filling pretty nicely too.

>+ ¥

>+ parent = parent_mem_cgroup(iter);

>+ while (parent && (parent = memcg)) {

>+ if (test_bit(KMEM_ACCOUNTED_THIS, &parent->kmem_accounted))
>+ goto noclear;

>+

>+ parent = parent_mem_cgroup(parent);

>+ }

Better written in for (;;)? Also, if we're breaking on parent ==
memcg, can we ever hit NULL parent in the above loop?

>+ clear_bit(KMEM_ACCOUNTED_PARENT, &iter->kmem_accounted);
> +noclear:

>+ continue;

>+ }

>+}

> +out:

> + mutex_unlock(&set_limit_mutex);

Can we please branch on val '= RECOURSE_MAX first? I'm not even sure
whether the above conditionals are correct. If the user updates an

existing kmem limit, the first test_and_set_bit() returns non-zero, so

the code proceeds onto clearing KMEM_ACCOUNTED_THIS, which succeeds
but val == RESOURCE_MAX fails so it doesn't do anything. If the user
changes it again, it will set ACCOUNTED_THIS again. So, changing an
existing kmem limit toggles KMEM_ACCOUNTED_THIS, which just seems
wacky to me.

Thanks.

tejun

Subject: Re: [PATCH 10/11] memcg: allow a memcg with kmem charges to be
destructed.
Posted by Tejun Heo on Mon, 25 Jun 2012 18:34:42 GMT

View Forum Message <> Reply to Message

On Mon, Jun 25, 2012 at 06:15:27PM +0400, Glauber Costa wrote:
> Because the ultimate goal of the kmem tracking in memcg is to

Page 34 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=935
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46932#msg_46932
https://new-forum.openvz.org/index.php?t=post&reply_to=46932
https://new-forum.openvz.org/index.php

> track slab pages as well, we can't guarantee that we'll always

> be able to point a page to a particular process, and migrate

> the charges along with it - since in the common case, a page

> will contain data belonging to multiple processes.

>

> Because of that, when we destroy a memcg, we only make sure
> the destruction will succeed by discounting the kmem charges
> from the user charges when we try to empty the cgroup.

>

> Signed-off-by: Glauber Costa <glommer@parallels.com>

> CC: Christoph Lameter <cl@linux.com>

> CC: Pekka Enberg <penberg@cs.helsinki.fi>

> CC: Michal Hocko <mhocko@suse.cz>

> CC: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>

> CC: Johannes Weiner <hannes@cmpxchg.org>

> CC: Suleiman Souhlal <suleiman@google.com>

> oo

> mm/memcontrol.c | 10 +++++++++-

> 1 file changed, 9 insertions(+), 1 deletion(-)

>

> diff --git a/mm/memcontrol.c b/mm/memcontrol.c

> index a6a440b..bb9b6fe 100644

> --- a/mm/memcontrol.c

> +++ b/mm/memcontrol.c

> @@ -598,6 +598,11 @@ static void disarm_kmem_keys(struct mem_cgroup *memcg)
> {

> if (test_bit(KMEM_ACCOUNTED_THIS, &memcg->kmem_accounted))
> static_key_slow_dec(&mem_cgroup_kmem_enabled_key);
>+ [*

>+ * This check can't live in kmem destruction function,

>+ * since the charges will outlive the cgroup

>+ %

>+ BUG_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);

WARN_ON() please. Misaccounted kernel usually is better than dead
kernel.

Thanks.

tejun

Subject: Re: [PATCH 11/11] protect architectures where THREAD_SIZE >=
PAGE_SIZE against fork bombs
Posted by Tejun Heo on Mon, 25 Jun 2012 18:38:18 GMT

View Forum Message <> Reply to Message

Page 35 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=935
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46933#msg_46933
https://new-forum.openvz.org/index.php?t=post&reply_to=46933
https://new-forum.openvz.org/index.php

On Mon, Jun 25, 2012 at 06:55:35PM +0200, Frederic Weisbecker wrote:
> On 06/25/2012 04:15 PM, Glauber Costa wrote:

>

> > Because those architectures will draw their stacks directly from

> > the page allocator, rather than the slab cache, we can directly

> > pass __ GFP_KMEMCSG flag, and issue the corresponding free_pages.
> >

> > This code path is taken when the architecture doesn't define

>> CONFIG_ARCH_THREAD_INFO_ALLOCATOR (only ia64 seems to), and has
> > THREAD_SIZE >= PAGE_SIZE. Luckily, most - if not all - of the

> > remaining architectures fall in this category.

> >

> > This will guarantee that every stack page is accounted to the memcg
> > the process currently lives on, and will have the allocations to fall

> > if they go over limit.

> >

> > For the time being, | am defining a new variant of THREADINFO_GFP, not
> > to mess with the other path. Once the slab is also tracked by memcg,
> > we can get rid of that flag.

> >

> > Tested to successfully protect against :(){ :|:& };:

> >

> > Signed-off-by: Glauber Costa <glommer@parallels.com>

> > CC: Christoph Lameter <cl@linux.com>

> > CC: Pekka Enberg <penberg@cs.helsinki.fi>

> > CC: Michal Hocko <mhocko@suse.cz>

> > CC: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>

> > CC: Johannes Weiner <hannes@cmpxchg.org>

> > CC: Suleiman Souhlal <suleiman@google.com>

>

>

> Acked-by: Frederic Weisbecker <fweisbec@redhat.com>

Frederic, does this (with proper slab accounting added later) achieve
what you wanted with the task counter?

Thanks.

tejun

Subject: Re: [PATCH 11/11] protect architectures where THREAD_SIZE >=
PAGE_SIZE against fork bombs
Posted by Frederic Weisbecker on Mon, 25 Jun 2012 20:57:51 GMT

View Forum Message <> Reply to Message

On Mon, Jun 25, 2012 at 11:38:18AM -0700, Tejun Heo wrote:

Page 36 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=6199
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46935#msg_46935
https://new-forum.openvz.org/index.php?t=post&reply_to=46935
https://new-forum.openvz.org/index.php

> On Mon, Jun 25, 2012 at 06:55:35PM +0200, Frederic Weisbecker wrote:
> > 0On 06/25/2012 04:15 PM, Glauber Costa wrote:

> >

> > > Because those architectures will draw their stacks directly from

> > > the page allocator, rather than the slab cache, we can directly
>>>pass ___GFP_KMEMCG flag, and issue the corresponding free_pages.
>>>

> > > This code path is taken when the architecture doesn't define

>>> CONFIG_ARCH_THREAD_INFO_ALLOCATOR (only ia64 seems to), and has
>> > THREAD_SIZE >= PAGE_SIZE. Luckily, most - if not all - of the

> > > remaining architectures fall in this category.

>>>

> > > This will guarantee that every stack page is accounted to the memcg
> > > the process currently lives on, and will have the allocations to fail

> > > if they go over limit.

>>>

> > > For the time being, | am defining a new variant of THREADINFO_GFP, not
> > > to mess with the other path. Once the slab is also tracked by memcg,
> > > we can get rid of that flag.

>>>

> > > Tested to successfully protect against :(){ :|:& };:

>>>

> > > Signed-off-by: Glauber Costa <glommer@parallels.com>

> > > CC: Christoph Lameter <cl@linux.com>

> > > CC: Pekka Enberg <penberg@cs.helsinki.fi>

> > > CC: Michal Hocko <mhocko@suse.cz>

> > > CC: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>

> > > CC: Johannes Weiner <hannes@cmpxchg.org>

> > > CC: Suleiman Souhlal <suleiman@google.com>

> >

> >

> > Acked-by: Frederic Weisbecker <fweisbec@redhat.com>

>

> Frederic, does this (with proper slab accounting added later) achieve

> what you wanted with the task counter?

| think so yeah. Relying on general kernel memory accounting should do
the trick for us. And if we need more finegrained limitation on kernel
stack accounting we can still add it incrementally. But | believe global
limitation can be enough.

Thanks.

Subject: Re: [PATCH 10/11] memcg: allow a memcg with kmem charges to be
destructed.
Posted by Glauber Costa on Mon, 25 Jun 2012 22:25:46 GMT

Page 37 of 124 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php

View Forum Message <> Reply to Message

On 06/25/2012 10:34 PM, Tejun Heo wrote:

> On Mon, Jun 25, 2012 at 06:15:27PM +0400, Glauber Costa wrote:
>> Because the ultimate goal of the kmem tracking in memcg is to

>> track slab pages as well, we can't guarantee that we'll always

>> pe able to point a page to a particular process, and migrate

>> the charges along with it - since in the common case, a page

>> will contain data belonging to multiple processes.

>>

>> Because of that, when we destroy a memcg, we only make sure

>> the destruction will succeed by discounting the kmem charges

>> from the user charges when we try to empty the cgroup.

>>

>> Signed-off-by: Glauber Costa <glommer@parallels.com>

>> CC: Christoph Lameter <cl@linux.com>

>> CC: Pekka Enberg <penberg@cs.helsinki.fi>

>> CC: Michal Hocko <mhocko@suse.cz>

>> CC: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>

>> CC: Johannes Weiner <hannes@cmpxchg.org>

>> CC: Suleiman Souhlal <suleiman@google.com>

>> -

>> mm/memcontrol.c| 10 +++++++++-

>> 1 file changed, 9 insertions(+), 1 deletion(-)

>>

>> diff --git a/mm/memcontrol.c b/mm/memcontrol.c

>> index a6a440b..bb9b6fe 100644

>> --- a/mm/memcontrol.c

>> +++ b/mm/memcontrol.c

>> @@ -598,6 +598,11 @@ static void disarm_kmem_keys(struct mem_cgroup *memcg)
>> |

>> if (test_bit(KMEM_ACCOUNTED_THIS, &memcg->kmem_accounted))
>> static_key_slow_dec(&mem_cgroup_kmem_enabled_key);

>> + [*

>> + * This check can't live in kmem destruction function,

>> + * since the charges will outlive the cgroup

>> + %/

>> + BUG_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
>

> WARN_ON() please. Misaccounted kernel usually is better than dead
> kernel.

>

You're absolutely right, will change.

Subject: Re: [PATCH 07/11] mm: Allocate kernel pages to the right memcg
Posted by Glauber Costa on Mon, 25 Jun 2012 22:27:36 GMT

Page 38 of 124 ---- Generated from QOpenVZ Forum

https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46936#msg_46936
https://new-forum.openvz.org/index.php?t=post&reply_to=46936
https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php

View Forum Message <> Reply to Message

On 06/25/2012 10:07 PM, Tejun Heo wrote:

> On Mon, Jun 25, 2012 at 06:15:24PM +0400, Glauber Costa wrote:

>> \When a process tries to allocate a page with the GFP_KMEMCG flag,
>> the page allocator will call the corresponding memcg functions to

>> validate the allocation. Tasks in the root memcg can always proceed.
>>

>> To avoid adding markers to the page - and a kmem flag that would

>> necessarily follow, as much as doing page_cgroup lookups for no

>> reason, whoever is marking its allocations with _ GFP_KMEMCG flag
>> js responsible for telling the page allocator that this is such an

>> allocation at free_pages() time. This is done by the invocation of

>> free_accounted_pages() and free_accounted_pages().

>

> Shouldn't we be documenting that in the code somewhere, preferably in
> the function comments?

>

| can certainly do that.

Subject: Re: [PATCH 06/11] memcg: kmem controller infrastructure
Posted by Glauber Costa on Mon, 25 Jun 2012 22:28:00 GMT

View Forum Message <> Reply to Message

On 06/25/2012 10:06 PM, Tejun Heo wrote:

> Again, nits.

>

> On Mon, Jun 25, 2012 at 06:15:23PM +0400, Glauber Costa wrote:

>> +#define mem_cgroup_kmem_on 1

>> +pool __mem_cgroup_new_kmem_page(gfp_t gfp, void *handle, int order);

>> +void __mem_cgroup_commit_kmem_page(struct page *page, void *handle, int order);
>> +void __mem_cgroup_free_kmem_page(struct page *page, int order);

>> +#define is_kmem_tracked_alloc (gfp & _ GFP_KMEMCG)

>

> Ugh... please do the following instead.

>

> static inline bool is_kmem_tracked_alloc(gfp_t gfp)
> {

> return gfp & _ GFP_KMEMCG;

>}

>

>> f#else

>> static inline void sock _update_memcg(struct sock *sk)
>> {

>> @@ -416,6 +423,43 @ @ static inline void sock _update_memcg(struct sock *sk)
>> gtatic inline void sock_release_memcg(struct sock *sk)
>>

Page 39 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46938#msg_46938
https://new-forum.openvz.org/index.php?t=post&reply_to=46938
https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46939#msg_46939
https://new-forum.openvz.org/index.php?t=post&reply_to=46939
https://new-forum.openvz.org/index.php

>> 1}

>> 4+

>> +#define mem_cgroup_kmem_on 0

>> +#define __mem_cgroup_new_kmem_page(a, b, c) false

>> +#define __mem_cgroup_free_kmem_page(a,b)

>> +#define __mem_cgroup_commit_kmem_page(a, b, ¢)

>> +#define is_kmem_tracked_alloc (false)

>

> | would prefer static inlines here too. It's a bit more code in the

> header but leads to less surprises (e.g. arg evals w/ side effects or
> compiler warning about unused vars) and makes it easier to avoid
> cosmetic errors.

>

> Thanks.
>

Sure thing.

Subject: Re: [PATCH 01/11] memcg: Make it possible to use the stock for more
than one page.
Posted by Glauber Costa on Mon, 25 Jun 2012 22:29:06 GMT

View Forum Message <> Reply to Message

On 06/25/2012 09:44 PM, Tejun Heo wrote:
> Hey, Glauber.
>

> Just a couple nits.

>

> On Mon, Jun 25, 2012 at 06:15:18PM +0400, Glauber Costa wrote:
>> From: Suleiman Souhlal <ssouhlal@FreeBSD.org>

>

> |t would be nice to explain why this is being done. Just a simple

> statement like - "prepare for XXX" or "will be needed by XXX".

| picked this patch from Suleiman Souhlal, and tried to keep it as close
as possible to his version.

But for the sake of documentation, | can do that, yes.

Subject: Re: [PATCH 01/11] memcg: Make it possible to use the stock for more
than one page.
Posted by Tejun Heo on Mon, 25 Jun 2012 22:33:01 GMT

View Forum Message <> Reply to Message

Hello,

Page 40 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46940#msg_46940
https://new-forum.openvz.org/index.php?t=post&reply_to=46940
https://new-forum.openvz.org/index.php?t=usrinfo&id=935
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46941#msg_46941
https://new-forum.openvz.org/index.php?t=post&reply_to=46941
https://new-forum.openvz.org/index.php

On Mon, Jun 25, 2012 at 3:29 PM, Glauber Costa <glommer@parallels.com> wrote:
>> |t would be nice to explain why this is being done. Just a simple

>> statement like - "prepare for XXX" or "will be needed by XXX".

>

>

> | picked this patch from Suleiman Souhlal, and tried to keep it as close as

> possible to his version.

>

> But for the sake of documentation, | can do that, yes.

Yeah, that would be great. Also, the patch does change behavior,
right? Explaining / justifying that a bit would be nice too.

Thanks!

tejun

Subject: Re: [PATCH 09/11] memcg: propagate kmem limiting information to
children
Posted by Glauber Costa on Mon, 25 Jun 2012 22:36:27 GMT

View Forum Message <> Reply to Message

On 06/25/2012 10:29 PM, Tejun Heo wrote:

> Feeling like a nit pervert but..

>

> On Mon, Jun 25, 2012 at 06:15:26PM +0400, Glauber Costa wrote:
>> @@ -287,7 +287,11 @@ struct mem_cgroup {

>> * Should the accounting and control be hierarchical, per subtree?
>> %

>> Dbool use_hierarchy;

>> - bool kmem_accounted,;

>> + [*

>> + * bit0: accounted by this cgroup

>> + * bitl: accounted by a parent.

>> + %/

>> + volatile unsigned long kmem_accounted;

>

> |s the volatile declaration really necessary? Why is it necessary?

> Why no comment explaining it?

Seems to be required by set_bit and friends. gcc will complain if it is
not volatile (take a look at the bit function headers)

>> +
>> + for_each_mem_cgroup_tree(iter, memcg) {

Page 41 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46942#msg_46942
https://new-forum.openvz.org/index.php?t=post&reply_to=46942
https://new-forum.openvz.org/index.php

>>+ struct mem_cgroup *parent;

>

> Blank line between decl and body please.
ok.

>
>> + if (iter == memcg)

>>+ continue;

>> 4+ [*

>>+ *We should only have our parent bit cleared if none of

>>+ * ouri parents are accounted. The transversal order of

>

> N type

>

>>+ * our iter function forces us to always look at the

>>+ * parents.

>

> Also, it's okay here but the text filling in comments and patch

> descriptions tend to be quite inconsistent. If you're on emacs, alt-q
> is your friend and I'm sure vim can do text filling pretty nicely too.

>

>>+ K

>> + parent = parent_mem_cgroup(iter);

>> + while (parent && (parent '= memcg)) {

>> + if (test_bit(KMEM_ACCOUNTED_THIS, &parent->kmem_accounted))
>>+ goto noclear;

>> +

>>+ parent = parent_mem_cgroup(parent);

>>+ }

>

> Better written in for (;;)? Also, if we're breaking on parent ==
> memcg, can we ever hit NULL parent in the above loop?

| can simplify to test parent != memcg only, indeed it is not expected
to be NULL (but if it happens to be due to any kind of bug, we protect
against NULL-dereference, that is why | like to write this way)

>>+ continue;

>>+ }

>>+}

>> +out:

>> + mutex_unlock(&set_limit_mutex);

>

> Can we please branch on val '= RECOURSE_MAX first? I'm not even sure
> whether the above conditionals are correct. If the user updates an

> existing kmem limit, the first test_and_set_bit() returns non-zero, so

> the code proceeds onto clearing KMEM_ACCOUNTED_THIS, which succeeds
> but val == RESOURCE_MAX fails so it doesn't do anything. If the user

Page 42 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

> changes it again, it will set ACCOUNTED_THIS again. So, changing an

> existing kmem limit toggles KMEM_ACCOUNTED_THIS, which just seems
> wacky to me.

>

| will take a look at that tomorrow as well.

Subject: Re: [PATCH 09/11] memcg: propagate kmem limiting information to
children
Posted by Tejun Heo on Mon, 25 Jun 2012 22:49:42 GMT

View Forum Message <> Reply to Message

Hello, Glauber.

On Tue, Jun 26, 2012 at 02:36:27AM +0400, Glauber Costa wrote:
> >|s the volatile declaration really necessary? Why is it necessary?
> >Why no comment explaining it?

>

> Seems to be required by set_bit and friends. gcc will complain if it
> is not volatile (take a look at the bit function headers)

Hmmm? Are you sure gcc includes volatile in type check? There are a
lot of bitops users in the kernel but most of them don't use volatile
decl on the variable.

>>>+ %

> >>+ parent = parent_mem_cgroup(iter);

> >>+ while (parent && (parent = memcg)) {

>>>+ f (test_bit(KMEM_ACCOUNTED_THIS, &parent->kmem_accounted))
>>>+ goto noclear;

> >>+

> >>+ parent = parent_mem_cgroup(parent);

>>>+ }

> >

> >Better written in for (;;)? Also, if we're breaking on parent ==

> >memcg, can we ever hit NULL parent in the above loop?

>

> | can simplify to test parent |= memcg only, indeed it is not

> expected to be NULL (but if it happens to be due to any kind of bug,
> we protect against NULL-dereference, that is why | like to write

> this way)

| personally don't really like that. It doesn't really add meaningful
protection (if that happens the tree walking is already severely

broken) while causes confusion to future readers of the code (when can
parent be NULL?).

Page 43 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=935
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46943#msg_46943
https://new-forum.openvz.org/index.php?t=post&reply_to=46943
https://new-forum.openvz.org/index.php

Thanks.

tejun

Subject: Re: [PATCH 06/11] memcg: kmem controller infrastructure
Posted by akpm on Mon, 25 Jun 2012 23:17:20 GMT

View Forum Message <> Reply to Message

On Mon, 25 Jun 2012 18:15:23 +0400
Glauber Costa <glommer@parallels.com> wrote:

> This patch introduces infrastructure for tracking kernel memory pages
> to a given memcg. This will happen whenever the caller includes the
>flag _ GFP_KMEMCG flag, and the task belong to a memcg other than
> the root.

>

> In memcontrol.h those functions are wrapped in inline acessors.

> The idea is to later on, patch those with jump labels, so we don't

> incur any overhead when no mem cgroups are being used.

>

>

> ..

>

> @@ -416,6 +423,43 @@ static inline void sock_update_memcg(struct sock *sk)
> static inline void sock_release_memcg(struct sock *sk)

> {

>}

> +

> +#define mem_cgroup_kmem_on 0

> +#define __mem_cgroup_new_kmem_page(a, b, c) false

> +#define __mem_cgroup_free_kmem_page(a,b)

> +#define __mem_cgroup_commit_kmem_page(a, b, ¢)

| suggest that the naming consistently follow the model
"mem_cgroup_kmem_foo". So "mem_cgroup_kmem_" becomes the well-known
identifier for this subsystem.

Then, s/mem_cgroup/memcg/g/ - show us some mercy here!

> +#define is_kmem_tracked_alloc (false)

memcg_kmem_tracked_alloc, perhaps. But what does this actually do?

<looks>

eww, ick.

Page 44 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1815
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46944#msg_46944
https://new-forum.openvz.org/index.php?t=post&reply_to=46944
https://new-forum.openvz.org/index.php

> +#define is_kmem_tracked_alloc (gfp & _ GFP_KMEMCG)

What Tejun said. This:

*
/* Nice comment goes here

st/atic inline bool memcg_kmem_tracked_alloc(gfp_t gfp)
{return ofp & _ GFP_KMEMCG;

}

> #endif /* CONFIG_CGROUP_MEM_RES CTLR_KMEM */
>+

> +static __always_inline
> +bool mem_cgroup_new_kmem_page(gfp_t gfp, void *handle, int order)

memcg_kmem_new_page().

> +{

> + if (Imem_cgroup_kmem_on)
>+ return true;

>+ if (lis_kmem_tracked_alloc)
> + return true;

> + if (lcurrent->mm)

>+ return true;

> + if (in_interrupt())

>+ return true;

>+ if (gfp & __ GFP_NOFAIL)
>+ return true;

>+ return __mem_cgroup_new_kmem_page(gfp, handle, order);
> +}

Add documentation, please. The semantics of the return value are
inscrutable.

