
Subject: [PATCH v7 0/2] fixes for sock memcg static branch disablement
Posted by Glauber Costa on Fri, 25 May 2012 09:32:06 GMT
View Forum Message <> Reply to Message

Hi Andrew,

I believe this one addresses all of your previous comments.

Besides merging your patch, I tried to improve the comments so they would
be more informative.

The first patch, I believe, is already merged at your tree. But I am including
it here for completeness. I had no changes since last submission, so feel free
to pick the second - or if there are still missing changes you'd like to see,
point me to them.

Thanks

Glauber Costa (2):
 Always free struct memcg through schedule_work()
 decrement static keys on real destroy time

 include/net/sock.h | 22 ++++++++++++++++++
 mm/memcontrol.c | 55 ++++++++++++++++++++++++++++++++++----------
 net/ipv4/tcp_memcontrol.c | 34 ++++++++++++++++++++++-----
 3 files changed, 91 insertions(+), 20 deletions(-)

--
1.7.7.6

Subject: [PATCH v7 1/2] Always free struct memcg through schedule_work()
Posted by Glauber Costa on Fri, 25 May 2012 09:32:07 GMT
View Forum Message <> Reply to Message

Right now we free struct memcg with kfree right after a
rcu grace period, but defer it if we need to use vfree() to get
rid of that memory area. We do that by need, because we need vfree
to be called in a process context.

This patch unifies this behavior, by ensuring that even kfree will
happen in a separate thread. The goal is to have a stable place to
call the upcoming jump label destruction function outside the realm
of the complicated and quite far-reaching cgroup lock (that can't be
held when calling neither the cpu_hotplug.lock nor the jump_label_mutex)

Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>

Page 1 of 11 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10842&goto=46508#msg_46508
https://new-forum.openvz.org/index.php?t=post&reply_to=46508
https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10842&goto=46510#msg_46510
https://new-forum.openvz.org/index.php?t=post&reply_to=46510
https://new-forum.openvz.org/index.php

CC: Tejun Heo <tj@kernel.org>
CC: Li Zefan <lizefan@huawei.com>
CC: Johannes Weiner <hannes@cmpxchg.org>
CC: Michal Hocko <mhocko@suse.cz>
CC: Andrew Morton <akpm@linux-foundation.org>

 mm/memcontrol.c | 24 +++++++++++++-----------
 1 files changed, 13 insertions(+), 11 deletions(-)

diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index 932a734..0b4b4c8 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -245,8 +245,8 @@ struct mem_cgroup {
 		 */
 		struct rcu_head rcu_freeing;
 		/*
-		 * But when using vfree(), that cannot be done at
-		 * interrupt time, so we must then queue the work.
+		 * We also need some space for a worker in deferred freeing.
+		 * By the time we call it, rcu_freeing is not longer in use.
 		 */
 		struct work_struct work_freeing;
 	};
@@ -4826,23 +4826,28 @@ out_free:
 }

 /*
- * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
+ * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
 * but in process context. The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
 */
-static void vfree_work(struct work_struct *work)
+static void free_work(struct work_struct *work)
 {
 	struct mem_cgroup *memcg;
+	int size = sizeof(struct mem_cgroup);

 	memcg = container_of(work, struct mem_cgroup, work_freeing);
-	vfree(memcg);
+	if (size < PAGE_SIZE)
+		kfree(memcg);
+	else
+		vfree(memcg);
 }
-static void vfree_rcu(struct rcu_head *rcu_head)
+

Page 2 of 11 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+static void free_rcu(struct rcu_head *rcu_head)
 {
 	struct mem_cgroup *memcg;

 	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
-	INIT_WORK(&memcg->work_freeing, vfree_work);
+	INIT_WORK(&memcg->work_freeing, free_work);
 	schedule_work(&memcg->work_freeing);
 }

@@ -4868,10 +4873,7 @@ static void __mem_cgroup_free(struct mem_cgroup *memcg)
 		free_mem_cgroup_per_zone_info(memcg, node);

 	free_percpu(memcg->stat);
-	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
-		kfree_rcu(memcg, rcu_freeing);
-	else
-		call_rcu(&memcg->rcu_freeing, vfree_rcu);
+	call_rcu(&memcg->rcu_freeing, free_rcu);
 }

 static void mem_cgroup_get(struct mem_cgroup *memcg)
--
1.7.7.6

Subject: [PATCH v7 2/2] decrement static keys on real destroy time
Posted by Glauber Costa on Fri, 25 May 2012 09:32:08 GMT
View Forum Message <> Reply to Message

We call the destroy function when a cgroup starts to be removed,
such as by a rmdir event.

However, because of our reference counters, some objects are still
inflight. Right now, we are decrementing the static_keys at destroy()
time, meaning that if we get rid of the last static_key reference,
some objects will still have charges, but the code to properly
uncharge them won't be run.

This becomes a problem specially if it is ever enabled again, because
now new charges will be added to the staled charges making keeping
it pretty much impossible.

We just need to be careful with the static branch activation:
since there is no particular preferred order of their activation,
we need to make sure that we only start using it after all
call sites are active. This is achieved by having a per-memcg
flag that is only updated after static_key_slow_inc() returns.

Page 3 of 11 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10842&goto=46509#msg_46509
https://new-forum.openvz.org/index.php?t=post&reply_to=46509
https://new-forum.openvz.org/index.php

At this time, we are sure all sites are active.

This is made per-memcg, not global, for a reason:
it also has the effect of making socket accounting more
consistent. The first memcg to be limited will trigger static_key()
activation, therefore, accounting. But all the others will then be
accounted no matter what. After this patch, only limited memcgs
will have its sockets accounted.

[v2: changed a tcp limited flag for a generic proto limited flag]
[v3: update the current active flag only after the static_key update]
[v4: disarm_static_keys() inside free_work]
[v5: got rid of tcp_limit_mutex, now in the static_key interface]
[v6: changed active and activated to a flags field, as suggested by akpm]
[v7: merged more comments from akpm]

Signed-off-by: Glauber Costa <glommer@parallels.com>
CC: Tejun Heo <tj@kernel.org>
CC: Li Zefan <lizefan@huawei.com>
CC: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
CC: Johannes Weiner <hannes@cmpxchg.org>
CC: Michal Hocko <mhocko@suse.cz>
CC: Andrew Morton <akpm@linux-foundation.org>

 include/net/sock.h | 22 ++++++++++++++++++++++
 mm/memcontrol.c | 31 +++++++++++++++++++++++++++++--
 net/ipv4/tcp_memcontrol.c | 34 +++++++++++++++++++++++++++-------
 3 files changed, 78 insertions(+), 9 deletions(-)

diff --git a/include/net/sock.h b/include/net/sock.h
index b3ebe6b..d6a8ae3 100644