> +static __always_inline

> +void mem_cgroup_free_kmem_page(struct page *page, int order)
> +{

> + if (mem_cgroup_kmem_on)

>+ mem_cgroup_free_kmem_page(page, order);

> +}

memcg_kmem_free_page().

> +static __always_inline
> +void mem_cgroup_commit_kmem_page(struct page *page, struct mem_cgroup *handle,

Page 45 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

>+ int order)

> +{

> + if (mem_cgroup_kmem_on)

>+ mem_cgroup_commit_kmem_page(page, handle, order);
> +}

memcg_kmem_commit_page().

> #endif # _LINUX _MEMCONTROL_H */

>

>

> ..

>

> +static inline bool mem_cgroup_kmem_enabled(struct mem_cgroup *memcg)
> +{

> + return !'mem_cgroup_disabled() && memcg &&

>+ Imem_cgroup_is_root(memcg) && memcg->kmem_accounted,

> +}

Does this really need to handle a memcg==NULL?

> +bool __mem_cgroup_new_kmem_page(gfp_t gfp, void *_handle, int order)
> +{

> + struct mem_cgroup *memcg;

> + struct mem_cgroup **handle = (struct mem_cgroup **) handle;
> + bool ret = true;

> + size _t size;

> + struct task_struct *p;

>+

> + *handle = NULL;

> + rcu_read_lock();

> + p = rcu_dereference(current->mm->owner);

>+ memcg = mem_cgroup_from_task(p);

> + if (Imem_cgroup_kmem_enabled(memcg))

>+ goto out;

>+

>+ mem_cgroup_get(memcg);

>+

> + size = (1 << order) << PAGE_SHIFT,;

size = PAGE_SIZE << order;
is simpler and more typical.
> + ret = memcg_charge_kmem(memcg, gfp, size) == 0;

Odd. memcg_charge_kmem() returns a nice errno, buit this conversion
just drops that information on the floor. If the

Page 46 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

mem_cgroup_new_kmem_page() return value had been documented, | might
have been able to understand the thinking here. But it wasn't, so |
couldn't.

>+ if (Iret) {

>+ mem_cgroup_put(memcg);
>+ goto out;

>+1}

>+

> + *handle = memcg;

> +out:

> + rcu_read_unlock();

> + return ret;

> +}

> +EXPORT_SYMBOL(__mem_cgroup_new_kmem_page);

>+

> +void __mem_cgroup_commit_kmem_page(struct page *page, void *handle, int order)
> +{

> + struct page_cgroup *pc;

> + struct mem_cgroup *memcg = handle;

> + size_t size;

>+

> + if (Imemcg)

>+ return;

>+

>+ WARN_ON(mem_cgroup_is_root(memcg));
> + [* The page allocation must have failed. Revert */
> +if (Ipage) {

>+ size = (1 << order) << PAGE_SHIFT;

PAGE_SIZE << order

>+ memcg_uncharge_kmem(memcg, size);
>+ mem_cgroup_put(memcg);

>+ return;

>+}

This all looks a bit odd. After a failure you run a commit which

undoes the speculative charging. | guess it makes sense. It's the

sort of thing which can be expounded upon in the documentation whcih
isn't there, sigh.

> + pc = lookup_page_cgroup(page);
> + |lock_page_cgroup(pc);

> + pc->mem_cgroup = memcg;

> + SetPageCgroupUsed(pc);

> + unlock_page_cgroup(pc);

> +}

Page 47 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

missed a newline there.

> +void __mem_cgroup_free_kmem_page(struct page *page, int order)
> +{

> + struct mem_cgroup *memcg;

> + size_t size;

> + struct page_cgroup *pc;

>+

> + if (mem_cgroup_disabled())

>+ return;

>+

> + pc = lookup_page_cgroup(page);
> + |lock_page_cgroup(pc);

>+ memcg = pc->mem_cgroup;

> + pc->mem_cgroup = NULL;

> + if (IPageCgroupUsed(pc)) {

>+ unlock_page_cgroup(pc);

>+ return;

>+}

> + ClearPageCgroupUsed(pc);

> + unlock_page_cgroup(pc);

>+

>+ [*

>+ * The classical disabled check won't work

What is "The classical disabled check"? Be specific. Testing
mem_cgroup_kmem_on?

>+ *for uncharge, since it is possible that the user enabled
>+ * kmem tracking, allocated, and then disabled.

>4+ *

>+ * \We trust if there is a memcg associated with the page,
>+ *itis a valid allocation

>+ %

> + if (Imemcg)

>+ return;

>+

>+ WARN_ON(mem_cgroup_is_root(memcg));

> + size = (1 << order) << PAGE_SHIFT;

PAGE_SIZE << order

>+ memcg_uncharge_kmem(memcg, size);

>+ mem_cgroup_put(memcg);

> +}

> +EXPORT_SYMBOL(__mem_cgroup_free_kmem_page);
> #endif * CONFIG_CGROUP_MEM_RES CTLR_KMEM */

Page 48 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

>
> #if defined(CONFIG_INET) && defined(CONFIG_CGROUP_MEM_RES_CTLR_KMEM)
> @@ -5645,3 +5751,69 @@ static int __init enable_swap_account(char *s)

> setup("swapaccount=", enable_swap_ account);

>

> #endif

>+

> +#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM

gargh. CONFIG_MEMCG_KMEM, please!

> +int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, s64 delta)
> +{

> + struct res_counter *fail_res;

> + struct mem_cgroup *_memcg;

>+ int may_oom, ret;

> + bool nofail = false;

>+

>+ may_oom = (gfp & __ GFP_WAIT) && (gfp & _ GFP_FS) &&

>+ I(gfp & _ GFP_NORETRY);

may_oom should have bool type.

>+ret=0;

>+

> + if (Imemcg)

>+ return ret;

>+

>+ _memcg = memcg;

> +ret=__mem_cgroup_try charge(NULL, gfp, delta / PAGE_SIZE,
>+ & memcg, may_oom);

>+

> + if (ret == -EINTR) {

> + nofail = true;

>+ [*

>+ * mem_cgroup_try_charge() chose to bypass to root due
>+ *to OOM Kill or fatal signal.

Is "bypass" correct? Maybe "fall back"?

>+ * Since our only options are to either fail the

>+ * allocation or charge it to this cgroup, do it as

>+ * atemporary condition. But we can't fail. From a kmem/slab

>+ * perspective, the cache has already been selected, by

>+ *mem_cgroup_get_kmem_cache(), so it is too late to change our
>+ *minds

>+ ¥

>+ res_counter_charge_nofail(&memcg->res, delta, &fail_res);

Page 49 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

>+ if (do_swap_account)

>+ res_counter_charge nofail(&memcg->memsw, delta,
>+ &fail_res);

>+ ret=0;

>+ } else if (ret == -ENOMEM)

>+ return ret;

>+

> + if (nofail)

>+ res_counter_charge_nofail(&memcg->kmem, delta, &fail_res);
> + else

>+ ret = res_counter_charge(&memcg->kmem, delta, &fail_res);
>+

>+ if (ret) {

>+ res_counter_uncharge(&memcg->res, delta);

>+ if (do_swap_account)

>+ res_counter_uncharge(&memcg->memsw, delta);
>+}

>+

> + return ret;

> +}

>

> ...

>

Subject: Re: [PATCH 09/11] memcg: propagate kmem limiting information to
children
Posted by akpm on Mon, 25 Jun 2012 23:21:58 GMT

View Forum Message <> Reply to Message

On Tue, 26 Jun 2012 02:36:27 +0400
Glauber Costa <glommer@parallels.com> wrote:

> 0On 06/25/2012 10:29 PM, Tejun Heo wrote:

> > Feeling like a nit pervert but..

> >

> > On Mon, Jun 25, 2012 at 06:15:26PM +0400, Glauber Costa wrote:
>>> @@ -287,7 +287,11 @@ struct mem_cgroup {

>>> * Should the accounting and control be hierarchical, per subtree?
>>> %

>>> Dbool use_hierarchy;

> >> - bool kmem_accounted,

>>> 4+ [*

> >> + * bjt0: accounted by this cgroup

> >>+ * bjtl: accounted by a parent.

>>> 4+ %

> >> + volatile unsigned long kmem_accounted;

> >

Page 50 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1815
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46945#msg_46945
https://new-forum.openvz.org/index.php?t=post&reply_to=46945
https://new-forum.openvz.org/index.php

> > |s the volatile declaration really necessary? Why is it necessary?
> > Why no comment explaining it?

>

> Seems to be required by set_bit and friends. gcc will complain if it is
> not volatile (take a look at the bit function headers)

That would be a broken gcc. We run test_bit()/set_bit() and friends
against plain old "unsigned long' in thousands of places. There's
nothing special about this one!

Subject: Re: [PATCH 09/11] memcg: propagate kmem limiting information to
children
Posted by akpm on Mon, 25 Jun 2012 23:23:52 GMT

View Forum Message <> Reply to Message

On Mon, 25 Jun 2012 18:15:26 +0400
Glauber Costa <glommer@parallels.com> wrote:

> --- a/mm/memcontrol.c

> +++ b/mm/memcontrol.c

> @@ -287,7 +287,11 @@ struct mem_cgroup {
> * Should the accounting and control be hierarchical, per subtree?
> *

> bool use_hierarchy;

> - bool kmem_accounted,;

>+ [*

>+ * pbit0: accounted by this cgroup

>+ * pitl: accounted by a parent.

>+ %

> + volatile unsigned long kmem_accounted;

| suggest
unsigned long kmem_accounted; /* See KMEM_ACCOUNTED_*, below */

> bool oom_lock;

> atomic_t under_oom;

> @@ -340,6 +344,9 @@ struct mem_cgroup {
> #endif

>}

>

> +#define KMEM_ACCOUNTED_THIS 0

> +#define KMEM_ACCOUNTED_PARENT 1

And then document the fields here.

Page 51 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1815
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46946#msg_46946
https://new-forum.openvz.org/index.php?t=post&reply_to=46946
https://new-forum.openvz.org/index.php

Subject: Re: [PATCH 00/11] kmem controller for memcg: stripped down version
Posted by akpm on Mon, 25 Jun 2012 23:27:45 GMT

View Forum Message <> Reply to Message

On Mon, 25 Jun 2012 18:15:17 +0400
Glauber Costa <glommer@parallels.com> wrote:

> What | am proposing with this series is a stripped down version of the

> kmem controller for memcg that would allow us to merge significant parts

> of the infrastructure, while leaving out, for now, the polemic bits about

> the slab while it is being reworked by Cristoph.

>

> Me reasoning for that is that after the last change to introduce a gfp

> flag to mark kernel allocations, it became clear to me that tracking other

> resources like the stack would then follow extremely naturaly. | figured

> that at some point we'd have to solve the issue pointed by David, and avoid
> testing the Slab flag in the page allocator, since it would soon be made

> more generic. | do that by having the callers to explicit mark it.

>

> So to demonstrate how it would work, | am introducing a stack tracker here,
> that is already a functionality per-se: it successfully stops fork bombs to

> happen. (Sorry for doing all your work, Frederic =p). Note that after all

> memcg infrastructure is deployed, it becomes very easy to track anything.
> The last patch of this series is extremely simple.

>

> The infrastructure is exactly the same we had in memcg, but stripped down
> of the slab parts. And because what we have after those patches is a feature
> per-se, | think it could be considered for merging.

hm. None of this new code makes the kernel smaller, faster, easier to
understand or more fun to read!

Presumably we're getting some benefit for all the downside. When the
time is appropriate, please do put some time into explaining that
benefit, so that others can agree that it is a worthwhile tradeoff.

Subject: Re: [PATCH 02/11] memcg: Reclaim when more than one page needed.
Posted by Suleiman Souhlal on Mon, 25 Jun 2012 23:33:29 GMT

View Forum Message <> Reply to Message

On Mon, Jun 25, 2012 at 7:15 AM, Glauber Costa <glommer@parallels.com> wrote:
> From: Suleiman Souhlal <ssouhlal@FreeBSD.org>

>

> mem_cgroup_do_charge() was written before slab accounting, and expects

> three cases: being called for 1 page, being called for a stock of 32 pages,

> or being called for a hugepage. If we call for 2 or 3 pages (and several

> slabs used in process creation are such, at least with the debug options |

Page 52 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1815
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46947#msg_46947
https://new-forum.openvz.org/index.php?t=post&reply_to=46947
https://new-forum.openvz.org/index.php?t=usrinfo&id=6118
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46948#msg_46948
https://new-forum.openvz.org/index.php?t=post&reply_to=46948
https://new-forum.openvz.org/index.php

> had), it assumed it's being called for stock and just retried without reclaiming.
>

> Fix that by passing down a minsize argument in addition to the csize.

>

> And what to do about that (csize == PAGE_SIZE && ret) retry? If it's

> needed at all (and presumably is since it's there, perhaps to handle

> races), then it should be extended to more than PAGE_SIZE, yet how far?
> And should there be a retry count limit, of what? For now retry up to

> COSTLY_ORDER (as page_alloc.c does), stay safe with a cond_resched(),
> and make sure notto do itif _ GFP_NORETRY.

The commit description mentions COSTLY_ORDER, but it's not actually
used in the patch.

-- Suleiman

Subject: Re: [PATCH 01/11] memcg: Make it possible to use the stock for more
than one page.
Posted by David Rientjes on Tue, 26 Jun 2012 04:01:54 GMT

View Forum Message <> Reply to Message

On Mon, 25 Jun 2012, Glauber Costa wrote:

> From: Suleiman Souhlal <ssouhlal@FreeBSD.org>

>

> Signed-off-by: Suleiman Souhlal <suleiman@google.com>

> Signed-off-by: Glauber Costa <glommer@parallels.com>

> Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>

Acked-by: David Rientjes <rientjes@google.com>

Subject: Re: [PATCH 02/11] memcg: Reclaim when more than one page needed.
Posted by David Rientjes on Tue, 26 Jun 2012 04:09:11 GMT

View Forum Message <> Reply to Message

On Mon, 25 Jun 2012, Glauber Costa wrote:

> diff --git a/mm/memcontrol.c b/mm/memcontrol.c

> index 9304db2..8e601e8 100644

> --- a/mm/memcontrol.c

> +++ b/mm/memcontrol.c

> @@ -2158,8 +2158,16 @@ enum {

> CHARGE_OOM_DIE, /*the current is killed because of OOM */
>}

>

Page 53 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=902
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46950#msg_46950
https://new-forum.openvz.org/index.php?t=post&reply_to=46950
https://new-forum.openvz.org/index.php?t=usrinfo&id=902
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46951#msg_46951
https://new-forum.openvz.org/index.php?t=post&reply_to=46951
https://new-forum.openvz.org/index.php

> +[*
>+ * We need a number that is small enough to be likely to have been
> + * reclaimed even under pressure, but not too big to trigger unnecessary

Whitespace.

> + * retries

>+ %/

> +#define NR_PAGES TO RETRY 2
>+

Should be 1 << PAGE_ALLOC_COSTLY_ORDER? Where does this number come from?
The changelog doesn't specify.

> static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
> - unsigned int nr_pages, bool oom_check)
>+ unsigned int nr_pages, unsigned int min_pages,
>+ bool oom_check)
>{
> unsigned long csize = nr_pages * PAGE_SIZE;
> struct mem_cgroup *mem_over_limit;
> @@ -2182,18 +2190,18 @@ static int mem_cgroup_do_charge(struct mem_cgroup *memcg,
gfp_t gfp_mask,
> }else
mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
/*
- * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
- * of regular pages (CHARGE_BATCH), or a single regular page (1).
*
* Never reclaim on behalf of optional batching, retry with a
* single page instead.
*/
- if (nr_pages == CHARGE_BATCH)
+if (nr_pages > min_pages)
return CHARGE_RETRY;

if ((gfp_mask & _ GFP_WAIT))
return CHARGE_WOULDBLOCK;

VVVVVVVVVYVYVYVYVYV

>

> + if (gfp_mask & _ GFP_NORETRY)

>+ return CHARGE_NOMEM,;

>+

> ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);

> if (mem_cgroup_margin(mem_over_limit) >= nr_pages)

> return CHARGE_RETRY;

> @@ -2206,7 +2214,7 @@ static int mem_cgroup_do_charge(struct mem_cgroup *memcg,
gfp_t gfp_mask,

> *unlikely to succeed so close to the limit, and we fall back

Page 54 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

> *to regular pages anyway in case of failure.

>

> - if (nr_pages == 1 && ret)

>+ if (nr_pages <= NR_PAGES_TO_RETRY && ret)

> return CHARGE_RETRY;

>

> [*

> @@ -2341,7 +2349,8 @@ again:

> nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;

>}

>

> - ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
>+ ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
>+ oom_check);

> switch (ret) {

> case CHARGE_OK:

> break;

Subject: Re: [PATCH 03/11] memcg: change defines to an enum
Posted by David Rientjes on Tue, 26 Jun 2012 04:11:55 GMT

View Forum Message <> Reply to Message

On Mon, 25 Jun 2012, Glauber Costa wrote:

> diff --git a/mm/memcontrol.c b/mm/memcontrol.c

> index 8e601e8..9352d40 100644

> --- a/mm/memcontrol.c

> +++ b/mm/memcontrol.c

> @@ -387,9 +387,12 @@ enum charge_type {
>}

>

> [* for encoding cft->private value on file */

> -#define _MEM (0)

> -#tdefine _ MEMSWAP (1)

> -#tdefine _OOM_TYPE (2)

> +enum res_type {

>+ MEM,

>+ MEMSWAP,

>+ OOM_TYPE,

> +};

>+

> #define MEMFILE_PRIVATE(X, val) ((X) << 16 | (val))
> #define MEMFILE_TYPE(val) ((val) >> 16 & Oxffff)
> #define MEMFILE_ATTR(val) ((val) & Oxffff)

Shouldn't everything that does MEMFILE_TYPE() now be using type
enum res_type rather than int?

https://new-forum.openvz.org/index.php?t=usrinfo&id=902
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46952#msg_46952
https://new-forum.openvz.org/index.php?t=post&reply_to=46952
https://new-forum.openvz.org/index.php

Subject: Re: [PATCH 04/11] kmem slab accounting basic infrastructure
Posted by David Rientjes on Tue, 26 Jun 2012 04:22:38 GMT

View Forum Message <> Reply to Message

On Mon, 25 Jun 2012, Glauber Costa wrote:

> diff --git a/mm/memcontrol.c b/mm/memcontrol.c

> index 9352d40..6f34b77 100644

> --- a/mm/memcontrol.c

> +++ b/mm/memcontrol.c

> @@ -265,6 +265,10 @@ struct mem_cgroup {

> }

>

> [*

>+ * the counter to account for kernel memory usage.

>+ %

> + struct res_counter kmem;

>+ [*

> * Per cgroup active and inactive list, similar to the

> *per zone LRU lists.

> *

> @@ -279,6 +283,7 @@ struct mem_cgroup {

> * Should the accounting and control be hierarchical, per subtree?
> %

> bool use_hierarchy;

> + bool kmem_accounted,;

>

> bool oom_lock;

> atomic_t under_oom;

> @@ -391,6 +396,7 @@ enum res_type {

> MEM,

> MEMSWAP,

> OOM_TYPE,

>+ KMEM,

>}

>

> #define MEMFILE_PRIVATE(X, val) ((x) << 16 | (val))

> @@ -1438,6 +1444,10 @@ done:

> res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
> res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
> res_counter_read_u64(&memcg->memsw, RES_FAILCNT));

> + printk(KERN_INFO "kmem: usage %llukB, limit %llukB, failcnt %llu\n”,
>+ res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
>+ res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
>+ res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
>}

>

> [*

> @@ -3879,6 +3889,11 @@ static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype

Page 56 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=902
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46953#msg_46953
https://new-forum.openvz.org/index.php?t=post&reply_to=46953
https://new-forum.openvz.org/index.php

*cft,

> else
> val = res_counter_read_u64(&memcg->memsw, name);
> Dbreak;

> +#ifdef CONFIG_CGROUP_MEM_RES CTLR_KMEM
>+ case _KMEM:

>+ val =res_counter_read_u64(&memcg->kmem, name);
> + break;

> +#endif

This shouldn't need an #ifdef, ->kmem is available on all
CONFIG_CGROUP_MEM_RES _CTLR kernels. Same with several of the other
instances in this patch.

Can't these instances be addressed by not adding kmem_cgroup_files without
CONFIG_CGROUP_MEM_RES_CTLR_KMEM?

> default:

> BUG();

>}

> @@ -3916,8 +3931,26 @@ static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
> Dreak;

> if (type == _MEM)

> ret =mem_cgroup_resize_limit(memcg, val);

> - else

>+ else if (type == _MEMSWAP)

> ret = mem_cgroup_resize_memsw_limit(memcg, val);
> +#ifdef CONFIG_CGROUP_MEM_RES CTLR_KMEM
>+ else if (type == _KMEM) {

>+ ret = res_counter_set_limit(&memcg->kmem, val);

>+ if (ret)

>+ break;

>+ [*

>+ *Once enabled, can't be disabled. We could in theory
>+ *disable it if we haven't yet created any caches, or
>+ *if we can shrink them all to death.

>4 %

>+ *Butitis not worth the trouble

>+ %

>+ if (lmemcg->kmem_accounted && val = RESOURCE_MAX)
>+ memcg->kmem_accounted = true;

>+ }

> +#endif

>+ else

>+ return -EINVAL,;

> break;

> case RES_SOFT_LIMIT:

> ret =res_counter_memparse_write_strategy(buffer, &val);

Page 57 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

> @@ -3982,12 +4015,20 @@ static int mem_cgroup_reset(struct cgroup *cont, unsigned int
event)

> case RES_MAX_ USAGE:

> if (type == _MEM)

> res_counter_reset_max(&memcg->res);

> +#ifdef CONFIG_CGROUP_MEM_RES CTLR_KMEM

>+ else if (type == _KMEM)

>+ res_counter_reset_max(&memcg->kmem);

> +#endif

> else

> res_counter_reset_max(&memcg->memsw);
> break;

> case RES_FAILCNT:

> if (type == _MEM)

> res_counter_reset_failcnt(&memcg->res);

> +#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
>+ else if (type == _KMEM)

>+ res_counter_reset_failcnt(&memcg->kmem);
> +#endif

> else

> res_counter_reset_failcnt(&memcg->memsw);
> Dbreak;

> @@ -4549,6 +4590,33 @@ static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
>}
>

> #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM

> +static struct cftype kmem_cgroup_files[] ={

>+

>+ .name = "kmem.limit_in_bytes",

>+ .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
>+ .write_string = mem_cgroup_write,

>+ .read = mem_cgroup_read,

>+ 1},

>+

>+ .name = "kmem.usage_in_bytes",

>+ .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
>+ .read = mem_cgroup_read,

>+ 1,

>+

>+ .name = "kmem.failcnt",

>+ .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
>+ .trigger = mem_cgroup_reset,

>+ .read = mem_cgroup_read,

>+ 1,

>+

>+ .name = "kmem.max_usage_in_bytes",

>+ .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_ USAGE),
>+ .trigger = mem_cgroup_reset,

Page 58 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

>+ .read = mem_cgroup_read,

>+ 1,

>+{,

> +};

>+

> static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
>{

> return mem_cgroup_sockets_init(memcg, SS);

> @@ -4892,6 +4960,12 @@ mem_cgroup_create(struct cgroup *cont)
> int cpu;

> enable_swap_cgroup();

> parent = NULL;

>+

> +#ifdef CONFIG_CGROUP_MEM_RES CTLR_KMEM

>+ WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys,

>+ kmem_cgroup_files));

> +#endif

>+

> if (mem_cgroup_soft_limit_tree_init())

> goto free_out;

> root_mem_cgroup = memcg;

> @@ -4910,6 +4984,7 @@ mem_cgroup_create(struct cgroup *cont)
> if (parent && parent->use_hierarchy) {

> res_counter_init(&memcg->res, &parent->res);

> res_counter_init(&memcg->memsw, &parent->memsw);

>+ res_counter_init(&memcg->kmem, &parent->kmem);

> [*

> *We increment refcnt of the parent to ensure that we can

> *safely access it on res_counter_charge/uncharge.

> @@ -4920,6 +4995,7 @@ mem_cgroup_create(struct cgroup *cont)
> }else {

> res_counter_init(&memcg->res, NULL);

> res_counter_init(&memcg->memsw, NULL);

>+ res_counter_init(&memcg->kmem, NULL);

>}

> memcg->last_scanned_node = MAX_NUMNODES;

> INIT_LIST_HEAD(&memcg->o0om_notify);

Subject: Re: [PATCH 05/11] Add a __ GFP_KMEMCG flag
Posted by David Rientjes on Tue, 26 Jun 2012 04:25:54 GMT

View Forum Message <> Reply to Message

On Mon, 25 Jun 2012, Glauber Costa wrote:

> This flag is used to indicate to the callees that this allocation will be
> serviced to the kernel. It is not supposed to be passed by the callers
> of kmem_cache_alloc, but rather by the cache core itself.

Page 59 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=902
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46954#msg_46954
https://new-forum.openvz.org/index.php?t=post&reply_to=46954
https://new-forum.openvz.org/index.php

>

Not sure what "serviced to the kernel" means, does this mean that the
memory will not be accounted for to the root memcg?

> CC: Christoph Lameter <cl@linux.com>

> CC: Pekka Enberg <penberg@cs.helsinki.fi>

> CC: Michal Hocko <mhocko@suse.cz>

> CC: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
> CC: Johannes Weiner <hannes@cmpxchg.org>
> CC: Suleiman Souhlal <suleiman@google.com>
> J—

> include/linux/gfp.h | 8 +++++++-

> 1 file changed, 7 insertions(+), 1 deletion(-)

>

> diff --git a/include/linux/gfp.h b/include/linux/gfp.h
> index 1e49be4..8f4079f 100644

> --- al/include/linux/gfp.h

> +++ b/include/linux/gfp.h

>@@ -37,6 +37,9 @@ struct vm_area_struct;

> #define __ GFP_NO_KSWAPD 0x400000u

> #define _ GFP_OTHER_NODE 0x800000u

> #define __ GFP_WRITE 0x1000000u

> +#ifdef CONFIG_CGROUP_MEM_RES CTLR_KMEM
> +#define _ GFP_KMEMCG 0x2000000u

> +#endif

>

> [*

> * GFP bitmasks..

> @@ -88,13 +91,16 @@ struct vm_area_struct;

> #define _ GFP_OTHER_NODE ((__force gfp_t) GFP_OTHER_NODE) /* On behalf of other

node */

> #define _ GFP_WRITE ((__force gfp_t)__ GFP_WRITE) /* Allocator intends to dirty page */

>
> +#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM

> +#define _ GFP_KMEMCG ((__force gfp_t)_ GFP_KMEMCG)/* Allocation comes from a

memcg-accounted resource */
> +#endif

Needs a space.
/*
* allocations that simply cannot be supported (e.g. page tables).

%
#define _ GFP_NOTRACK_FALSE_POSITIVE (__GFP_NOTRACK)

V VVVYVYV

> -#define __ GFP_BITS_SHIFT 25 /* Room for N _ GFP_FOO bits */

Page 60 of 124 ---- Generated from QpenVZ Forum

* This may seem redundant, but it's a way of annotating false positives vs.

https://new-forum.openvz.org/index.php

> +#define __GFP_BITS_SHIFT 26 /* Room for N__GFP_FOO bits */

> #define __GFP_BITS_MASK ((__force gfp_t)((1 << _ GFP_BITS_SHIFT) - 1))
>

> [* This equals 0, but use constants in case they ever change */

Subject: Re: [PATCH 11/11] protect architectures where THREAD_SIZE >=
PAGE_SIZE against fork bombs
Posted by David Rientjes on Tue, 26 Jun 2012 04:57:54 GMT

View Forum Message <> Reply to Message

On Mon, 25 Jun 2012, Glauber Costa wrote:

> diff --git a/include/linux/thread_info.h b/include/linux/thread_info.h

> index ccc1899..914ec07 100644

> --- a/include/linux/thread_info.h

> +++ b/include/linux/thread_info.h

> @@ -61,6 +61,12 @@ extern long do_no_restart_syscall(struct restart_block *parm);
> # define THREADINFO_GFP (GFP_KERNEL | _ GFP_NOTRACK)

> #endif

>

> +#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM

> +# define THREADINFO_GFP_ACCOUNTED (THREADINFO_GFP | _ GFP_KMEMCG)
> +#else

> +# define THREADINFO_GFP_ACCOUNTED (THREADINFO_GFP)

> +#endif

>+

This type of requirement is going to become nasty very quickly if nobody

can use __ GFP_KMEMCG without testing for CONFIG_CGROUP_MEM_RES CTLR_KMEM.
Perhaps define _ GFP_KMEMCG to be 0x0 if it's not enabled, similar to how

kmemcheck does?

Subject: Re: [PATCH 09/11] memcg: propagate kmem limiting information to
children
Posted by David Rientjes on Tue, 26 Jun 2012 05:23:59 GMT

View Forum Message <> Reply to Message

On Mon, 25 Jun 2012, Andrew Morton wrote:

>>>> ¥

>>>> Dbool use_hierarchy;

> > >> - bool kmem_accounted;

>>>> 4 [*

> > >>+ *Dit0: accounted by this cgroup
>>>>+ *Ditl: accounted by a parent.

Page 61 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=902
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46955#msg_46955
https://new-forum.openvz.org/index.php?t=post&reply_to=46955
https://new-forum.openvz.org/index.php?t=usrinfo&id=902
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46956#msg_46956
https://new-forum.openvz.org/index.php?t=post&reply_to=46956
https://new-forum.openvz.org/index.php

>>>>+ %

> > >> + volatile unsigned long kmem_accounted;

>>>

> > > |s the volatile declaration really necessary? Why is it necessary?
> > > Why no comment explaining it?

> >

> > Seems to be required by set_bit and friends. gcc will complain if it is
> > not volatile (take a look at the bit function headers)

>

> That would be a broken gcc. We run test_bit()/set_bit() and friends

> against plain old “unsigned long' in thousands of places. There's

> nothing special about this one!

>

No version of gcc would complain about this, even with 4.6 and later with
-fstrict-volatile-bitfields, it's a qualifier that determines whether or

not the access to memory is the exact size of the bitfield and aligned to
its natural boundary. If the type isn't qualified as such then it's

simply going to compile to access the native word size of the
architecture. No special consideration is needed for a member of

struct mem_cgroup.

Subject: Re: [PATCH 09/11] memcg: propagate kmem limiting information to
children
Posted by David Rientjes on Tue, 26 Jun 2012 05:24:44 GMT

View Forum Message <> Reply to Message

On Mon, 25 Jun 2012, Andrew Morton wrote:

> > --- a/mm/memcontrol.c

> > +++ b/mm/memcontrol.c

>> @@ -287,7 +287,11 @@ struct mem_cgroup {
>> * Should the accounting and control be hierarchical, per subtree?
>> *

>> Dool use_hierarchy;

> > - pbool kmem_accounted;

> >4 [*

> >+ *bit0: accounted by this cgroup

> >+ *bitl: accounted by a parent.

>>4 %

> > + volatile unsigned long kmem_accounted;

>

> | suggest
>

> unsigned long kmem_accounted; /* See KMEM_ACCOUNTED_*, below */
>

>> bool oom_lock;

Page 62 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=902
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46957#msg_46957
https://new-forum.openvz.org/index.php?t=post&reply_to=46957
https://new-forum.openvz.org/index.php

> > atomic_t under_oom;

>> @@ -340,6 +344,9 @@ struct mem_cgroup {
> > #endif

>> }

> >

> > +#define KMEM_ACCOUNTED_THIS 0

> > +#define KMEM_ACCOUNTED_PARENT 1
>

> And then document the fields here.
>

In hex, please?

Subject: Re: [PATCH 09/11] memcg: propagate kmem limiting information to
children
Posted by akpm on Tue, 26 Jun 2012 05:31:21 GMT

View Forum Message <> Reply to Message

On Mon, 25 Jun 2012 22:24:44 -0700 (PDT) David Rientjes <rientjes@google.com> wrote:

> > > +#define KMEM_ACCOUNTED_THIS O
> > > +#define KMEM_ACCOUNTED_PARENT 1
> >

> > And then document the fields here.
> >
>

> In hex, please?

Well, they're bit numbers, not masks. Decimal 0-31 is OK, or an enum.

Subject: Re: [PATCH 11/11] protect architectures where THREAD_SIZE >=
PAGE_SIZE against fork bombs
Posted by KAMEZAWA Hiroyuki on Tue, 26 Jun 2012 05:35:34 GMT

View Forum Message <> Reply to Message

(2012/06/26 13:57), David Rientjes wrote:

> On Mon, 25 Jun 2012, Glauber Costa wrote:

>

>> diff --git a/include/linux/thread_info.h b/include/linux/thread_info.h

>> index ccc1899..914ec07 100644

>> --- afinclude/linux/thread_info.h

>> +++ b/include/linux/thread_info.h

>> @@ -61,6 +61,12 @@ extern long do_no_restart_syscall(struct restart_block *parm);
>> # define THREADINFO_GFP (GFP_KERNEL | _ GFP_NOTRACK)

>> #endif

Page 63 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1815
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46958#msg_46958
https://new-forum.openvz.org/index.php?t=post&reply_to=46958
https://new-forum.openvz.org/index.php?t=usrinfo&id=777
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46959#msg_46959
https://new-forum.openvz.org/index.php?t=post&reply_to=46959
https://new-forum.openvz.org/index.php

>>

>> +#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM

>> +# define THREADINFO_GFP_ACCOUNTED (THREADINFO_GFP | _ GFP_KMEMCG)
>> +else

>> +# define THREADINFO_GFP_ACCOUNTED (THREADINFO_GFP)

>> +#endif

>> +

>

> This type of requirement is going to become nasty very quickly if nobody

> can use __ GFP_KMEMCG without testing for CONFIG_CGROUP_MEM_RES _CTLR_KMEM.
> Perhaps define _ GFP_KMEMCG to be 0x0 if it's not enabled, similar to how

> kmemcheck does?

| agree.

Thanks,
-Kame

Subject: Re: [PATCH 08/11] memcg: disable kmem code when not in use.
Posted by KAMEZAWA Hiroyuki on Tue, 26 Jun 2012 05:51:15 GMT

View Forum Message <> Reply to Message

(2012/06/25 23:15), Glauber Costa wrote:

> We can use jump labels to patch the code in or out

> when not used.

>

> Because the assignment: memcg->kmem_accounted = true
> is done after the jump labels increment, we guarantee

> that the root memcg will always be selected until

> all call sites are patched (see mem_cgroup_kmem_enabled).
> This guarantees that no mischarges are applied.

>

> Jump label decrement happens when the last reference

> count from the memcg dies. This will only happen when

> the caches are all dead.

>

> Signed-off-by: Glauber Costa <glommer@parallels.com>

> CC: Christoph Lameter <cl@linux.com>

> CC: Pekka Enberg <penberg@cs.helsinki.fi>

> CC: Michal Hocko <mhocko@suse.cz>

> CC: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
> CC: Johannes Weiner <hannes@cmpxchg.org>

> CC: Suleiman Souhlal <suleiman@google.com>

Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>

Page 64 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=777
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46960#msg_46960
https://new-forum.openvz.org/index.php?t=post&reply_to=46960
https://new-forum.openvz.org/index.php

Subject: Re: [PATCH 10/11] memcg: allow a memcg with kmem charges to be
destructed.
Posted by KAMEZAWA Hiroyuki on Tue, 26 Jun 2012 05:59:56 GMT

View Forum Message <> Reply to Message

(2012/06/25 23:15), Glauber Costa wrote:

> Because the ultimate goal of the kmem tracking in memcg is to
> track slab pages as well, we can't guarantee that we'll always

> be able to point a page to a particular process, and migrate

> the charges along with it - since in the common case, a page

> will contain data belonging to multiple processes.

>

> Because of that, when we destroy a memcg, we only make sure
> the destruction will succeed by discounting the kmem charges
> from the user charges when we try to empty the cgroup.

>

> Signed-off-by: Glauber Costa <glommer@parallels.com>

> CC: Christoph Lameter <cl@linux.com>

> CC: Pekka Enberg <penberg@cs.helsinki.fi>

> CC: Michal Hocko <mhocko@suse.cz>

> CC: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>

> CC: Johannes Weiner <hannes@cmpxchg.org>

> CC: Suleiman Souhlal <suleiman@google.com>

> oo

> mm/memcontrol.c| 10 +++++++++-

> 1 file changed, 9 insertions(+), 1 deletion(-)

>

> diff --git a/mm/memcontrol.c b/mm/memcontrol.c

> index a6a440b..bb9b6fe 100644

> --- a/mm/memcontrol.c

> +++ b/mm/memcontrol.c

> @@ -598,6 +598,11 @@ static void disarm_kmem_keys(struct mem_cgroup *memcg)
> |

> if (test_bit(KMEM_ACCOUNTED_THIS, &memcg->kmem_accounted))
> gstatic_key_slow_dec(&mem_cgroup_kmem_enabled_key);
>+ [*

>+ * This check can't live in kmem destruction function,

>+ * since the charges will outlive the cgroup

>+ %

>+ BUG_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
>}

> #else

> static void disarm_kmem_keys(struct mem_cgroup *memcg)

> @@ -3838,6 +3843,7 @@ static int mem_cgroup_force_empty(struct mem_cgroup *memcg,
bool free_all)

> int node, zid, shrink;

> int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

> struct cgroup *cgrp = memcg->css.cgroup;

> + u64 usage,

Page 65 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=777
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46961#msg_46961
https://new-forum.openvz.org/index.php?t=post&reply_to=46961
https://new-forum.openvz.org/index.php

>

> css_get(&memcg->css);

>

> @@ -3877,8 +3883,10 @@ move_account:

> if (ret == -ENOMEM)

> gototry to_free;

> cond_resched();

>+ usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
>+ res_counter_read_u64(&memcg->kmem, RES_USAGE);

> [*"ret" should also be checked to ensure all lists are empty. */

> -} while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
> + } while (usage > 0 || ret);

> out:

> ¢SS_put(&memcg->css);

> return ret;

>

Hm....maybe work enough. Could you add more comments on the code ?

Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>

Subject: Re: [PATCH 05/11] Add a __ GFP_KMEMCG flag
Posted by Glauber Costa on Tue, 26 Jun 2012 07:08:32 GMT

View Forum Message <> Reply to Message

On 06/26/2012 08:25 AM, David Rientjes wrote:

> On Mon, 25 Jun 2012, Glauber Costa wrote:

>

>> >This flag is used to indicate to the callees that this allocation will be
>> >serviced to the kernel. It is not supposed to be passed by the callers
>> >of kmem_cache_alloc, but rather by the cache core itself.

>> >

> Not sure what "serviced to the kernel" means, does this mean that the
> memory will not be accounted for to the root memcg?

>

In this context, it means that is a kernel allocation, not a userspace

one (but in process context, of course), *and* it is to be accounted a
specific memcg.

Subject: Re: [PATCH 04/11] kmem slab accounting basic infrastructure
Posted by Glauber Costa on Tue, 26 Jun 2012 07:09:24 GMT

View Forum Message <> Reply to Message

On 06/26/2012 08:22 AM, David Rientjes wrote:
> On Mon, 25 Jun 2012, Glauber Costa wrote:
>

Page 66 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46962#msg_46962
https://new-forum.openvz.org/index.php?t=post&reply_to=46962
https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46963#msg_46963
https://new-forum.openvz.org/index.php?t=post&reply_to=46963
https://new-forum.openvz.org/index.php

>> diff --git a/mm/memcontrol.c b/mm/memcontrol.c

>> index 9352d40..6f34b77 100644

>> --- a/mm/memcontrol.c

>> +++ b/mm/memcontrol.c

>> @@ -265,6 +265,10 @@ struct mem_cgroup {

>> }

>>

>> [*

>> + * the counter to account for kernel memory usage.

>> + *f

>> + struct res_counter kmem;

>> + [*

>> * Per cgroup active and inactive list, similar to the

>> *per zone LRU lists.

>> %

>> @@ -279,6 +283,7 @@ struct mem_cgroup {

>> * Should the accounting and control be hierarchical, per subtree?
>> %

>> bool use_hierarchy;

>> + bool kmem_accounted;

>>

>> bool oom_lock;

>> atomic_t under_oom;

>> @@ -391,6 +396,7 @@ enum res_type {

>> MEM,

>> MEMSWAP,

>> OOM TYPE,

>> + KMEM,

>>)

>>

>> #define MEMFILE_PRIVATE(X, val) ((X) << 16 | (val))

>> @@ -1438,6 +1444,10 @@ done:

>> res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
>> res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
>> res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
>> + printk(KERN_INFO "kmem: usage %llukB, limit %llukB, failcnt %llu\n",
>> + res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
>> + res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
>> + res_counter_read_u64(&memcg->kmem, RES_FAILCNT));

>> }

>>

>> [*

>> @@ -3879,6 +3889,11 @@ static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype
*cft,

>> else
>> val =res_counter_read_u64(&memcg->memsw, hame);
>> preak;

>> +#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM

Page 67 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

>> + case _KMEM:

>> + val = res_counter_read_u64(&memcg->kmem, name);

>> + break;

>> +#endif

>

> This shouldn't need an #ifdef, ->kmem is available on all

> CONFIG_CGROUP_MEM_RES CTLR kernels. Same with several of the other
> instances in this patch.

>

> Can't these instances be addressed by not adding kmem_cgroup_files without
> CONFIG_CGROUP_MEM_RES_CTLR_KMEM?

Yes, it can.

Subject: Re: [PATCH 02/11] memcg: Reclaim when more than one page needed.
Posted by Glauber Costa on Tue, 26 Jun 2012 07:12:22 GMT

View Forum Message <> Reply to Message

>
>> + * retries

>> 4+ %/

>> +#define NR_PAGES_TO_RETRY 2

>> +

>

> Should be 1 << PAGE_ALLOC_COSTLY_ORDER? Where does this number come from?
> The changelog doesn't specify.

Hocko complained about that, and | changed. Where the number comes from,
is stated in the comments: it is a number small enough to have high

changes of had been freed by the previous reclaim, and yet around the
number of pages of a kernel allocation.

Of course there are allocations for nr_pages > 2. But 2 will already
service the stack most of the time, and most of the slab caches.

>> gtatic int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,

>> - unsigned int nr_pages, bool oom_check)

>>+ unsigned int nr_pages, unsigned int min_pages,

>>+ bool oom_check)

>> |

>> unsigned long csize = nr_pages * PAGE_SIZE;

>> struct mem_cgroup *mem_over_limit;

>> @@ -2182,18 +2190,18 @@ static int mem_cgroup_do_charge(struct mem_cgroup *memcg,
ofp_t gfp_mask,

>> }else
>> mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
>> [F

Page 68 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46964#msg_46964
https://new-forum.openvz.org/index.php?t=post&reply_to=46964
https://new-forum.openvz.org/index.php

>> - * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
>> - * of regular pages (CHARGE_BATCH), or a single regular page (1).
>> . %

>> * Never reclaim on behalf of optional batching, retry with a

>> *single page instead.

>> %

>> - if (nr_pages == CHARGE_BATCH)

>> + if (nr_pages > min_pages)

>> return CHARGE_RETRY;

>>

>> if (I(gfp_mask & _ GFP_WAIT))

>> return CHARGE_WOULDBLOCK;

>>

>> + if (gfp_mask & _ GFP_NORETRY)

>> + return CHARGE_NOMEM;

>> +

>> ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);

>> if (mem_cgroup_margin(mem_over_limit) >= nr_pages)

>> return CHARGE_RETRY;

>> @@ -2206,7 +2214,7 @@ static int mem_cgroup_do_charge(struct mem_cgroup *memcg,
ofp_t gfp_mask,

>> *unlikely to succeed so close to the limit, and we fall back

>> *to regular pages anyway in case of failure.

>> %

>> - if (nr_pages == 1 && ret)

>> + if (nr_pages <= NR_PAGES_TO_RETRY && ret)

>> return CHARGE_RETRY;

>>

>> [*

>> @@ -2341,7 +2349,8 @@ again:

>> nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;

>>]

>>

>> - ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
>> + ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
>>+ oom_check);

>> switch (ret) {

>> case CHARGE_OK:

>> break;

\%

Subject: Re: [PATCH 00/11] kmem controller for memcg: stripped down version
Posted by Glauber Costa on Tue, 26 Jun 2012 07:17:49 GMT

View Forum Message <> Reply to Message

On 06/26/2012 03:27 AM, Andrew Morton wrote:
> On Mon, 25 Jun 2012 18:15:17 +0400
> Glauber Costa <glommer@parallels.com> wrote:

Page 69 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46965#msg_46965
https://new-forum.openvz.org/index.php?t=post&reply_to=46965
https://new-forum.openvz.org/index.php

>

>> What | am proposing with this series is a stripped down version of the

>> kmem controller for memcg that would allow us to merge significant parts
>> of the infrastructure, while leaving out, for now, the polemic bits about

>> the slab while it is being reworked by Cristoph.

>>

>> Me reasoning for that is that after the last change to introduce a gfp

>> flag to mark kernel allocations, it became clear to me that tracking other

>> resources like the stack would then follow extremely naturaly. | figured

>> that at some point we'd have to solve the issue pointed by David, and avoid
>> testing the Slab flag in the page allocator, since it would soon be made

>> more generic. | do that by having the callers to explicit mark it.

>>

>> So to demonstrate how it would work, | am introducing a stack tracker here,
>> that is already a functionality per-se: it successfully stops fork bombs to

>> happen. (Sorry for doing all your work, Frederic =p). Note that after all

>> memcgq infrastructure is deployed, it becomes very easy to track anything.
>> The last patch of this series is extremely simple.

>>

>> The infrastructure is exactly the same we had in memcg, but stripped down
>> of the slab parts. And because what we have after those patches is a feature
>> per-se, | think it could be considered for merging.

>

>hm. None of this new code makes the kernel smaller, faster, easier to

> understand or more fun to read!

Not sure if this is a general comment - in case | agree - or if targeted

to my statement that this is "stripped down". If so, it is of course

smaller relative to my previous slab accounting patches.

The infrastructure is largely common, but | realized that a future user,
tracking the stack, would be a lot simpler and could be done first.

> Presumably we're getting some benefit for all the downside. When the
> time is appropriate, please do put some time into explaining that

> benefit, so that others can agree that it is a worthwhile tradeoff.
>

Well, for one thing, we stop fork bombs for processes inside cgroups.
| think the justification for that was already given when you asked
people about reasoning for merging Frederic's process tracking cgroup.

Just that wasn't merged because people were largely unhappy with the
form it took. | can't speak for everybody here, but AFAIK, tracking the
stack through the memory it used, therefore using my proposed kmem
controller, was an idea that good quite a bit of traction with the
memcg/memory people. So here you have something that people already
asked a lot for, in a shape and interface that seem to be acceptable.

Page 70 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

Subject: Re: [PATCH 10/11] memcg: allow a memcg with kmem charges to be
destructed.
Posted by Glauber Costa on Tue, 26 Jun 2012 07:21:22 GMT

View Forum Message <> Reply to Message

On 06/26/2012 09:59 AM, Kamezawa Hiroyuki wrote:

> (2012/06/25 23:15), Glauber Costa wrote:

>> Because the ultimate goal of the kmem tracking in memcg is to
>> track slab pages as well, we can't guarantee that we'll always
>> pe able to point a page to a particular process, and migrate

>> the charges along with it - since in the common case, a page

>> will contain data belonging to multiple processes.

>>

>> Because of that, when we destroy a memcg, we only make sure
>> the destruction will succeed by discounting the kmem charges
>> from the user charges when we try to empty the cgroup.

>>

>> Signed-off-by: Glauber Costa <glommer@parallels.com>

>> CC: Christoph Lameter <cl@Ilinux.com>

>> CC: Pekka Enberg <penberg@cs.helsinki.fi>

>> CC: Michal Hocko <mhocko@suse.cz>

>> CC: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
>> CC: Johannes Weiner <hannes@cmpxchg.org>

>> CC: Suleiman Souhlal <suleiman@google.com>

>> -

>> mm/memcontrol.c | 10 +++++++++-

>> 1 file changed, 9 insertions(+), 1 deletion(-)

>>

>> diff --git a/mm/memcontrol.c b/mm/memcontrol.c

>> index a6a440b..bb9b6fe 100644

>> --- a/mm/memcontrol.c

>> +++ b/mm/memcontrol.c

>> @@ -598,6 +598,11 @@ static void disarm_kmem_keys(struct mem_cgroup *memcg)
>>

>> f (test_bit(KMEM_ACCOUNTED_THIS, &memcg->kmem_accounted))
>> static_key slow_dec(&mem_cgroup_kmem_enabled_key);
>> + [*

>> + * This check can't live in kmem destruction function,

>> + * since the charges will outlive the cgroup

>> + *f

>> + BUG_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
>>]

>> f#else

>> static void disarm_kmem_keys(struct mem_cgroup *memcg)
>> @@ -3838,6 +3843,7 @@ static int mem_cgroup_force_empty(struct mem_cgroup *memcg,
bool free_all)

>> int node, zid, shrink;

>> int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

>> struct cgroup *cgrp = memcg->css.cgroup;

Page 71 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46966#msg_46966
https://new-forum.openvz.org/index.php?t=post&reply_to=46966
https://new-forum.openvz.org/index.php

>> + u64 usage;

>>

>> css_get(&memcg->css);

>>

>> @@ -3877,8 +3883,10 @@ move_account:

>> if (ret == -ENOMEM)

>> goto try_to_free;

>> cond_resched();

>> + usage = res_counter_read_u64(&memcg->res, RES_USAGE) -

>>+ res_counter_read_u64(&memcg->kmem, RES_USAGE);

>> [*"ret" should also be checked to ensure all lists are empty. */

>> -} while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
>> + } while (usage > 0 || ret);

>> out:

>> css_put(&memcg->css);

>> return ret;

>>

> Hm....maybe work enough. Could you add more comments on the code ?
>

> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@ijp.fujitsu.com>
>

| always can.

Subject: Re: [PATCH 11/11] protect architectures where THREAD_SIZE >=
PAGE_SIZE against fork bombs
Posted by Glauber Costa on Tue, 26 Jun 2012 07:23:04 GMT

View Forum Message <> Reply to Message

On 06/26/2012 08:57 AM, David Rientjes wrote:

> On Mon, 25 Jun 2012, Glauber Costa wrote:

>

>> diff --git a/include/linux/thread_info.h b/include/linux/thread_info.h

>> index ccc1899..914ec07 100644

>> --- a/include/linux/thread_info.h

>> +++ b/include/linux/thread_info.h

>> @@ -61,6 +61,12 @@ extern long do_no_restart_syscall(struct restart_block *parm);
>> # define THREADINFO_GFP (GFP_KERNEL | _ GFP_NOTRACK)

>> #endif

>>

>> +#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM

>> +# define THREADINFO_GFP_ACCOUNTED (THREADINFO_GFP | _ GFP_KMEMCG)
>> +else

>> +# define THREADINFO_GFP_ACCOUNTED (THREADINFO_GFP)

>> +#endif

>> +

>

Page 72 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46967#msg_46967
https://new-forum.openvz.org/index.php?t=post&reply_to=46967
https://new-forum.openvz.org/index.php

> This type of requirement is going to become nasty very quickly if nobody

> can use __ GFP_KMEMCG without testing for CONFIG_CGROUP_MEM_RES CTLR_KMEM.
> Perhaps define _ GFP_KMEMCG to be 0x0 if it's not enabled, similar to how

> kmemcheck does?

>

That is what I've done in my first version of this patch. At that time,

Christoph wanted it to be this way so we would make sure it would never

be used with #CONFIG_CGROUP_MEM_RES_CTLR_KMEM defined. A value of zero

will generate no errors. Undefined value will.

Now, if you ask me, | personally prefer following what kmemcheck does
here...

Subject: Re: [PATCH 09/11] memcg: propagate kmem limiting information to
children
Posted by Glauber Costa on Tue, 26 Jun 2012 07:23:43 GMT

View Forum Message <> Reply to Message

On 06/26/2012 09:31 AM, Andrew Morton wrote:

> On Mon, 25 Jun 2012 22:24:44 -0700 (PDT) David Rientjes <rientjes@google.com> wrote:
>

>>>> +#define KMEM_ACCOUNTED _THIS 0

>>>> +#define KMEM_ACCOUNTED PARENT 1

>>>

>>> And then document the fields here.

>>>

>>

>> In hex, please?

>

> Well, they're bit numbers, not masks. Decimal 0-31 is OK, or an enum.
>

enum it will be.

Subject: Re: [PATCH 03/11] memcg: change defines to an enum
Posted by Glauber Costa on Tue, 26 Jun 2012 08:28:34 GMT

View Forum Message <> Reply to Message

On 06/26/2012 08:11 AM, David Rientjes wrote:

> On Mon, 25 Jun 2012, Glauber Costa wrote:

>

>> diff --git a/mm/memcontrol.c b/mm/memcontrol.c
>> index 8e601e8..9352d40 100644

>> --- a/mm/memcontrol.c

>> +++ b/mm/memcontrol.c

>> @@ -387,9 +387,12 @@ enum charge_type {

Page 73 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46968#msg_46968
https://new-forum.openvz.org/index.php?t=post&reply_to=46968
https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46970#msg_46970
https://new-forum.openvz.org/index.php?t=post&reply_to=46970
https://new-forum.openvz.org/index.php

>>)

>>

>> [* for encoding cft->private value on file */

>> -#define _MEM (0)

>> -#idefine _MEMSWAP (1)

>> -#define _OOM_TYPE (2)

>> +enum res_type {

>>+ MEM,

>>+ MEMSWAP,

>>+ OOM_TYPE,

>> +}

>> +

>> #define MEMFILE_PRIVATE(X, val) ((xX) << 16 | (val))
>> #define MEMFILE_TYPE(val) ((val) >> 16 & Oxffff)
>> #define MEMFILE_ATTR(val) ((val) & Oxffff)

>

> Shouldn't everything that does MEMFILE_TYPE() now be using type
> enum res_type rather than int?

>

If you mean the following three fields, no, since they are masks and
operations.

If you mean something else, what do you mean ?

Subject: Re: [PATCH 02/11] memcg: Reclaim when more than one page needed.
Posted by Glauber Costa on Tue, 26 Jun 2012 08:39:55 GMT

View Forum Message <> Reply to Message

On 06/26/2012 03:33 AM, Suleiman Souhlal wrote:

> On Mon, Jun 25, 2012 at 7:15 AM, Glauber Costa <glommer@parallels.com> wrote:
>> From: Suleiman Souhlal <ssouhlal@FreeBSD.org>

>>

>> mem_cgroup_do_charge() was written before slab accounting, and expects
>> three cases: being called for 1 page, being called for a stock of 32 pages,

>> or being called for a hugepage. If we call for 2 or 3 pages (and several

>> slabs used in process creation are such, at least with the debug options |

>> had), it assumed it's being called for stock and just retried without reclaiming.
>>

>> Fix that by passing down a minsize argument in addition to the csize.

>>

>> And what to do about that (csize == PAGE_SIZE && ret) retry? If it's

>> needed at all (and presumably is since it's there, perhaps to handle

>> races), then it should be extended to more than PAGE_SIZE, yet how far?
>> And should there be a retry count limit, of what? For now retry up to

>> COSTLY_ORDER (as page_alloc.c does), stay safe with a cond_resched(),
>> and make sure notto do itif __ GFP_NORETRY.

>

Page 74 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46972#msg_46972
https://new-forum.openvz.org/index.php?t=post&reply_to=46972
https://new-forum.openvz.org/index.php

> The commit description mentions COSTLY_ORDER, but it's not actually
> used in the patch.
>

> -- Suleiman
>

Yeah, forgot to update the changelog =(

But much more importantly, are you still happy with those changes?

Subject: Re: [PATCH 11/11] protect architectures where THREAD_SIZE >=
PAGE_SIZE against fork bombs
Posted by Glauber Costa on Tue, 26 Jun 2012 08:44:13 GMT

View Forum Message <> Reply to Message

On 06/26/2012 12:45 PM, David Rientjes wrote:

> On Tue, 26 Jun 2012, Glauber Costa wrote:

>

>>>> diff --git a/include/linux/thread_info.h b/include/linux/thread_info.h

>>>> index ccc1899..914ec07 100644

>>>> --- afinclude/linux/thread_info.h

>>>> +++ b/include/linux/thread_info.h

>>>> @@ -61,6 +61,12 @@ extern long do_no_restart_syscall(struct restart_block
>>>> *parm);

>>>> # define THREADINFO_GFP (GFP_KERNEL | _ GFP_NOTRACK)
>>>> #endif

>>>>

>>>> +#ifdef CONFIG_CGROUP_MEM_RES CTLR_KMEM

>>>> +# define THREADINFO_GFP_ACCOUNTED (THREADINFO_GFP | _ GFP_KMEMCG)
>>>> +ftelse

>>>> +# define THREADINFO_GFP_ACCOUNTED (THREADINFO_GFP)

>>>> +#endif

>>>> +

>>>

>>> This type of requirement is going to become nasty very quickly if nobody

>>> can use __ GFP_KMEMCG without testing for
CONFIG_CGROUP_MEM_RES_CTLR_KMEM.

>>> Perhaps define __ GFP_KMEMCG to be 0x0 if it's not enabled, similar to how
>>> kmemcheck does?

>>>

>> That is what I've done in my first version of this patch. At that time,

>> Christoph wanted it to be this way so we would make sure it would never be
>> used with #CONFIG_CGROUP_MEM_RES CTLR_KMEM defined. A value of zero will
>> generate no errors. Undefined value will.

>>

>> Now, if you ask me, | personally prefer following what kmemcheck does here...
>>

>

Page 75 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46974#msg_46974
https://new-forum.openvz.org/index.php?t=post&reply_to=46974
https://new-forum.openvz.org/index.php

> Right, because I'm sure that _ GFP_KMEMCG will be used in additional

> places outside of this patchset and it will be a shame if we have to

> always add #ifdef's. | see no reason why we would care if _ GFP_KMEMCG

> was used when CONFIG_CGROUP_MEM_RES_CTLR_KMEM=n with the semantics that it

> as in this patchset. It's much cleaner by making it 0x0 when disabled.
>

What | can do, instead, is to WARN_ON conditionally to the config option
in the page allocator, and make sure no one is actually passing the flag
in that case.

Subject: Re: [PATCH 11/11] protect architectures where THREAD_SIZE >=
PAGE_SIZE against fork bombs
Posted by David Rientjes on Tue, 26 Jun 2012 08:45:30 GMT

View Forum Message <> Reply to Message

On Tue, 26 Jun 2012, Glauber Costa wrote:

> > > diff --git a/include/linux/thread_info.h b/include/linux/thread_info.h

> > > index ccc1899..914ec07 100644

> > > --- a/include/linux/thread_info.h

> > > +++ b/include/linux/thread_info.h

>>> @@ -61,6 +61,12 @@ extern long do_no_restart_syscall(struct restart_block
> > > *parm);

>>> # define THREADINFO_GFP (GFP_KERNEL | __ GFP_NOTRACK)

>>> #endif

>>>

> > > +#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM

> > > +# define THREADINFO_GFP_ACCOUNTED (THREADINFO_GFP | _ GFP_KMEMCG)
> > > t+#else

> > > +# define THREADINFO_GFP_ACCOUNTED (THREADINFO_GFP)

> > > +#endif

>>>+

> >

> > This type of requirement is going to become nasty very quickly if nobody

> > can use __ GFP_KMEMCG without testing for
CONFIG_CGROUP_MEM_RES_CTLR_KMEM.

> > Perhaps define _ GFP_KMEMCG to be 0xO0 if it's not enabled, similar to how

> > kmemcheck does?

> >

> That is what I've done in my first version of this patch. At that time,

> Christoph wanted it to be this way so we would make sure it would never be

> used with #CONFIG_CGROUP_MEM_RES CTLR_KMEM defined. A value of zero will
> generate no errors. Undefined value will.

>

> Now, if you ask me, | personally prefer following what kmemcheck does here...
>

Page 76 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=902
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46973#msg_46973
https://new-forum.openvz.org/index.php?t=post&reply_to=46973
https://new-forum.openvz.org/index.php

Right, because I'm sure that GFP_KMEMCG will be used in additional

places outside of this patchset and it will be a shame if we have to

always add #ifdef's. | see no reason why we would care if _ GFP_KMEMCG

was used when CONFIG_CGROUP_MEM_RES_CTLR_KMEM=n with the semantics that it
as in this patchset. It's much cleaner by making it 0Ox0 when disabled.

Subject: Re: [PATCH 02/11] memcg: Reclaim when more than one page needed.
Posted by David Rientjes on Tue, 26 Jun 2012 08:54:09 GMT

View Forum Message <> Reply to Message

On Tue, 26 Jun 2012, Glauber Costa wrote:

> > > + *retries

>>>+ %

> > > +#define NR_PAGES_TO_RETRY 2

>>>+

> >

> > Should be 1 << PAGE_ALLOC _COSTLY_ORDER? Where does this number come from?
> > The changelog doesn't specify.

>

> Hocko complained about that, and | changed. Where the number comes from, is
> stated in the comments: it is a number small enough to have high changes of

> had been freed by the previous reclaim, and yet around the number of pages of
> a kernel allocation.

>

PAGE_ALLOC_COSTLY_ORDER _is_ the threshold used to determine where reclaim
and compaction is deemed to be too costly to continuously retry, I'm not
sure why this is any different?

And this is certainly not "around the number of pages of a kernel
allocation”, that depends very heavily on the slab allocator being used,;
slub very often uses order-2 and order-3 page allocations as the default
settings (it is capped at, you guessed it, PAGE_ALLOC_ COSTLY_ORDER
internally by default) and can be significantly increased on the command
line.

> Of course there are allocations for nr_pages > 2. But 2 will already service
> the stack most of the time, and most of the slab caches.
>

Nope, have you checked the output of /sys/kernel/slab/.../order when
running slub? On my workstation 127 out of 316 caches have order-2 or
higher by default.

Page 77 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=902
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46975#msg_46975
https://new-forum.openvz.org/index.php?t=post&reply_to=46975
https://new-forum.openvz.org/index.php

Subject: Re: [PATCH 03/11] memcg: change defines to an enum
Posted by David Rientjes on Tue, 26 Jun 2012 09:01:54 GMT

View Forum Message <> Reply to Message

On Tue, 26 Jun 2012, Glauber Costa wrote:

> > > diff --git a/mm/memcontrol.c b/mm/memcontrol.c

> > > index 8e601e8..9352d40 100644

> > > --- a/mm/memcontrol.c

> > > +++ b/mm/memcontrol.c

>>> @@ -387,9 +387,12 @@ enum charge_type {

>>> }

>>>

>>> [*for encoding cft->private value on file */

> > > -#define _ MEM (0)

> > > -#define _MEMSWAP (1)

> > > -#define _OOM_TYPE (2)

> > > +enum res_type {

>>>+ MEM,

>>>+ MEMSWAP,

>>>+_ OOM_TYPE,

> > > +};

>>>+

>>> #define MEMFILE_PRIVATE(X, val) ((x) << 16 | (val))
>>> #define MEMFILE_TYPE(val) ((val) >> 16 & Oxffff)
>>> #define MEMFILE_ATTR(val) ((val) & Oxffff)

> >

> > Shouldn't everything that does MEMFILE_TYPE() now be using type
> > enum res_type rather than int?

> >

> |f you mean the following three fields, no, since they are masks and

> operations.
>

No, | mean everything in mm/memcontrol.c that does
int type = MEMFILE_TYPE(...).

Why define a non-anonymous enum if you're not going to use its type?
Either use enum res_type in place of int or define the enum to be
anonymous.

It's actually quite effective since gcc will warn if you're using the

value of an enum type in your switch() statements later in this series and
one of the enum fields is missing (if you avoid using a "default" case
statement) if you pass -Wswitch, which is included in -Wall.

Page 78 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=902
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46976#msg_46976
https://new-forum.openvz.org/index.php?t=post&reply_to=46976
https://new-forum.openvz.org/index.php

Subject: Re: [PATCH 05/11] Add a __ GFP_KMEMCG flag
Posted by David Rientjes on Tue, 26 Jun 2012 09:03:13 GMT

View Forum Message <> Reply to Message

On Tue, 26 Jun 2012, Glauber Costa wrote:

> > > >This flag is used to indicate to the callees that this allocation will be
> > > >serviced to the kernel. It is not supposed to be passed by the callers
> > > >of kmem_cache_alloc, but rather by the cache core itself.

>>>>

> > Not sure what "serviced to the kernel" means, does this mean that the
> > memory will not be accounted for to the root memcg?

> >

> |n this context, it means that is a kernel allocation, not a userspace one
> (but in process context, of course), *and* it is to be accounted a

> specific memcg.

>

Ah, that makes sense. | think it would help if this was included in the
changelog as well as a specifying that it is accounted to current's memcg
at the time of the allocation in a comment in the code.

Subject: Re: [PATCH 11/11] protect architectures where THREAD_SIZE >=
PAGE_SIZE against fork bombs
Posted by David Rientjes on Tue, 26 Jun 2012 09:05:47 GMT

View Forum Message <> Reply to Message

On Tue, 26 Jun 2012, Glauber Costa wrote:

> > Right, because I'm sure that __ GFP_KMEMCG will be used in additional

> > places outside of this patchset and it will be a shame if we have to

> > always add #ifdef's. | see no reason why we would care if _ GFP_KMEMCG
> > was used when CONFIG_CGROUP_MEM_RES_CTLR_KMEM=n with the semantics that it
> > as in this patchset. It's much cleaner by making it 0xO when disabled.

> >

>

> What | can do, instead, is to WARN_ON conditionally to the config option in

> the page allocator, and make sure no one is actually passing the flag in that

> case.

>

| don't think adding a conditional to the page allocator's fastpath when
CONFIG_CGROUP_MEM_RES _CTLR_KMEM=n is appropriate. | don't understand why
this can't be 0xO0 for such a configuration, GFP_KMEM certainly means

nothing when we don't have it enabled so how is this different at all from

kmemcheck?

Paage 79 of 124 ---- (enerated from OnenVVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=902
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46977#msg_46977
https://new-forum.openvz.org/index.php?t=post&reply_to=46977
https://new-forum.openvz.org/index.php?t=usrinfo&id=902
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46978#msg_46978
https://new-forum.openvz.org/index.php?t=post&reply_to=46978
https://new-forum.openvz.org/index.php

Subject: Re: [PATCH 02/11] memcg: Reclaim when more than one page needed.
Posted by Glauber Costa on Tue, 26 Jun 2012 09:08:48 GMT

View Forum Message <> Reply to Message

On 06/26/2012 12:54 PM, David Rientjes wrote:

> On Tue, 26 Jun 2012, Glauber Costa wrote:

>

>>>> + * retries

>>>> + %/

>>>> +#define NR_PAGES_TO_RETRY 2

>>>> +

>>>

>>> Should be 1 << PAGE_ALLOC_COSTLY_ORDER? Where does this number come from?
>>> The changelog doesn't specify.

>>

>> Hocko complained about that, and | changed. Where the number comes from, is
>> stated in the comments: it is a number small enough to have high changes of
>> had been freed by the previous reclaim, and yet around the number of pages of
>> a kernel allocation.

>>

>

> PAGE_ALLOC COSTLY_ORDER _is_the threshold used to determine where reclaim
> and compaction is deemed to be too costly to continuously retry, I'm not

> sure why this is any different?

>

> And this is certainly not "around the number of pages of a kernel

> allocation”, that depends very heavily on the slab allocator being used;

> slub very often uses order-2 and order-3 page allocations as the default

> settings (it is capped at, you guessed it, PAGE_ALLOC_COSTLY_ORDER

> internally by default) and can be significantly increased on the command

> line.

| am obviously okay with either.
Maybe Michal can comment on this?

>> Of course there are allocations for nr_pages > 2. But 2 will already service
>> the stack most of the time, and most of the slab caches.

>>

>

> Nope, have you checked the output of /sys/kernel/slab/.../order when

> running slub? On my workstation 127 out of 316 caches have order-2 or

> higher by default.

>

Well, this is still on the side of my argument, since this is still a

majority of them being low ordered. The code here does not necessarily
have to retry - if | understand it correctly - we just retry for very

small allocations because that is where our likelihood of succeeding is.

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46979#msg_46979
https://new-forum.openvz.org/index.php?t=post&reply_to=46979
https://new-forum.openvz.org/index.php

Subject: Re: [PATCH 06/11] memcg: kmem controller infrastructure
Posted by David Rientjes on Tue, 26 Jun 2012 09:12:15 GMT

View Forum Message <> Reply to Message

On Mon, 25 Jun 2012, Glauber Costa wrote:

> diff --git a/include/linux/memcontrol.h b/include/linux/memcontrol.h

> index 83e7ba9..22479eb 100644

> --- a/include/linux/memcontrol.h

> +++ b/include/linux/memcontrol.h

>@@ -21,6 +21,7 @@

> #define _LINUX_MEMCONTROL_H

> #include <linux/cgroup.h>

> #include <linux/vm_event_item.h>

> +#include <linux/hardirq.h>

>

> struct mem_cgroup;

> struct page_cgroup;

> @@ -409,6 +410,12 @@ struct sock;

> #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM

> void sock_update_memcg(struct sock *sk);

> void sock_release_memcg(struct sock *sk);

>+

> +#define mem_cgroup_kmem_on 1

> +bool __mem_cgroup_new_kmem_page(gfp_t gfp, void *handle, int order);
> +void __mem_cgroup_commit_kmem_page(struct page *page, void *handle, int order);
> +void __mem_cgroup_free_kmem_page(struct page *page, int order);
> +#define is_kmem_tracked_alloc (gfp & _ GFP_KMEMCG)

> #Helse

> static inline void sock_update_memcg(struct sock *sk)

>

> @@ -416,6 +423,43 @@ static inline void sock_update_memcg(struct sock *sk)
> static inline void sock_release_memcg(struct sock *sk)

> {

>}

>+

> +#define mem_cgroup_kmem_on 0

> +#define __mem_cgroup_new_kmem_page(a, b, c) false

> +#define __mem_cgroup_free_kmem_page(a,b)

> +#define __mem_cgroup_commit_kmem_page(a, b, c)

> +#define is_kmem_tracked_alloc (false)

> #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

>+

> +static __always_inline

> +bool mem_cgroup_new_kmem_page(gfp_t gfp, void *handle, int order)
> +{

> + if (Imem_cgroup_kmem_on)

>+ return true;

> + if (lis_kmem_tracked_alloc)

Page 81 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=902
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46980#msg_46980
https://new-forum.openvz.org/index.php?t=post&reply_to=46980
https://new-forum.openvz.org/index.php

>+ return true;
> + if (lcurrent->mm)
>+ return true;
> + if (in_interrupt())
> + return true;

You can't test for current->mm in irq context, so you need to check for
in_interrupt() first. Also, what prevents __mem_cgroup_new_kmem_page()
from being called for a kthread that has called use_mm() before
unuse_mm()?

> +if (gfp & __ GFP_NOFAIL)

> + return true;

>+ return __mem_cgroup_new_kmem_page(gfp, handle, order);
> +}

>+

> +static __always_inline

> +void mem_cgroup_free_kmem_page(struct page *page, int order)
> +{

> + if (mem_cgroup_kmem_on)

>+ mem_cgroup_free_kmem_page(page, order);

> +}

>+

> +static __always_inline

> +void mem_cgroup_commit_kmem_page(struct page *page, struct mem_cgroup *handle,
>+ int order)

> +{

> + if (mem_cgroup_kmem_on)

>+ mem_cgroup_commit_kmem_page(page, handle, order);
> +}

> #endif # _LINUX _MEMCONTROL_H */

>

Subject: Re: [PATCH 06/11] memcg: kmem controller infrastructure
Posted by Glauber Costa on Tue, 26 Jun 2012 09:17:37 GMT

View Forum Message <> Reply to Message

On 06/26/2012 01:12 PM, David Rientjes wrote:

> On Mon, 25 Jun 2012, Glauber Costa wrote:

>

>> diff --git a/include/linux/memcontrol.h b/include/linux/memcontrol.h
>> index 83e7ba9..22479eb 100644

>> --- a/include/linux/memcontrol.h

>> +++ b/include/linux/memcontrol.h

>> @@ -21,6 +21,7 @@

>> #define _LINUX_MEMCONTROL_H

>> #include <linux/cgroup.h>

Page 82 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46982#msg_46982
https://new-forum.openvz.org/index.php?t=post&reply_to=46982
https://new-forum.openvz.org/index.php

>> #include <linux/vm_event_item.h>

>> +#include <linux/hardirq.h>

>>

>> struct mem_cgroup;

>> struct page_cgroup;

>> @@ -409,6 +410,12 @ @ struct sock;

>> #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM

>> void sock_update_memcg(struct sock *sk);

>> void sock_release_memcg(struct sock *sk);

>> +

>> +#define mem_cgroup_kmem_on 1

>> +pool __mem_cgroup_new_kmem_page(gfp_t gfp, void *handle, int order);
>> +void __mem_cgroup_commit_kmem_page(struct page *page, void *handle, int order);
>> +void __mem_cgroup_free_kmem_page(struct page *page, int order);
>> +#define is_kmem_tracked_alloc (gfp & _ GFP_KMEMCG)

>> #else

>> static inline void sock _update_memcg(struct sock *sk)

>> |

>> @@ -416,6 +423,43 @@ static inline void sock _update_memcg(struct sock *sk)
>> static inline void sock_release_memcg(struct sock *sk)

>> |

>> }

>> +

>> +#define mem_cgroup_kmem_on O

>> +#define __mem_cgroup_new_kmem_page(a, b, c) false

>> +#define __mem_cgroup_free_kmem_page(a,b)

>> +#define __mem_cgroup_commit_kmem_page(a, b, c)

>> +#define is_kmem_tracked_alloc (false)

>> #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

>> +

>> +static __always_inline

>> +bool mem_cgroup_new_kmem_page(gfp_t gfp, void *handle, int order)
>> +{

>> + if (Imem_cgroup_kmem_on)

>> + return true;

>> + if (lis_kmem_tracked_alloc)

>> + return true;

>> + if (lcurrent->mm)

>> + return true;

>> + if (in_interrupt())

>> + return true;

>

> You can't test for current->mm in irq context, so you need to check for
> in_interrupt() first.

>

Right, thanks.

> Also, what prevents __mem_cgroup_new_kmem_page()

Page 83 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

> from being called for a kthread that has called use_mm() before
> unuse_mm()?

Nothing, but I also don't see how to prevent that.

At a first glance, it seems fair to me to say that if a kernel thread

uses the mm of a process, it poses as this process for any accounting
purpose.

Subject: Re: [PATCH 02/11] memcg: Reclaim when more than one page needed.
Posted by David Rientjes on Tue, 26 Jun 2012 09:17:45 GMT

View Forum Message <> Reply to Message

On Tue, 26 Jun 2012, Glauber Costa wrote:

> > Nope, have you checked the output of /sys/kernel/slab/.../order when

> > running slub? On my workstation 127 out of 316 caches have order-2 or
> > higher by default.

> >

>

> Well, this is still on the side of my argument, since this is still a majority

> of them being low ordered.

Ok, so what happens if | pass slub_min_order=2 on the command line? We
never retry?

> The code here does not necessarily have to retry -
> if | understand it correctly - we just retry for very small allocations

> because that is where our likelihood of succeeding is.
>

Well, the comment for NR_PAGES_TO_RETRY says

/*

* We need a number that is small enough to be likely to have been

* reclaimed even under pressure, but not too big to trigger unnecessary
* retries

*/

and mmzone.h says

/*

* PAGE_ALLOC COSTLY_ORDER is the order at which allocations are deemed
* costly to service. That is between allocation orders which should

* coalesce naturally under reasonable reclaim pressure and those which

* will not.

*/

#define PAGE_ALLOC_COSTLY_ORDER 3

Page 84 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=902
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46981#msg_46981
https://new-forum.openvz.org/index.php?t=post&reply_to=46981
https://new-forum.openvz.org/index.php

so I'm trying to reconcile which one is correct.

Subject: Re: [PATCH 02/11] memcg: Reclaim when more than one page needed.
Posted by Glauber Costa on Tue, 26 Jun 2012 09:23:40 GMT

View Forum Message <> Reply to Message

On 06/26/2012 01:17 PM, David Rientjes wrote:

> On Tue, 26 Jun 2012, Glauber Costa wrote:

>

>>> Nope, have you checked the output of /sys/kernel/slab/.../order when
>>> running slub? On my workstation 127 out of 316 caches have order-2 or
>>> higher by default.

>>>

>>

>> Well, this is still on the side of my argument, since this is still a majority
>> of them being low ordered.

>

> Ok, so what happens if | pass slub_min_order=2 on the command line? We
> never retry?

Well, indeed. The function has many other RETRY points, but | believe
we'd reach none of them without triggering oom first.

>> The code here does not necessarily have to retry -
>> jf | understand it correctly - we just retry for very small allocations
>> pecause that is where our likelihood of succeeding is.

>>
>

> Well, the comment for NR_PAGES_TO_RETRY says

>

> [*

> *\We need a number that is small enough to be likely to have been

> *reclaimed even under pressure, but not too big to trigger unnecessary

> *retries

> *f

>

> and mmzone.h says

>

> [*

> *PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
> * costly to service. That is between allocation orders which should

> * coalesce naturally under reasonable reclaim pressure and those which

> *will not.

> ¥

> #define PAGE_ALLOC_COSTLY_ORDER 3

>

Page 85 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46983#msg_46983
https://new-forum.openvz.org/index.php?t=post&reply_to=46983
https://new-forum.openvz.org/index.php

> so I'm trying to reconcile which one is correct.
>

| am not myself against reverting back to costly order. The check we
have here, of course, is stricter than costly order, so there is nothing
to reconcile. Now if we really need a stricter check or not, is the
subject of discussion.

Subject: Re: [PATCH 11/11] protect architectures where THREAD_SIZE >=
PAGE_SIZE against fork bombs
Posted by Glauber Costa on Tue, 26 Jun 2012 12:48:08 GMT

View Forum Message <> Reply to Message

On 06/25/2012 10:38 PM, Tejun Heo wrote:

> On Mon, Jun 25, 2012 at 06:55:35PM +0200, Frederic Weisbecker wrote:
>> On 06/25/2012 04:15 PM, Glauber Costa wrote:

>>

>>> Because those architectures will draw their stacks directly from

>>> the page allocator, rather than the slab cache, we can directly

>>> pass __ GFP_KMEMCG flag, and issue the corresponding free_pages.
>>>

>>> This code path is taken when the architecture doesn't define

>>> CONFIG_ARCH_THREAD_INFO_ALLOCATOR (only ia64 seems to), and has
>>> THREAD_SIZE >= PAGE_SIZE. Luckily, most - if not all - of the

>>> remaining architectures fall in this category.

>>>

>>> This will guarantee that every stack page is accounted to the memcg
>>> the process currently lives on, and will have the allocations to fail

>>> if they go over limit.

>>>

>>> For the time being, | am defining a new variant of THREADINFO_GFP, not
>>> to mess with the other path. Once the slab is also tracked by memcg,
>>> we can get rid of that flag.

>>>

>>> Tested to successfully protect against :(){ :|:& };:

>>>

>>> Signed-off-by: Glauber Costa <glommer@parallels.com>

>>> CC: Christoph Lameter <cl@linux.com>

>>> CC: Pekka Enberg <penberg@cs.helsinki.fi>

>>> CC: Michal Hocko <mhocko@suse.cz>

>>> CC: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>

>>> CC: Johannes Weiner <hannes@cmpxchg.org>

>>> CC: Suleiman Souhlal <suleiman@google.com>
>>

>>

>> Acked-by: Frederic Weisbecker <fweisbec@redhat.com>
>

Page 86 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46987#msg_46987
https://new-forum.openvz.org/index.php?t=post&reply_to=46987
https://new-forum.openvz.org/index.php

> Frederic, does this (with proper slab accounting added later) achieve
> what you wanted with the task counter?
>

A note: Frederic may confirm, but | think he doesn't even need
the slab accounting to follow to achieve that goal.

Subject: Re: [PATCH 11/11] protect architectures where THREAD_SIZE >=
PAGE_SIZE against fork bombs
Posted by Glauber Costa on Tue, 26 Jun 2012 13:37:41 GMT

View Forum Message <> Reply to Message

On 06/26/2012 05:38 PM, Frederic Weisbecker wrote:

> On Tue, Jun 26, 2012 at 04:48:08PM +0400, Glauber Costa wrote:

>> On 06/25/2012 10:38 PM, Tejun Heo wrote:

>>> On Mon, Jun 25, 2012 at 06:55:35PM +0200, Frederic Weisbecker wrote:
>>>> 0n 06/25/2012 04:15 PM, Glauber Costa wrote:

>>>>

>>>>> Because those architectures will draw their stacks directly from

>>>>> the page allocator, rather than the slab cache, we can directly

>>>>> pass __ GFP_KMEMCG flag, and issue the corresponding free_pages.
>>5>>>

>>>>> This code path is taken when the architecture doesn't define

>>>>> CONFIG_ARCH_THREAD_INFO_ALLOCATOR (only ia64 seems to), and has
>>>>> THREAD_SIZE >= PAGE_SIZE. Luckily, most - if not all - of the
>>>>> remaining architectures fall in this category.

>>5>>>

>>>>> This will guarantee that every stack page is accounted to the memcg
>>>>> the process currently lives on, and will have the allocations to fail
>>>>> f they go over limit.

>>5>>>

>>>>> For the time being, | am defining a new variant of THREADINFO_GFP, not
>>>>> to mess with the other path. Once the slab is also tracked by memcg,
>>>>> we can get rid of that flag.

>>5>>>

>>>>> Tested to successfully protect against :(){ :|:& };:

>>5>>>

>>>>> Signed-off-by: Glauber Costa <glommer@parallels.com>

>>>>> CC: Christoph Lameter <cl@linux.com>

>>>>> CC: Pekka Enberg <penberg@cs.helsinki.fi>

>>>>> CC: Michal Hocko <mhocko@suse.cz>

>>>>> CC: Kamezawa Hiroyuki <kamezawa.hiroyu@ijp.fujitsu.com>

>>>>> CC: Johannes Weiner <hannes@cmpxchg.org>

>>>>> CC: Suleiman Souhlal <suleiman@google.com>

>>>>

>>>>

>>>> Acked-by: Frederic Weisbecker <fweisbec@redhat.com>

Page 87 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46989#msg_46989
https://new-forum.openvz.org/index.php?t=post&reply_to=46989
https://new-forum.openvz.org/index.php

>>>

>>> Frederic, does this (with proper slab accounting added later) achieve
>>> what you wanted with the task counter?

>>>

>>

>> A note: Frederic may confirm, but | think he doesn't even need
>> the slab accounting to follow to achieve that goal.

>

> Limiting is enough. But that requires internal accounting.

>

Yes, but why the *slab* needs to get involved?

accounting task stack pages should be equivalent to what you
were doing, even without slab accounting. Right ?

Subject: Re: [PATCH 11/11] protect architectures where THREAD SIZE >=
PAGE_SIZE against fork bombs
Posted by Frederic Weisbecker on Tue, 26 Jun 2012 13:38:41 GMT

View Forum Message <> Reply to Message

On Tue, Jun 26, 2012 at 04:48:08PM +0400, Glauber Costa wrote:

> On 06/25/2012 10:38 PM, Tejun Heo wrote:

> >0n Mon, Jun 25, 2012 at 06:55:35PM +0200, Frederic Weisbecker wrote:
> >>0n 06/25/2012 04:15 PM, Glauber Costa wrote:

> >>

> >>>Because those architectures will draw their stacks directly from

> >>>the page allocator, rather than the slab cache, we can directly

> >>>pass __ GFP_KMEMCSG flag, and issue the corresponding free_pages.
> >>>

> >>>This code path is taken when the architecture doesn't define

> >>>CONFIG_ARCH_THREAD _INFO_ALLOCATOR (only ia64 seems to), and has
> >>>THREAD_SIZE >= PAGE_SIZE. Luckily, most - if not all - of the

> >>>remaining architectures fall in this category.

> >>>

> >>>This will guarantee that every stack page is accounted to the memcg

> >>>the process currently lives on, and will have the allocations to fail

> >>>if they go over limit.

> >>>

> >>>For the time being, | am defining a new variant of THREADINFO_GFP, not
> >>>to mess with the other path. Once the slab is also tracked by memcg,
> >>>we can get rid of that flag.

> >>>

> >>>Tested to successfully protect against :(){ :|:& };:

> >>>

> >>>Sijgned-off-by: Glauber Costa <glommer@parallels.com>

> >>>CC: Christoph Lameter <cl@linux.com>

> >>>CC: Pekka Enberg <penberg@cs.helsinki.fi>

> >>>CC: Michal Hocko <mhocko@suse.cz>

Page 88 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=6199
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46988#msg_46988
https://new-forum.openvz.org/index.php?t=post&reply_to=46988
https://new-forum.openvz.org/index.php

> >>>CC: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
> >>>CC: Johannes Weiner <hannes@cmpxchg.org>

> >>>CC: Suleiman Souhlal <suleiman@google.com>

> >>

> >>

> >>Acked-by: Frederic Weisbecker <fweisbec@redhat.com>

> >

> >Frederic, does this (with proper slab accounting added later) achieve
> >what you wanted with the task counter?

> >

>

> A note: Frederic may confirm, but I think he doesn't even need

> the slab accounting to follow to achieve that goal.

Limiting is enough. But that requires internal accounting.

Subject: Re: [PATCH 11/11] protect architectures where THREAD SIZE >=
PAGE_SIZE against fork bombs
Posted by Frederic Weisbecker on Tue, 26 Jun 2012 13:44:15 GMT

View Forum Message <> Reply to Message

On Tue, Jun 26, 2012 at 05:37:41PM +0400, Glauber Costa wrote:

> 0On 06/26/2012 05:38 PM, Frederic Weisbecker wrote:

> >0n Tue, Jun 26, 2012 at 04:48:08PM +0400, Glauber Costa wrote:

> >>0n 06/25/2012 10:38 PM, Tejun Heo wrote:

> >>>0n Mon, Jun 25, 2012 at 06:55:35PM +0200, Frederic Weisbecker wrote:
> >>>>0n 06/25/2012 04:15 PM, Glauber Costa wrote:

> >>>>

> >>>>>Because those architectures will draw their stacks directly from

> >>>>>the page allocator, rather than the slab cache, we can directly
>>>>>>pass _ GFP_KMEMCG flag, and issue the corresponding free_pages.
> >>>>>

> >>>>>This code path is taken when the architecture doesn't define

> >>>>>CONFIG_ARCH_THREAD_INFO_ALLOCATOR (only ia64 seems to), and has
> >>>>>THREAD_SIZE >= PAGE_SIZE. Luckily, most - if not all - of the

> >>>>>remaining architectures fall in this category.

> >>>>>

> >>>>>This will guarantee that every stack page is accounted to the memcg

> >>>>>the process currently lives on, and will have the allocations to fail

> >>>>>if they go over limit.

> >>5>>>

> >>>>>For the time being, | am defining a new variant of THREADINFO_GFP, not
> >>>>>t0 mess with the other path. Once the slab is also tracked by memcg,
> >>>>>we can get rid of that flag.

> >>>>>

> >>>>>Tested to successfully protect against :(){ :|:& };:

> >>>>>

Page 89 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=6199
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46990#msg_46990
https://new-forum.openvz.org/index.php?t=post&reply_to=46990
https://new-forum.openvz.org/index.php

> >>>>>Signed-off-by: Glauber Costa <glommer@parallels.com>
> >>>>>CC: Christoph Lameter <cl@linux.com>

> >>>>>CC: Pekka Enberg <penberg@cs.helsinki.fi>

> >>>>>CC: Michal Hocko <mhocko@suse.cz>

> >>>>>CC: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
> >>>>>CC: Johannes Weiner <hannes@cmpxchg.org>

> >>>>>CC: Suleiman Souhlal <suleiman@google.com>

> >>>>

> >>>>

> >>>>Acked-by: Frederic Weisbecker <fweisbec@redhat.com>

> >>>

> >>>Frederic, does this (with proper slab accounting added later) achieve
> >>>what you wanted with the task counter?

> >>>

> >>

> >>A note: Frederic may confirm, but | think he doesn't even need
> >>the slab accounting to follow to achieve that goal.

> >

> >Limiting is enough. But that requires internal accounting.

> >

> Yes, but why the *slab* needs to get involved?

> accounting task stack pages should be equivalent to what you

> were doing, even without slab accounting. Right ?

Yeah that alone should be fine.

Subject: Re: [PATCH 06/11] memcg: kmem controller infrastructure
Posted by Glauber Costa on Tue, 26 Jun 2012 14:40:45 GMT

View Forum Message <> Reply to Message

On 06/26/2012 03:17 AM, Andrew Morton wrote:

>> }

>> >+

>> >+#define mem_cgroup_kmem_on O

>> >+#define __mem_cgroup_new_kmem_page(a, b, c) false

>> >+#define __mem_cgroup_free_kmem_page(a,b)

>> >+#define __mem_cgroup_commit_kmem_page(a, b, c)

> | suggest that the naming consistently follow the model

> "mem_cgroup_kmem_foo". So "mem_cgroup_kmem_" becomes the well-known
> identifier for this subsystem.

>

> Then, s/mem_cgroup/memcg/g/ - show us some mercy here!

>

| always prefer shorter names, but mem_cgroup, and not memcg, seems to
be the default for external functions.

| am nothing but a follower =)

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46993#msg_46993
https://new-forum.openvz.org/index.php?t=post&reply_to=46993
https://new-forum.openvz.org/index.php

Subject: Re: [PATCH 06/11] memcg: kmem controller infrastructure
Posted by Glauber Costa on Tue, 26 Jun 2012 15:01:15 GMT

View Forum Message <> Reply to Message

On 06/26/2012 03:17 AM, Andrew Morton wrote:

>> + memcg_uncharge_kmem(memcg, size);

>> >+ mem_cgroup_put(memcg);

>> >+}

>>>+EXPORT_SYMBOL(__mem_cgroup_free_kmem_page);

>> > #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

>> >

>> > #if defined(CONFIG_INET) && defined(CONFIG_CGROUP_MEM_RES_CTLR_KMEM)
>>>@@ -5645,3 +5751,69 @@ static int __init enable_swap_account(char *s)
>>> setup("swapaccount=", enable_swap_account);

>> >

>> > #endif

>> >+

>> >+#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM

> gargh. CONFIG_MEMCG_KMEM, please!

>

Here too. I like it as much as you do.

But that is consistent with the rest of the file, and I'd rather have
it this way.

Subject: Re: [PATCH 06/11] memcg: kmem controller infrastructure
Posted by Glauber Costa on Tue, 26 Jun 2012 15:29:44 GMT

View Forum Message <> Reply to Message

On 06/26/2012 03:17 AM, Andrew Morton wrote:

>> + if (ret == -EINTR) {

>> >+ nofall = true;

>> >+ [*

>>>+ * mem_cgroup_try charge() chose to bypass to root due
>> >+ *to OOM Kill or fatal signal.

> |s "bypass” correct? Maybe "fall back"?
>

Heh, forgot this one, sorry =(

__mem_cgroup_try charge does "goto bypass", so | believe the term
"bypass" is better to allow whoever is following this code to follow it.

Subject: Re: [PATCH 06/11] memcg: kmem controller infrastructure

Page 91 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46994#msg_46994
https://new-forum.openvz.org/index.php?t=post&reply_to=46994
https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46995#msg_46995
https://new-forum.openvz.org/index.php?t=post&reply_to=46995
https://new-forum.openvz.org/index.php

Posted by akpm on Tue, 26 Jun 2012 18:01:42 GMT

View Forum Message <> Reply to Message

On Tue, 26 Jun 2012 19:01:15 +0400 Glauber Costa <glommer@parallels.com> wrote:

> 0On 06/26/2012 03:17 AM, Andrew Morton wrote:

> >> + memcg_uncharge_kmem(memcg, size);

> >> >+ mem_cgroup_put(memcg);

> >> >+}

> >>>+EXPORT_SYMBOL(__mem_cgroup_free_kmem_page);

> >> > #endif ¥ CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

>>>>

> >> > #if defined(CONFIG_INET) && defined(CONFIG_CGROUP_MEM_RES _CTLR_KMEM)
>>>>@@ -5645,3 +5751,69 @@ static int __init enable_swap_account(char *s)
>>>> setup("swapaccount=", enable_swap_account);

>>> >

> >> > #endif

> >> >+

> >> >+#ifdef CONFIG_CGROUP_MEM_RES CTLR_KMEM

> > gargh. CONFIG_MEMCG_KMEM, please!
> >

>

> Here too. | like it as much as you do.

>

> But that is consistent with the rest of the file, and I'd rather have
> it this way.

There's not much point in being consistent with something which is so

unpleasant. I'm on a little campaign to rename

CONFIG_CGROUP_MEM_RES _CTLR to CONFIG_MEMCG, only nobody has taken my
bait yet. Be first!

Subject: Re: [PATCH 06/11] memcg: kmem controller infrastructure
Posted by Tejun Heo on Tue, 26 Jun 2012 18:08:05 GMT

View Forum Message <> Reply to Message

On Tue, Jun 26, 2012 at 11:01:42AM -0700, Andrew Morton wrote:

> On Tue, 26 Jun 2012 19:01:15 +0400 Glauber Costa <glommer@parallels.com> wrote:
>

> > 0n 06/26/2012 03:17 AM, Andrew Morton wrote:

> > >>+ memcg_uncharge_kmem(memcg, size);

> > >> >+ mem_cgroup_put(memcg);

> > >>>+}

> > >>>+EXPORT_SYMBOL(__mem_cgroup_free_kmem_page);

> > >>> #endif /¥ CONFIG_CGROUP_MEM_RES CTLR_KMEM */

>>>>>

>>>>> #if defined(CONFIG_INET) && defined(CONFIG_CGROUP_MEM_RES_CTLR_KMEM)

Page 92 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1815
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46997#msg_46997
https://new-forum.openvz.org/index.php?t=post&reply_to=46997
https://new-forum.openvz.org/index.php?t=usrinfo&id=935
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46998#msg_46998
https://new-forum.openvz.org/index.php?t=post&reply_to=46998
https://new-forum.openvz.org/index.php

>>>>>@@ -5645,3 +5751,69 @@ static int __init enable_swap_account(char *s)
>>>>> setup("swapaccount=", enable _swap_account);

>>>>>

>>>>> #endif

>>>> >+

> > >> >+#ifdef CONFIG_CGROUP_MEM_RES CTLR_KMEM

> > > gargh. CONFIG_MEMCG_KMEM, please!

>>>

> >

> > Here too. | like it as much as you do.

> >

> > But that is consistent with the rest of the file, and I'd rather have

> > it this way.

>

> There's not much point in being consistent with something which is so

> unpleasant. I'm on a little campaign to rename

> CONFIG_CGROUP_MEM_RES_CTLR to CONFIG_MEMCG, only nobody has taken my
> bait yet. Be first!

+1.

Block cgroup recently did blkio / blkiocg / blkio_cgroup -> blkcg.
Join the cool crowd! :P

tejun

Subject: Re: [PATCH 06/11] memcg: kmem controller infrastructure
Posted by Glauber Costa on Tue, 26 Jun 2012 18:14:51 GMT

View Forum Message <> Reply to Message

On 06/26/2012 10:01 PM, Andrew Morton wrote:

> 0On Tue, 26 Jun 2012 19:01:15 +0400 Glauber Costa <glommer@parallels.com> wrote:
>

>> On 06/26/2012 03:17 AM, Andrew Morton wrote:

>>>> + memcg_uncharge_kmem(memcg, size);

>>>>> + mem_cgroup_put(memcg);

>>>>> +}

>>>>> +EXPORT_SYMBOL(__mem_cgroup_free_kmem_page);

>>>>> #endif /¥ CONFIG_CGROUP_MEM_RES CTLR_KMEM */

>>>>>

>>>>> #if defined(CONFIG_INET) && defined(CONFIG_CGROUP_MEM_RES_CTLR_KMEM)
>>>>> @@ -5645,3 +5751,69 @@ static int __init enable_swap_account(char *s)
>>>>> setup("swapaccount=", enable_swap_account);

>>>>>

>>>>> #endif

>>>>> +

Page 93 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=46999#msg_46999
https://new-forum.openvz.org/index.php?t=post&reply_to=46999
https://new-forum.openvz.org/index.php

>>>>> +#ifdef CONFIG_CGROUP_MEM_RES CTLR_KMEM

>>> gargh. CONFIG_MEMCG_KMEM, please!

>>>

>>

>> Here too. | like it as much as you do.

>>

>> But that is consistent with the rest of the file, and I'd rather have

>> it this way.

>

> There's not much point in being consistent with something which is so
> unpleasant. I'm on a little campaign to rename

> CONFIG_CGROUP_MEM_RES_CTLR to CONFIG_MEMCG, only nobody has taken my
> bait yet. Be first!

>

If you are okay with a preparation mechanical patch to convert the whole
file, I can change mine too.

But you'll be responsible for arguing with whoever stepping up opposing
this =p

Subject: Re: [PATCH 06/11] memcg: kmem controller infrastructure
Posted by akpm on Tue, 26 Jun 2012 19:20:50 GMT

View Forum Message <> Reply to Message

On Tue, 26 Jun 2012 22:14:51 +0400
Glauber Costa <glommer@parallels.com> wrote:

> 0On 06/26/2012 10:01 PM, Andrew Morton wrote:

> > 0On Tue, 26 Jun 2012 19:01:15 +0400 Glauber Costa <glommer@parallels.com> wrote:
> >

>>> 0n 06/26/2012 03:17 AM, Andrew Morton wrote:

> >>>> + memcg_uncharge_kmem(memcg, size);

> >>>>> + mem_cgroup_put(memcg);

> >>>>> +}

> >>>>> +EXPORT_SYMBOL(__mem_cgroup_free_kmem_page);

> >>>>> #endif /* CONFIG_CGROUP_MEM_RES _CTLR_KMEM */

> >>>>>

> >>>>> #if defined(CONFIG_INET) &&
defined(CONFIG_CGROUP_MEM_RES CTLR_KMEM)

> >>>>> @@ -5645,3 +5751,69 @@ static int __init enable_swap_account(char *s)
>>>>>> setup("swapaccount=", enable_swap_account);

> >>>>>

> >>>>> #endif

> >>>>> +

> >>>>> +#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM

> >>> gargh. CONFIG_MEMCG_KMEM, please!

Page 94 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1815
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=47000#msg_47000
https://new-forum.openvz.org/index.php?t=post&reply_to=47000
https://new-forum.openvz.org/index.php

> >>>

> >>

> >> Here too. | like it as much as you do.

> >>

> >> But that is consistent with the rest of the file, and I'd rather have

> >> it this way.

> >

> > There's not much point in being consistent with something which is so
> > unpleasant. I'm on a little campaign to rename

> > CONFIG_CGROUP_MEM_RES _CTLR to CONFIG_MEMCG, only nobody has taken my
> > pait yet. Be first!

> >

>

> |f you are okay with a preparation mechanical patch to convert the whole
> file, | can change mine too.

>

> But you'll be responsible for arguing with whoever stepping up opposing
> this =p

>

From: Andrew Morton <akpm@linux-foundation.org>
Subject: memcg: rename config variables

Sanity:

CONFIG_CGROUP_MEM_RES_CTLR -> CONFIG_MEMCG
CONFIG_CGROUP_MEM_RES_CTLR_SWAP -> CONFIG_MEMCG_SWAP
CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED ->
CONFIG_MEMCG_SWAP_ENABLED
CONFIG_CGROUP_MEM_RES_CTLR_KMEM -> CONFIG_MEMCG_KMEM

Cc: Glauber Costa <glommer@parallels.com>

Cc: Michal Hocko <mhocko@suse.cz>

Cc: Johannes Weiner <hannes@cmpxchg.org>

Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@ijp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>

Cc: Tejun Heo <tj@kernel.org>

Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibom.com>
Cc: David Rientjes <rientjes@google.com>

Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@Ilinux-foundation.org>

include/linux/cgroup_subsys.h | 2 +-

include/linux/memcontrol.h | 14 +++++++-------
include/linux/mmzone.h | 8 ++++----
include/linux/page_cgroup.h | 10 +++++-----
include/linux/sched.h | 2+

Page 95 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

init/Kconfig | 14 +++++++-------

kernel/fork.c | 2 +-

mm/hwpoison-inject.c | 2 +-
mm/memcontrol.c | 20 +++++++tttommme-
mm/memory-failure.c | 2 +-

mm/mmzone.c | 2+

mm/oom_Kkill.c | 2 +-

mm/page_cgroup.c | 2 +-

mm/vmscan.c | 4 ++--

14 files changed, 43 insertions(+), 43 deletions(-)

diff -puN kernel/fork.c~a kernel/fork.c
--- a/kernel/fork.c~a
+++ a/kernel/fork.c
@@ -1302,7 +1302,7 @@ static struct task_struct *copy_process(
#ifdef CONFIG_DEBUG_MUTEXES
p->blocked_on = NULL; /* not blocked yet */
#endif
-#ifdef CONFIG_CGROUP_MEM_RES_CTLR
+#ifdef CONFIG_MEMCG
p->memcg_batch.do_batch = 0;
p->memcg_batch.memcg = NULL;
#endif
diff -puN mm/hwpoison-inject.c~a mm/hwpoison-inject.c
--- a/mm/hwpoison-inject.c~a
+++ a/mm/hwpoison-inject.c
@@ -123,7 +123,7 @@ static int pfn_inject_init(void)
if (dentry)
goto falil;

-#ifdef CONFIG_CGROUP_MEM_RES CTLR_SWAP
+#ifdef CONFIG_MEMCG_SWAP
dentry = debugfs_create_u64("corrupt-filter-memcg"”, 0600,
hwpoison_dir, &hwpoison_filter_memcg);
if ("dentry)
diff -puN mm/memcontrol.c~a mm/memcontrol.c
--- a/mm/memcontrol.c~a
+++ a/mm/memcontrol.c
@@ -61,12 +61,12 @@ struct cgroup_subsys mem_cgroup_subsys
#define MEM_CGROUP_RECLAIM_RETRIES 5
static struct mem_cgroup *root_mem_cgroup __ read_mostly;

-#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

+#ifdef CONFIG_MEMCG_SWAP

/* Turned on only when memory cgroup is enabled && really_do_swap_account =1 */
int do_swap_account __read_mostly;

[* for remember boot option*/

Page 96 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

-#ifdef CONFIG_CGROUP_MEM_RES CTLR_SWAP_ENABLED
+#ifdef CONFIG_MEMCG_SWAP_ENABLED

static int really_do_swap_account __initdata = 1;

#else

static int really_do_swap_account __initdata = O;

@@ -407,7 +407,7 @@ static void mem_cgroup_get(struct mem_cg
static void mem_cgroup_put(struct mem_cgroup *memcg);

[* Writing them here to avoid exposing memcg's inner layout */
-#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM

+#ifdef CONFIG_MEMCG_KMEM

#include <net/sock.h>

#include <net/ip.h>

@@ -466,9 +466,9 @@ struct cg_proto *tcp_proto_cgroup(struct
}

EXPORT_SYMBOL(tcp_proto_cgroup);

#endif /* CONFIG_INET */

-#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
+#endif /* CONFIG_MEMCG_KMEM */

-#if defined(CONFIG_INET) && defined(CONFIG_CGROUP_MEM_RES_CTLR_KMEM)
+#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
if !lmemcg_proto_activated(&memcg->tcp_mem.cg_proto))
@@ -3085,7 +3085,7 @@ mem_cgroup_uncharge_swapcache(struct pag

}
#endif

-#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

+#ifdef CONFIG_MEMCG_SWAP

/*
* called from swap_entry_free(). remove record in swap_cgroup and
* uncharge "memsw" account.

@@ -4518,7 +4518,7 @@ static int mem_cgroup_oom_control_write(
return O;

}

-#ifdef CONFIG_CGROUP_MEM_RES CTLR_KMEM
+#ifdef CONFIG_ MEMCG_KMEM
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
{
return mem_cgroup_sockets_init(memcg, sS);
@@ -4608,7 +4608,7 @@ static struct cftype mem_cgroup_files]]
.read_seq_string = mem_control_numa_stat_show,

}
#endif

Page 97 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

-#ifdef CONFIG_CGROUP_MEM_RES CTLR_SWAP
+#ifdef CONFIG_MEMCG_SWAP
{
.name = "memsw.usage_in_bytes",
.private = MEMFILE_PRIVATE(_ MEMSWAP, RES_USAGE),
@@ -4795,7 +4795,7 @@ struct mem_cgroup *parent_mem_cgroup(str

}
EXPORT_SYMBOL(parent_mem_cgroup);

-#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

+#ifdef CONFIG_MEMCG_SWAP

static void __init enable_swap_cgroup(void)

{
if 'mem_cgroup_disabled() && really_do_swap_account)

@@ -5526,7 +5526,7 @@ struct cgroup_subsys mem_cgroup_subsys =
. DEPRECATED_ clear_css_refs = true,

h

-#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

+#ifdef CONFIG_MEMCG_SWAP

static int __init enable_swap_account(char *s)

{

[* consider enabled if no parameter or 1 is given */

diff -puN mm/memory-failure.c~a mm/memory-failure.c

--- a/mm/memory-failure.c~a

+++ a/mm/memory-failure.c

@@ -128,7 +128,7 @@ static int hwpoison_filter_flags(struct
* can only guarantee that the page either belongs to the memcg tasks, or is
* a freed page.
*/

-#ifdef CONFIG_CGROUP_MEM_RES CTLR_SWAP

+#ifdef CONFIG_MEMCG_SWAP

u64 hwpoison_filter_memcg;
EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);

static int hwpoison_filter_task(struct page *p)

diff -puN mm/mmzone.c~a mm/mmzone.c

--- a/mm/mmzone.c~a

+++ a/mm/mmzone.c

@@ -96,7 +96,7 @@ void Iruvec_init(struct Iruvec *lruvec,
for_each_lru(lru)
INIT_LIST_HEAD(&lruvec->lists[lru]);

-#ifdef CONFIG_CGROUP_MEM_RES CTLR
+#ifdef CONFIG_MEMCG
l[ruvec->zone = zone;
#endif
}

diff -puN mm/oom_kill.c~a mm/oom_kill.c

Page 98 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

--- a/mm/oom_Kkill.c~a

+++ a/mm/oom_Kill.c

@@ -541,7 +541,7 @@ static void check_panic_on_oom(enum oom_
sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");

}

-#ifdef CONFIG_CGROUP_MEM_RES_CTLR

+#ifdef CONFIG_MEMCG

void mem_cgroup_out_of _memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
int order)

{

diff -puN mm/page_cgroup.c~a mm/page_cgroup.c

--- a/mm/page_cgroup.c~a

+++ a/mm/page_cgroup.c

@@ -317,7 +317,7 @@ void __meminit pgdat_page_cgroup_init(st
#endif

-#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
+#ifdef CONFIG_MEMCG_SWAP

static DEFINE_MUTEX(swap_cgroup_mutex);

struct swap_cgroup_ctrl {

diff -puN mm/vmscan.c~a mm/vmscan.c

--- a/mm/vmscan.c~a

+++ a/mm/vmscan.c

@@ -133,7 +133,7 @@ long vm_total_pages; /* The total number
static LIST_HEAD(shrinker_list);

static DECLARE_RWSEM(shrinker_rwsem);

-#ifdef CONFIG_CGROUP_MEM_RES CTLR

+#ifdef CONFIG_MEMCG

static bool global_reclaim(struct scan_control *sc)

{
return !sc->target_mem_cgroup;

@@ -2152,7 +2152,7 @@ unsigned long try _to_free_pages(struct z
return nr_reclaimed,;

}

-#ifdef CONFIG_CGROUP_MEM_RES_CTLR
+#ifdef CONFIG_ MEMCG

unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
gfp_t gfp_mask, bool noswap,

diff -puN init/Kconfig~a init/Kconfig

--- a/init/Kconfig~a

+++ a/init/Kconfig

@@ -686,7 +686,7 @@ config RESOURCE_COUNTERS

Page 99 of 124 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

This option enables controller independent resource accounting
infrastructure that works with cgroups.

-config CGROUP_MEM_RES _CTLR
+config MEMCG
bool "Memory Resource Controller for Control Groups"
depends on RESOURCE_COUNTERS
select MM_OWNER
@@ -709,9 +709,9 @@ config CGROUP_MEM_RES_CTLR
This config option also selects MM_OWNER config option, which
could in turn add some fork/exit overhead.

-config CGROUP_MEM_RES CTLR_SWAP
+config MEMCG_SWAP
bool "Memory Resource Controller Swap Extension™
- depends on CGROUP_MEM_RES_CTLR && SWAP
+ depends on MEMCG && SWAP
help
Add swap management feature to memory resource controller. When you
enable this, you can limit mem+swap usage per cgroup. In other words,
@@ -726,9 +726,9 @@ config CGROUP_MEM_RES_CTLR_SWAP
if boot option "swapaccount=0" is set, swap will not be accounted.
Now, memory usage of swap_cgroup is 2 bytes per entry. If swap page
size is 4096bytes, 512k per 1Gbytes of swap.
-config CGROUP_MEM_RES_CTLR_SWAP_ENABLED
+config MEMCG_SWAP_ENABLED
bool "Memory Resource Controller Swap Extension enabled by default”
- depends on CGROUP_MEM_RES_CTLR_SWAP
+ depends on MEMCG_SWAP
default y
help
Memory Resource Controller Swap Extension comes with its price in
@@ -739,9 +739,9 @@ config CGROUP_MEM_RES_CTLR_SWAP_ENABLED
For those who want to have the feature enabled by default should
select this option (if, for some reason, they need to disable it
then swapaccount=0 does the trick).
-config CGROUP_MEM_RES_CTLR_KMEM
+config MEMCG_KMEM
bool "Memory Resource Controller Kernel Memory accounting (EXPERIMENTAL)"
- depends on CGROUP_MEM_RES_CTLR && EXPERIMENTAL
+ depends on MEMCG && EXPERIMENTAL
default n
help
The Kernel Memory extension for Memory Resource Controller can limit
diff -puN include/linux/cgroup_subsys.h~a include/linux/cgroup_subsys.h
--- a/include/linux/cgroup_subsys.h~a
+++ a/include/linux/cgroup_subsys.h
@@ -31,7 +31,7 @@ SUBSYS(cpuacct)

Page 100 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

[**

-#ifdef CONFIG_CGROUP_MEM_RES_CTLR
+#ifdef CONFIG_MEMCG
SUBSYS(mem_cgroup)

#endif

diff -puN include/linux/memcontrol.h~a include/linux/memcontrol.h

--- al/include/linux/memcontrol.h~a

+++ a/include/linux/memcontrol.h

@@ -38,7 +38,7 @@ struct mem_cgroup_reclaim_cookie {
unsigned int generation;

|8

-#ifdef CONFIG_CGROUP_MEM_RES_CTLR
+#ifdef CONFIG_MEMCG

/*

* All "charge" functions with gfp_mask should use GFP_KERNEL or

* (gfp_mask & GFP_RECLAIM_MASK). In current implementatin, memcg doesn't
@@ -124,7 +124,7 @@ extern void mem_cgroup_print_oom_info(st

extern void mem_cgroup_replace_page_cache(struct page *oldpage,

struct page *newpage);

-#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
+#ifdef CONFIG_MEMCG_SWAP

extern int do_swap_account;

#endif

@@ -193,7 +193,7 @@ void mem_cgroup_split_huge_fixup(struct
bool mem_cgroup_bad_page_check(struct page *page);

void mem_cgroup_print_bad_page(struct page *page);

#endif

-#else /[* CONFIG_CGROUP_MEM_RES_CTLR */

+#else /* CONFIG_MEMCG */

struct mem_cgroup;

static inline int mem_cgroup_newpage_charge(struct page *page,

@@ -384,9 +384,9 @@ static inline void mem_cgroup_replace_pa
struct page *newpage)

{

}
-#endif /* CONFIG_CGROUP_MEM_RES_CTLR */

+#endif /* CONFIG_MEMCG */

-#if defined(CONFIG_CGROUP_MEM_RES_CTLR) || !defined(CONFIG_DEBUG_VM)
+#if !defined(CONFIG_MEMCG) || !defined(CONFIG_DEBUG_VM)
static inline bool

Page 101 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

mem_cgroup_bad_page_check(struct page *page)
{

@@ -406,7 +406,7 @@ enum {

3

struct sock;

-#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM

+#ifdef CONFIG_MEMCG_KMEM

void sock_update_memcg(struct sock *sk);

void sock_release_memcg(struct sock *sk);

#else

@@ -416,6 +416,6 @@ static inline void sock_update_memcg(str
static inline void sock_release_memcg(struct sock *sk)

{

}
-#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

+#endif /* CONFIG_MEMCG_KMEM */
#endif /* _LINUX_MEMCONTROL_H */

diff -puN include/linux/mmzone.h~a include/linux/mmzone.h
--- a/include/linux/mmzone.h~a
+++ al/include/linux/mmzone.h
@@ -200,7 +200,7 @@ struct zone_reclaim_stat {
struct lruvec {
struct list_head lists[INR_LRU_LISTS];
struct zone_reclaim_stat reclaim_stat;
-#ifdef CONFIG_CGROUP_MEM_RES CTLR
+#ifdef CONFIG_MEMCG
struct zone *zone;
#endif
I3
@@ -670,7 +670,7 @@ typedef struct pglist_data {
int nr_zones;
#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !\SPARSEMEM */
struct page *node_mem_map;
-#ifdef CONFIG_CGROUP_MEM_RES_CTLR
+#ifdef CONFIG_MEMCG
struct page_cgroup *node_page_cgroup;
#endif
#endif
@@ -735,7 +735,7 @@ extern void Iruvec_init(struct lIruvec *|

static inline struct zone *lruvec_zone(struct Iruvec *lruvec)
{
-#ifdef CONFIG_CGROUP_MEM_RES CTLR
+#ifdef CONFIG_MEMCG
return Iruvec->zone;
#else

Page 102 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

return container_of(lruvec, struct zone, Iruvec);
@@ -1051,7 +1051,7 @@ struct mem_section {

[* See declaration of similar field in struct zone */
unsigned long *pageblock_flags;
-#ifdef CONFIG_CGROUP_MEM_RES_CTLR
+#ifdef CONFIG_MEMCG
/*
* If ISPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
* section. (see memcontrol.h/page_cgroup.h about this.)
diff -puN include/linux/page_cgroup.h~a include/linux/page_cgroup.h
--- a/include/linux/page_cgroup.h~a
+++ a/include/linux/page_cgroup.h
@@ -12,7 +12,7 @@ enum {
#ifndef _ GENERATING_BOUNDS_H
#include <generated/bounds.h>

-#ifdef CONFIG_CGROUP_MEM_RES_CTLR
+#ifdef CONFIG_MEMCG
#include <linux/bit_spinlock.h>

/*

@@ -82,7 +82,7 @@ static inline void unlock _page_cgroup(st
bit_spin_unlock(PCG_LOCK, &pc->flags);

}

-#else /* CONFIG_CGROUP_MEM_RES_CTLR */
+#else /* CONFIG_MEMCG */
struct page_cgroup;

static inline void __meminit pgdat_page_cgroup_init(struct pglist_data *pgdat)
@@ -102,11 +102,11 @@ static inline void __init page_cgroup_in

{

}

-#endif /* CONFIG_CGROUP_MEM_RES_CTLR */
+#endif * CONFIG_MEMCG */

#include <linux/swap.h>

-#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
+#ifdef CONFIG_MEMCG_SWAP
extern unsigned short swap_cgroup_cmpxchg(swp_entry_t ent,
unsigned short old, unsigned short new);
extern unsigned short swap_cgroup_record(swp_entry_t ent, unsigned short id);
@@ -138,7 +138,7 @@ static inline void swap_cgroup_swapofi(i
return;

}

Page 103 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-#endif /* CONFIG_CGROUP_MEM_RES_CTLR_SWAP */
+#endif * CONFIG_MEMCG_SWAP */

#endif /*1___GENERATING_BOUNDS_H */

diff -puN include/linux/sched.h~a include/linux/sched.h
--- al/include/linux/sched.h~a
+++ a/include/linux/sched.h
@@ -1581,7 +1581,7 @@ struct task_struct {
[* bitmask and counter of trace recursion */
unsigned long trace_recursion;
#endif /* CONFIG_TRACING */
-#ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
+#ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
struct memcg_batch_info {
int do_batch; /* incremented when batch uncharge started */
struct mem_cgroup *memcg; /* target memcg of uncharge */
diff -puN include/linux/swap.h~a include/linux/swap.h

Subject: Re: [PATCH 00/11] kmem controller for memcg: stripped down version
Posted by akpm on Tue, 26 Jun 2012 21:55:39 GMT

View Forum Message <> Reply to Message

On Tue, 26 Jun 2012 11:17:49 +0400
Glauber Costa <glommer@parallels.com> wrote:

> On 06/26/2012 03:27 AM, Andrew Morton wrote:

> > On Mon, 25 Jun 2012 18:15:17 +0400

> > Glauber Costa <glommer@parallels.com> wrote:

> >

> >> What | am proposing with this series is a stripped down version of the

> >> kmem controller for memcg that would allow us to merge significant parts

> >> of the infrastructure, while leaving out, for now, the polemic bits about

> >> the slab while it is being reworked by Cristoph.

> >>

> >> Me reasoning for that is that after the last change to introduce a gfp

> >> flag to mark kernel allocations, it became clear to me that tracking other

> >> resources like the stack would then follow extremely naturaly. | figured

> >> that at some point we'd have to solve the issue pointed by David, and avoid
> >> testing the Slab flag in the page allocator, since it would soon be made

> >> more generic. | do that by having the callers to explicit mark it.

> >>

> >> So to demonstrate how it would work, | am introducing a stack tracker here,
> >> that is already a functionality per-se: it successfully stops fork bombs to

> >> happen. (Sorry for doing all your work, Frederic =p). Note that after all

Page 104 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1815
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=47001#msg_47001
https://new-forum.openvz.org/index.php?t=post&reply_to=47001
https://new-forum.openvz.org/index.php

> >> memcg infrastructure is deployed, it becomes very easy to track anything.
> >> The last patch of this series is extremely simple.

> >>

> >> The infrastructure is exactly the same we had in memcg, but stripped down
> >> of the slab parts. And because what we have after those patches is a feature
> >> per-se, | think it could be considered for merging.

> >

> > hm. None of this new code makes the kernel smaller, faster, easier to

> > understand or more fun to read!

> Not sure if this is a general comment - in case | agree - or if targeted

> to my statement that this is "stripped down". If so, it is of course

> smaller relative to my previous slab accounting patches.

It's a general comment. The patch adds overhead: runtime costs and
maintenance costs. Do its benefits justify that cost?

> The infrastructure is largely common, but | realized that a future user,

> tracking the stack, would be a lot simpler and could be done first.

>

> > Presumably we're getting some benefit for all the downside. When the
> > time is appropriate, please do put some time into explaining that

> > benefit, so that others can agree that it is a worthwhile tradeoff.

> >

>

> Well, for one thing, we stop fork bombs for processes inside cgroups.

"inside cgroups" is a significant limitation! Is this capability
important enough to justify adding the new code? That's unobvious
(to me).

Are there any other user-facing things which we can do with this
feature? Present, or planned?

> | can't speak for everybody here, but AFAIK, tracking the stack through

> the memory it used, therefore using my proposed kmem controller, was an
> idea that good quite a bit of traction with the memcg/memory people.

> So here you have something that people already asked a lot for, in a

> shape and interface that seem to be acceptable.

mm, maybe. Kernel developers tend to look at code from the point of
view "does it work as designed”, "is it clean", "is it efficient”, "do
| understand it", etc. We often forget to step back and really

consider whether or not it should be merged at all.

| mean, unless the code is an explicit simplification, we should have
a very strong bias towards "don't merge".

Page 105 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Subject: Re: [PATCH 00/11] kmem controller for memcg: stripped down version
Posted by David Rientjes on Wed, 27 Jun 2012 01:08:13 GMT

View Forum Message <> Reply to Message

On Tue, 26 Jun 2012, Andrew Morton wrote:

> mm, maybe. Kernel developers tend to look at code from the point of
> view "does it work as designed", "is it clean”, "is it efficient", "do

> | understand it", etc. We often forget to step back and really

> consider whether or not it should be merged at all.

>

It's appropriate for true memory isolation so that applications cannot

cause an excess of slab to be consumed. This allows other applications to
have higher reservations without the risk of incurring a global oom
condition as the result of the usage of other memcgs.

I'm not sure whether it would ever be appropriate to limit the amount of
slab for an individual slab cache, however, instead of limiting the sum of
all slab for a set of processes. With cache merging in slub this would
seem to be difficult to do correctly.

Subject: Re: [PATCH 06/11] memcg: kmem controller infrastructure
Posted by David Rientjes on Wed, 27 Jun 2012 04:01:32 GMT

View Forum Message <> Reply to Message

On Tue, 26 Jun 2012, Glauber Costa wrote:

>>> @@ -416,6 +423,43 @@ static inline void sock_update_memcg(struct sock *sk)
>>> static inline void sock_release_memcg(struct sock *sk)

>>> {

>>> }

>>>+

> > > +#define mem_cgroup_kmem_on O

> > > +#define __mem_cgroup_new_kmem_page(a, b, c) false

> > > +#define __mem_cgroup_free_kmem_page(a,b)

> > > +#define __mem_cgroup_commit_kmem_page(a, b, c)

> > > +#define is_kmem_tracked_alloc (false)

>>> #endif /¥ CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

>>>+

> > > +static __always_inline

> > > +bool mem_cgroup_new_kmem_page(gfp_t gfp, void *handle, int order)
>> >+

> > >+ if (Imem_cgroup_kmem_on)

> > >+ return true;

> > > + if (lis_kmem_tracked_alloc)

> > >+ return true;

Page 106 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=902
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=47006#msg_47006
https://new-forum.openvz.org/index.php?t=post&reply_to=47006
https://new-forum.openvz.org/index.php?t=usrinfo&id=902
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=47008#msg_47008
https://new-forum.openvz.org/index.php?t=post&reply_to=47008
https://new-forum.openvz.org/index.php

> > > + if (Icurrent->mm)

> > >+ return true;

> > > + if (in_interrupt())

> > >+ return true;

> >

> > You can't test for current->mm in irq context, so you need to check for
> > in_interrupt() first.

> >

> Right, thanks.

>

> > Also, what prevents __mem_cgroup_new_kmem_page()

> > from being called for a kthread that has called use_mm() before
> > unuse_mm()?

>

> Nothing, but | also don't see how to prevent that.

You can test for current->flags & PF_KTHREAD following the check for
in_interrupt() and return true, it's what you were trying to do with the
check for current->mm.

Subject: Re: [PATCH 00/11] kmem controller for memcg: stripped down version
Posted by Glauber Costa on Wed, 27 Jun 2012 08:39:54 GMT

View Forum Message <> Reply to Message

On 06/27/2012 05:08 AM, David Rientjes wrote:
> On Tue, 26 Jun 2012, Andrew Morton wrote:
>

>> mm, maybe. Kernel developers tend to look at code from the point of

>> view "does it work as designed"”, "is it clean”, "is it efficient”, "do

>> | understand it", etc. We often forget to step back and really

>> consider whether or not it should be merged at all.

>>

>

> |t's appropriate for true memory isolation so that applications cannot

> cause an excess of slab to be consumed. This allows other applications to
> have higher reservations without the risk of incurring a global oom

> condition as the result of the usage of other memcgs.

Just a note for Andrew, we we're in the same page: The slab cache
limitation is not included in *this* particular series. The goal was
always to have other kernel resources limited as well, and the general
argument from David holds: we want a set of applications to run truly
independently from others, without creating memory pressure on the
global system.

The way history develop in this series, | started from the slab cache,
and a page-level tracking appeared on that series. | then figured it

Page 107 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=47010#msg_47010
https://new-forum.openvz.org/index.php?t=post&reply_to=47010
https://new-forum.openvz.org/index.php

would be better to start tracking something that is totally page-based,
such as the stack - that already accounts for 70 % of the
infrastructure, and then merge the slab code later. In this sense, it
was just a strategy inversion. But both are, and were, in the goals.

> I'm not sure whether it would ever be appropriate to limit the amount of
> slab for an individual slab cache, however, instead of limiting the sum of
> all slab for a set of processes. With cache merging in slub this would

> seem to be difficult to do correctly.

Yes, | do agree.

Subject: Fork bomb limitation in memcg WAS: Re: [PATCH 00/11] kmem controller
for memcg: stripped down versio
Posted by Glauber Costa on Wed, 27 Jun 2012 09:29:04 GMT

View Forum Message <> Reply to Message

On 06/27/2012 01:55 AM, Andrew Morton wrote:

> 0On Tue, 26 Jun 2012 11:17:49 +0400

> Glauber Costa <glommer@parallels.com> wrote:

>

>> 0On 06/26/2012 03:27 AM, Andrew Morton wrote:

>>> 0On Mon, 25 Jun 2012 18:15:17 +0400

>>> Glauber Costa <glommer@parallels.com> wrote:

>>>

>>>> What | am proposing with this series is a stripped down version of the

>>>> kmem controller for memcg that would allow us to merge significant parts
>>>> of the infrastructure, while leaving out, for now, the polemic bits about
>>>> the slab while it is being reworked by Cristoph.

>>>>

>>>> Me reasoning for that is that after the last change to introduce a gfp

>>>> flag to mark kernel allocations, it became clear to me that tracking other
>>>> resources like the stack would then follow extremely naturaly. | figured
>>>> that at some point we'd have to solve the issue pointed by David, and avoid
>>>> testing the Slab flag in the page allocator, since it would soon be made
>>>> more generic. | do that by having the callers to explicit mark it.

>>>>

>>>> S0 to demonstrate how it would work, | am introducing a stack tracker here,
>>>> that is already a functionality per-se: it successfully stops fork bombs to
>>>> happen. (Sorry for doing all your work, Frederic =p). Note that after all
>>>> memcg infrastructure is deployed, it becomes very easy to track anything.
>>>> The last patch of this series is extremely simple.

>>>>

>>>> The infrastructure is exactly the same we had in memcg, but stripped down
>>>> of the slab parts. And because what we have after those patches is a feature

>>>> per-se, | think it could be considered for merging.
>>>

Page 108 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=47012#msg_47012
https://new-forum.openvz.org/index.php?t=post&reply_to=47012
https://new-forum.openvz.org/index.php

>>> hm. None of this new code makes the kernel smaller, faster, easier to
>>> ynderstand or more fun to read!

>> Not sure if this is a general comment - in case | agree - or if targeted
>> to my statement that this is "stripped down". If so, it is of course

>> smaller relative to my previous slab accounting patches.

>

> |t's a general comment. The patch adds overhead: runtime costs and

> maintenance costs. Do its benefits justify that cost?

Despite potential disagreement on the following statement from my peer
and friends,
| am not crazy. This means | of course believe so =)

| will lay down my views below, but | believe the general justification
was given already by people commenting in the task counter subsystem,
and | invite them (newly CCd) to chime in here if they want.

For whoever is arriving in the thread now, this is about limiting the
amount of kernel memory used by a set of processes, aka cgroup.

In this particular state - more is to follow - we're able to limit
fork bombs in a clean way, since overlimit processes will be unable
to allocate their stack.

>> The infrastructure is largely common, but | realized that a future user,
>> tracking the stack, would be a lot simpler and could be done first.

>>

>>> Presumably we're getting some benefit for all the downside. When the
>>> time is appropriate, please do put some time into explaining that
>>> benefit, so that others can agree that it is a worthwhile tradeoff.

>>>

>>

>> Well, for one thing, we stop fork bombs for processes inside cgroups.
>

> "inside cgroups” is a significant limitation! Is this capability

> important enough to justify adding the new code? That's unobvious

> (to me).

Again, for one thing. The general mechanism here is to limit the amount
of kernel memory used by a particular set of processes. Processes use
stack, and if they can't grab more pages for the stack, no new
processes can be created.

But there are other things the general mechanism protects against.

Using too much of pinned dentry and inode cache, by touching files
an leaving them in memory forever.

Page 109 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

In fact, a simple:
while true; do mkdir x; cd x; done

can halt your system easily, because the file system limits are hard
to reach (big disks), but the kernel memory is not.

Those are examples, but the list certainly don't stop here.

Our particular use case is concerned with people offering hosting
services. In a physical box, we can put a limit to some resources,

like total number of processes or threads. But in an environment
where each independent user gets its own piece of the machine, we
don't want a potentially malicious user to destroy good users' services

This might be true for systemd as well, that now groups services inside
cgroups. They generally want to put forward a set of guarantees that
limits the running service in a variety of ways, so that if they become
badly behaved, they won't interfere with the rest of the system.

fork bombs are a way bad behaved processes interfere with the rest of
the system. In here, | propose fork bomb stopping as a natural
consequence of the fact that the amount of kernel memory can be limited,
and each process uses 1 or 2 pages for the stack, that are freed when
the process goes away.

The limitation "inside cgroups" is not as important as you seem to state.
Everything can be put "inside cgroups". Being inside cgroups is just a
way to state "I want this feature”. And in this case: | want to pay the
price.

Yes, because as you said yourself, of course there is a cost for that.
But | am extensively using static branches to make sure that even if
the feature is compiled in, even if we have a bunch of memory cgroups
deployed (that already pay a price for that), this code will only be
enabled after the first user of this service configures any limit.

The impact before that, is as low as it can be.

After that is enabled, processes living outside of limited cgroups will
perform an inline test for a flag, and continue normal page allocation
with only that price paid: a flag test.

> Are there any other user-facing things which we can do with this
> feature? Present, or planned?
>

Page 110 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Yes. We can establish all sorts of boundaries to a group of processes.
The dentry / icache bombing limitation is an example of that as well.

But that will need the slab part of this patchset to follow. | not only
have the code for that, but | posted it for review many times. That is
not progressing fully so far because we're still looking for ways to
keep the changes in the allocators to a minimum. Until | realized that
the infrastructure could be used as-is, and stripped down from its
original slab version to account pages, its proposed second user. And
this is what you see here now.

So everything that uses resources in the kernel can proceed until it
uses too much. Be it processes, files, or anything that consumes kernel
memory - and may potentially leave it there forever.

>> | can't speak for everybody here, but AFAIK, tracking the stack through
>> the memory it used, therefore using my proposed kmem controller, was an
>> jdea that good quite a bit of traction with the memcg/memory people.
>> So here you have something that people already asked a lot for, in a
>> shape and interface that seem to be acceptable.

>

> mm, maybe. Kernel developers tend to look at code from the point of

> view "does it work as designed", "is it clean”, "is it efficient”, "do

> | understand it", etc. We often forget to step back and really

> consider whether or not it should be merged at all.

>

> | mean, unless the code is an explicit simplification, we should have

> a very strong bias towards "don't merge".

Well, simplifications are welcome - this series itself was simplified
beyond what | thought initially possible through the valuable comments
of other people.

But of course, this adds more complexity to the kernel as a whole. And
this is true to every single new feature we may add, now or in the
future.

What | can tell you about this particular one, is that the justification
for it doesn't come out of nowhere, but from a rather real use case that
we support and maintain in OpenVZ and our line of products for years.

It can potentially achieve more than that by being well used by schemes
such as systemd that aim at limiting the extent through which a service
can damage a system.

| hope all the above justification was enough to clarify any points you
may have. I'll be happy to go further if necessary.

Page 111 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Subject: Re: [PATCH 06/11] memcg: kmem controller infrastructure
Posted by Glauber Costa on Wed, 27 Jun 2012 09:33:05 GMT

View Forum Message <> Reply to Message

>>
>> Nothing, but | also don't see how to prevent that.

>

> You can test for current->flags & PF_KTHREAD following the check for
> in_interrupt() and return true, it's what you were trying to do with the

> check for lcurrent->mm.
>

am | right to believe that if not in interrupt context - already ruled
out - and !(current->flags & PF_KTHREAD), | am guaranteed to have a mm
context, and thus, don't need to test against it ?

Subject: Re: [PATCH 02/11] memcg: Reclaim when more than one page needed.
Posted by Glauber Costa on Wed, 27 Jun 2012 10:03:01 GMT

View Forum Message <> Reply to Message

On 06/26/2012 08:09 AM, David Rientjes wrote:

> @@ -2206,7 +2214,7 @@ static int mem_cgroup_do_charge(struct mem_cgroup *memcg,
ofp_t gfp_mask,

>> *unlikely to succeed so close to the limit, and we fall back

>> *to regular pages anyway in case of failure.

>> ¥

>>- if (nr_pages == 1 && ret)

>>+ if (nr_pages <= NR_PAGES_TO_RETRY && ret)

>> return CHARGE_RETRY;

Changed to costly order.

One more thing. The original version of this patch included

a cond_resched() here, that was also removed. From my re-reading
of the code in page_alloc.c and vmscan.c now, | tend to think

this is indeed not needed, since any cond_resched()s that might

be needed to ensure the safety of the code will be properly

inserted by the reclaim code itself, so there is no need for us

to include any when we signal that a retry is needed.

Do you/others agree?

Subject: Re: Fork bomb limitation in memcg WAS: Re: [PATCH 00/11] kmem
controller for memcg: stripped down ve
Posted by Glauber Costa on Wed, 27 Jun 2012 12:28:14 GMT

Page 112 of 124 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=47013#msg_47013
https://new-forum.openvz.org/index.php?t=post&reply_to=47013
https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=47014#msg_47014
https://new-forum.openvz.org/index.php?t=post&reply_to=47014
https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php

View Forum Message <> Reply to Message

On 06/27/2012 04:29 PM, Frederic Weisbecker wrote:

> On Wed, Jun 27, 2012 at 01:29:04PM +0400, Glauber Costa wrote:

>> 0On 06/27/2012 01:55 AM, Andrew Morton wrote:

>>>> | can't speak for everybody here, but AFAIK, tracking the stack through
>>>> the memory it used, therefore using my proposed kmem controller, was an
>>>> jdea that good quite a bit of traction with the memcg/memory people.
>>>> S0 here you have something that people already asked a lot for, in a
>>>> shape and interface that seem to be acceptable.

>>>

>>> mm, maybe. Kernel developers tend to look at code from the point of
>>> view "does it work as designed”, "is it clean", "is it efficient", "do

>>> | understand it", etc. We often forget to step back and really

>>> consider whether or not it should be merged at all.

>>>

>>> | mean, unless the code is an explicit simplification, we should have
>>> g very strong bias towards "don't merge".

>>

>> Well, simplifications are welcome - this series itself was

>> simplified beyond what | thought initially possible through the

>> valuable comments

>> of other people.

>>

>> But of course, this adds more complexity to the kernel as a whole.

>> And this is true to every single new feature we may add, now or in

>> the

>> future.

>>

>> What | can tell you about this particular one, is that the justification

>> for it doesn't come out of nowhere, but from a rather real use case that
>> we support and maintain in OpenVZ and our line of products for years.
>

> Right and we really need a solution to protect against forkbombs in LXC.
Small correction: In containers. LXC is not the only one out there =p

Subject: Re: Fork bomb limitation in memcg WAS: Re: [PATCH 00/11] kmem
controller for memcg: stripped down ve
Posted by Frederic Weisbecker on Wed, 27 Jun 2012 12:29:27 GMT

View Forum Message <> Reply to Message

On Wed, Jun 27, 2012 at 01:29:04PM +0400, Glauber Costa wrote:

> 0n 06/27/2012 01:55 AM, Andrew Morton wrote:

> >>| can't speak for everybody here, but AFAIK, tracking the stack through

> >>the memory it used, therefore using my proposed kmem controller, was an
> >>jdea that good quite a bit of traction with the memcg/memory people.

> >>S0 here you have something that people already asked a lot for, in a

Page 113 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=47018#msg_47018
https://new-forum.openvz.org/index.php?t=post&reply_to=47018
https://new-forum.openvz.org/index.php?t=usrinfo&id=6199
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=47017#msg_47017
https://new-forum.openvz.org/index.php?t=post&reply_to=47017
https://new-forum.openvz.org/index.php

> >>shape and interface that seem to be acceptable.

> >

> >mm, maybe. Kernel developers tend to look at code from the point of
> >view "does it work as designed"”, "is it clean”, "is it efficient", "do

> >| understand it", etc. We often forget to step back and really

> >consider whether or not it should be merged at all.

> >

> >| mean, unless the code is an explicit simplification, we should have
> >a very strong bias towards "don't merge".

>

> Well, simplifications are welcome - this series itself was

> simplified beyond what | thought initially possible through the

> valuable comments

> of other people.

>

> But of course, this adds more complexity to the kernel as a whole.

> And this is true to every single new feature we may add, now or in

> the

> future.

>

> What I can tell you about this particular one, is that the justification

> for it doesn't come out of nowhere, but from a rather real use case that
> we support and maintain in OpenVZ and our line of products for years.

Right and we really need a solution to protect against forkbombs in LXC.
The task counter was more simple but only useful for our usecase and
defining the number of tasks as a resource was considered unnatural.

So limiting kernel stack allocations works for us. This patchset implements
this so I'm happy with it. If this is more broadly useful by limiting

resources others are interested in, that's even better. | doubt we are
interested in a solution that only concerns kernel stack allocation.

Subject: Re: Fork bomb limitation in memcg WAS: Re: [PATCH 00/11] kmem
controller for memcg: stripped down ve
Posted by Frederic Weisbecker on Wed, 27 Jun 2012 12:35:47 GMT

View Forum Message <> Reply to Message

On Wed, Jun 27, 2012 at 04:28:14PM +0400, Glauber Costa wrote:

> 0n 06/27/2012 04:29 PM, Frederic Weisbecker wrote:

> > 0On Wed, Jun 27, 2012 at 01:29:04PM +0400, Glauber Costa wrote:

> >>0n 06/27/2012 01:55 AM, Andrew Morton wrote:

> >>>> | can't speak for everybody here, but AFAIK, tracking the stack through

> >>>> the memory it used, therefore using my proposed kmem controller, was an
> >>>> jdea that good quite a bit of traction with the memcg/memaory people.

> >>>> S0 here you have something that people already asked a lot for, in a

> >>>> shape and interface that seem to be acceptable.

Page 114 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=6199
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=47019#msg_47019
https://new-forum.openvz.org/index.php?t=post&reply_to=47019
https://new-forum.openvz.org/index.php

> >>>
> >>>mm, maybe. Kernel developers tend to look at code from the point of
> >>> view "does it work as designed", "is it clean”, "is it efficient", "do

> >>> | understand it", etc. We often forget to step back and really

> >>> consider whether or not it should be merged at all.

> >>>

> >>> | mean, unless the code is an explicit simplification, we should have
> >>> g very strong bias towards "don't merge".

> >>

> >> Well, simplifications are welcome - this series itself was

> >> simplified beyond what | thought initially possible through the

> >> valuable comments

> >> of other people.

> >>

> >> But of course, this adds more complexity to the kernel as a whole.

> >> And this is true to every single new feature we may add, now or in

> >> the

> >> future.

> >>

> >> What | can tell you about this particular one, is that the justification

> >> for it doesn't come out of nowhere, but from a rather real use case that
> >> we support and maintain in OpenVZ and our line of products for years.
> >

> > Right and we really need a solution to protect against forkbombs in LXC.
> Small correction: In containers. LXC is not the only one out there =p

Sure. | was just speaking for the specific project I'm working on :)

But I'm definetly interested in solutions that work for everyone in containers in
general. And if Openvz is also interested in forkbombs protection that's even
better.

Subject: Re: [PATCH 02/11] memcg: Reclaim when more than one page needed.
Posted by Suleiman Souhlal on Wed, 27 Jun 2012 16:16:51 GMT

View Forum Message <> Reply to Message

On Tue, Jun 26, 2012 at 1:39 AM, Glauber Costa <glommer@parallels.com> wrote:
> Yeah, forgot to update the changelog =(
>

> But much more importantly, are you still happy with those changes?

Yes, | am OK with those changes.

Thanks,
-- Suleiman

Page 115 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=6118
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=47022#msg_47022
https://new-forum.openvz.org/index.php?t=post&reply_to=47022
https://new-forum.openvz.org/index.php

Subject: Re: Fork bomb limitation in memcg WAS: Re: [PATCH 00/11] kmem
controller for memcg: stripped down ve
Posted by David Rientjes on Wed, 27 Jun 2012 19:38:54 GMT

View Forum Message <> Reply to Message

On Wed, 27 Jun 2012, Glauber Costa wrote:

> fork bombs are a way bad behaved processes interfere with the rest of

> the system. In here, | propose fork bomb stopping as a natural

> consequence of the fact that the amount of kernel memory can be limited,
> and each process uses 1 or 2 pages for the stack, that are freed when the

> process goes away.
>

The obvious disadvantage is that if you use the full-featured kmem
controller that builds upon this patchset, then you're limiting the about
of all kmem, not just the stack that this particular set limits. | hope
you're not proposing it to go upstream before full support for the kmem
controller is added so that users who use it only to protect again
forkbombs soon realize that's no longer possible if your applications do
any substantial slab allocations, particularly anything that does a lot of
/0.

In other words, if I want to run netperf in a memcg with the full-featured
kmem controller enabled, then its kmem limit must be high enough so that
it doesn't degrade performance that any limitation on stack allocations
would be too high to effectively stop forkbombs.

Subject: Re: [PATCH 06/11] memcg: kmem controller infrastructure
Posted by David Rientjes on Wed, 27 Jun 2012 19:46:08 GMT

View Forum Message <> Reply to Message

On Wed, 27 Jun 2012, Glauber Costa wrote:

> > > Nothing, but | also don't see how to prevent that.

> >

> > You can test for current->flags & PF_KTHREAD following the check for
> > in_interrupt() and return true, it's what you were trying to do with the

> > check for !current->mm.

> >

>

>am | right to believe that if not in interrupt context - already ruled out -

> and !(current->flags & PF_KTHREAD), | am guaranteed to have a mm context, and
> thus, don't need to test against it ?

>

No, because an mm may have been detached in the exit path by running

Page 116 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=902
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=47024#msg_47024
https://new-forum.openvz.org/index.php?t=post&reply_to=47024
https://new-forum.openvz.org/index.php?t=usrinfo&id=902
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=47025#msg_47025
https://new-forum.openvz.org/index.php?t=post&reply_to=47025
https://new-forum.openvz.org/index.php

exit_mm(). We'd certainly hope that there are no slab allocations
following that point, though, but you'd still need to test current->mm.

Subject: Re: [PATCH 02/11] memcg: Reclaim when more than one page needed.
Posted by David Rientjes on Wed, 27 Jun 2012 19:48:41 GMT

View Forum Message <> Reply to Message

On Wed, 27 Jun 2012, Glauber Costa wrote:

>> @@ -2206,7 +2214,7 @@ static int mem_cgroup_do_charge(struct mem_cgroup
> > *memcg, gfp_t gfp_mask,

>>> *unlikely to succeed so close to the limit, and we fall back

>>> *toregular pages anyway in case of failure.

>>> %

>> > -if (nr_pages == 1 && ret)

>> > +if (nr_pages <= NR_PAGES TO_RETRY && ret)

>>> return CHARGE_RETRY,;

>

> Changed to costly order.
>

1 << PAGE_ALLOC_COSTLY_ORDER was the suggestion.

> One more thing. The original version of this patch included

> a cond_resched() here, that was also removed. From my re-reading
> of the code in page_alloc.c and vmscan.c now, | tend to think

> this is indeed not needed, since any cond_resched()s that might

> be needed to ensure the safety of the code will be properly

> inserted by the reclaim code itself, so there is no need for us

> to include any when we signal that a retry is needed.

>

For _ GFP_WAIT, that sounds like a safe guarantee.

Subject: Re: [PATCH 02/11] memcg: Reclaim when more than one page needed.
Posted by Glauber Costa on Wed, 27 Jun 2012 20:47:24 GMT

View Forum Message <> Reply to Message

On 06/27/2012 11:48 PM, David Rientjes wrote:

> On Wed, 27 Jun 2012, Glauber Costa wrote:

>

>>> @@ -2206,7 +2214,7 @@ static int mem_cgroup_do_charge(struct mem_cgroup
>>> *memcg, gfp_t gfp_mask,

>>>> *unlikely to succeed so close to the limit, and we fall back

>>>> * {0 regular pages anyway in case of failure.

Page 117 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=902
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=47026#msg_47026
https://new-forum.openvz.org/index.php?t=post&reply_to=47026
https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=47028#msg_47028
https://new-forum.openvz.org/index.php?t=post&reply_to=47028
https://new-forum.openvz.org/index.php

>>>> *f

>>>> - jf (nr_pages == 1 && ret)

>>>> + if (nr_pages <= NR_PAGES _TO_RETRY && ret)
>>>> return CHARGE_RETRY;

>>

>> Changed to costly order.

>>

>

>1 << PAGE_ALLOC_COSTLY_ORDER was the suggestion.

That is what | meant - to the costly order suggestion - , should have
been more explicit.

>> One more thing. The original version of this patch included

>> a cond_resched() here, that was also removed. From my re-reading
>> of the code in page_alloc.c and vmscan.c now, | tend to think
>> this is indeed not needed, since any cond_resched()s that might
>> pe needed to ensure the safety of the code will be properly

>> inserted by the reclaim code itself, so there is no need for us

>> to include any when we signal that a retry is needed.

>>

>

> For __ GFP_WAIT, that sounds like a safe guarantee.

>

Subject: Re: Fork bomb limitation in memcg WAS: Re: [PATCH 00/11] kmem
controller for memcg: stripped down ve
Posted by Glauber Costa on Thu, 28 Jun 2012 09:01:23 GMT

View Forum Message <> Reply to Message

On 06/27/2012 11:38 PM, David Rientjes wrote:

> On Wed, 27 Jun 2012, Glauber Costa wrote:

>

>> fork bombs are a way bad behaved processes interfere with the rest of
>> the system. In here, | propose fork bomb stopping as a natural

>> consequence of the fact that the amount of kernel memory can be limited,
>> and each process uses 1 or 2 pages for the stack, that are freed when the

>> process goes away.
>>

>

> The obvious disadvantage is that if you use the full-featured kmem

> controller that builds upon this patchset, then you're limiting the about
> of all kmem, not just the stack that this particular set limits. | hope

> you're not proposing it to go upstream before full support for the kmem
> controller is added so that users who use it only to protect again

> forkbombs soon realize that's no longer possible if your applications do
> any substantial slab allocations, particularly anything that does a lot of

Page 118 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=47032#msg_47032
https://new-forum.openvz.org/index.php?t=post&reply_to=47032
https://new-forum.openvz.org/index.php

> |/0.
Point by point:

1) This is not a disadvantage. The whole point of implementing it as
kmem, not as a "fork controller” or anything in the like, was our
understanding that people should not be "protecting against a x number
of processes". Because this is unnatural. All you have is total of

kernel memory, because that's what the interface gives you. If you can
overuse memory, you can't fork bomb. But that's a consequence.

I'll grant that maybe it was a mistake of mine to try to sell it this

way here, because it may give the wrong idea. In this case | welcome
your comment because it will allow me to be more careful in future
communications. But this was just me trying to show off the feature.

2) No admin should never, ever tune the system to a particular kmem
limit value. And again, this is the whole point of not limiting "number

of processes". | agree that adding slab tracking will raise kernel
memory consumption by a reasonable amount. But reality is that even if
this controller is totally stable, that not only can, but will happen.

Unlike user memory, where whoever writes the application control its
behavior (forget about the libraries for a moment), users never really
control the internals of the kernel. If you ever rely on the fact that

you are currently using X Gb of kmem, and that should be enough, your
setup will break when the data structure grows - as they do - when the
kernel memory consumption rises naturally by algorithms - as it does,
and so on.

3) Agreeing that of course, preventing disruption if we can help it is
good, this feature is not only marked experimental, but default of. This
was done precisely not to disrupt the amount of *user* memory used,
where | actually think it makes a lot of sense ("My application

allocates 4G, that's what I'll give it!"). Even if support is compiled

in, it won't be until you start limiting it that anything will happen.

Kernel Memory won't even be tracked until then. And | also understand
that our use case here may be quite unique: We want the kernel memory
limit to be way lower than the user limit (like 20 % - but that's still

a percentage, not a tune!). When | discussed this around with other
people, the vast majority of them wanted to set kmem = umem. Which
basically means "user memory is the limit, but we want the kernel memory
to be accounted as well".

So yes, although | understand your point - but not fully agree, | would
like to get it merged as is. | don't believe adding slab memory later
will be disruptive, in the same way | didn't believe adding stack later
- in my original slab tracking patch - would be. As | originally stated,

Page 119 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

this would allow me to greatly simplify the slab tracking patches, since
we'll be able to focus on that only, instead of a gigantic patch that
does a lot.

Other people have interest in this, so this would allow them to start
building on it as well. That said, | won't oppose adding more code if

you suggest so to make sure people rely less on the accidental fact that
we're only tracking a part of what we will, even if they shouldn't.

- It's already experimental

- It's already default off.

- | could add a warn message first time it is set.
- | could add a boot option.

Or anything like this.

Last, but not least, note that it is totally within my interests to
merge the slab tracking as fast as we can. it'll be a matter of going
back to it, and agreeing in the final form.

>
> In other words, if | want to run netperf in a memcg with the full-featured
> kmem controller enabled, then its kmem limit must be high enough so that
> it doesn't degrade performance that any limitation on stack allocations

> would be too high to effectively stop forkbombs.
>

That is a user setup problem. As | explained before, That's exactly what
we want to discourage by exposing "kernel memory" instead of a
particular tunable.

As itis, | agree, it will stop fork bombs but will take a lot more time
for it than it should. But this only makes it analogous to the
evolutionary precursors to the human eye: It's not perfect, but will
achieve something that may be already of great value for a class of
users. Improvements are certain to follow.

Thank you David!

Subject: Re: Fork bomb limitation in memcg WAS: Re: [PATCH 00/11] kmem
controller for memcg: stripped down ve
Posted by akpm on Thu, 28 Jun 2012 22:25:40 GMT

View Forum Message <> Reply to Message

On Thu, 28 Jun 2012 13:01:23 +0400
Glauber Costa <glommer@parallels.com> wrote:

Page 120 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1815
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=47038#msg_47038
https://new-forum.openvz.org/index.php?t=post&reply_to=47038
https://new-forum.openvz.org/index.php

>
>
>

OK, that all sounds convincing ;) Please summarise and capture this
discussion in the [patch 0/n] changelog so we (or others) don't have to
go through this all again. And let's remember this in the next
patchset!

> Last, but not least, note that it is totally within my interests to
> merge the slab tracking as fast as we can. it'll be a matter of going
> back to it, and agreeing in the final form.

Yes, I'd very much like to have the whole slab implementation in a
reasonably mature state before proceeding too far with this base
patchset.

Subject: Re: Fork bomb limitation in memcg WAS: Re: [PATCH 00/11] kmem
controller for memcg: stripped down ve
Posted by Glauber Costa on Tue, 03 Jul 2012 11:38:39 GMT

View Forum Message <> Reply to Message

On 06/29/2012 02:25 AM, Andrew Morton wrote:
> On Thu, 28 Jun 2012 13:01:23 +0400

> Glauber Costa <glommer@parallels.com> wrote:
>

>>
>> .

>>

>

> OK, that all sounds convincing ;) Please summarise and capture this
> discussion in the [patch 0/n] changelog so we (or others) don't have to
> go through this all again. And let's remember this in the next

> patchset!

Thanks, will surely do.

>> Last, but not least, note that it is totally within my interests to

>> merge the slab tracking as fast as we can. it'll be a matter of going
>> pack to it, and agreeing in the final form.

>

> Yes, I'd very much like to have the whole slab implementation in a
> reasonably mature state before proceeding too far with this base

> patchset.

Does that means that you want to merge them together? | am more than
happy to post the slab part again ontop of that to have people reviewing it.

Page 121 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=47059#msg_47059
https://new-forum.openvz.org/index.php?t=post&reply_to=47059
https://new-forum.openvz.org/index.php

But if possible, | believe that merging this part first would help us to
split up testing in a beneficial way, in the sense that if it breaks, we
know at least in which part it is. Not to mention, of course, that
reviewers will have an easier time reviewing it as two pieces.

Subject: Re: Fork bomb limitation in memcg WAS: Re: [PATCH 00/11] kmem
controller for memcg: stripped down ve
Posted by Frederic Weisbecker on Thu, 12 Jul 2012 15:40:11 GMT

View Forum Message <> Reply to Message

On Tue, Jul 03, 2012 at 03:38:39PM +0400, Glauber Costa wrote:

> 0n 06/29/2012 02:25 AM, Andrew Morton wrote:

>>0On Thu, 28 Jun 2012 13:01:23 +0400

> > Glauber Costa <glommer@parallels.com> wrote:

> >

> >>

>>> .

> >>

> >

> > OK, that all sounds convincing ;) Please summarise and capture this
> > discussion in the [patch 0/n] changelog so we (or others) don't have to
> > go through this all again. And let's remember this in the next

> > patchset!

>

> Thanks, will surely do.

>

> >> Last, but not least, note that it is totally within my interests to

> >> merge the slab tracking as fast as we can. it'll be a matter of going
> >> back to it, and agreeing in the final form.

> >

> > Yes, I'd very much like to have the whole slab implementation in a

> > reasonably mature state before proceeding too far with this base

> > patchset.

>

> Does that means that you want to merge them together? | am more than
> happy to post the slab part again ontop of that to have people reviewing it.
>

> But if possible, | believe that merging this part first would help us to

> split up testing in a beneficial way, in the sense that if it breaks, we

> know at least in which part it is. Not to mention, of course, that

> reviewers will have an easier time reviewing it as two pieces.

Definetly yeah. This makes the review easier for this tricky chunk.

Page 122 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=6199
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=47160#msg_47160
https://new-forum.openvz.org/index.php?t=post&reply_to=47160
https://new-forum.openvz.org/index.php

Subject: Re: Fork bomb limitation in memcg WAS: Re: [PATCH 00/11] kmem
controller for memcg: stripped down ve
Posted by Glauber Costa on Tue, 07 Aug 2012 13:59:25 GMT

View Forum Message <> Reply to Message

On 06/29/2012 02:25 AM, Andrew Morton wrote:

> On Thu, 28 Jun 2012 13:01:23 +0400

> Glauber Costa <glommer@parallels.com> wrote:

>

>>

>> .

>>

>

> OK, that all sounds convincing ;) Please summarise and capture this
> discussion in the [patch 0/n] changelog so we (or others) don't have to
> go through this all again. And let's remember this in the next

> patchset!

>

>> Last, but not least, note that it is totally within my interests to

>> merge the slab tracking as fast as we can. it'll be a matter of going
>> pack to it, and agreeing in the final form.

>

> Yes, I'd very much like to have the whole slab implementation in a
> reasonably mature state before proceeding too far with this base

> patchset.

>

So, that was posted separately as well.

Although there is a thing to fix here and there - all of them | am
working on already - | believe that to be mature enough.

Do you have any comments on that? Would you be willing to take this
first part (modified with the comments on this thread itself) and let it
start sitting in the tree?

Thanks!

Subject: Re: Fork bomb limitation in memcg WAS: Re: [PATCH 00/11] kmem
controller for memcg: stripped down ve
Posted by Glauber Costa on Wed, 08 Aug 2012 14:15:42 GMT

View Forum Message <> Reply to Message

On 08/07/2012 05:59 PM, Glauber Costa wrote:

> 0On 06/29/2012 02:25 AM, Andrew Morton wrote:
>> On Thu, 28 Jun 2012 13:01:23 +0400

>> Glauber Costa <glommer@parallels.com> wrote:
>>

Page 123 of 124 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=47377#msg_47377
https://new-forum.openvz.org/index.php?t=post&reply_to=47377
https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10922&goto=47381#msg_47381
https://new-forum.openvz.org/index.php?t=post&reply_to=47381
https://new-forum.openvz.org/index.php

>>>
>>> .

>>>

>>

>> QOK, that all sounds convincing ;) Please summarise and capture this
>> discussion in the [patch 0/n] changelog so we (or others) don't have to
>> go through this all again. And let's remember this in the next

>> patchset!

>>

>>> | ast, but not least, note that it is totally within my interests to

>>> merge the slab tracking as fast as we can. it'll be a matter of going
>>> pack to it, and agreeing in the final form.

>>

>> Yes, I'd very much like to have the whole slab implementation in a
>> reasonably mature state before proceeding too far with this base

>> patchset.

>>

> So, that was posted separately as well.

>

> Although there is a thing to fix here and there - all of them | am

> working on already - | believe that to be mature enough.

>

> Do you have any comments on that? Would you be willing to take this
> first part (modified with the comments on this thread itself) and let it

> start sitting in the tree?

>

In the mean time, for any interested parties, I've set up a tree at:
git://github.com/glommer/linux.git
branches kmemcg-slab and kmemcg-stack

Intended to be a throw-away tree.

Page 124 of 124 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

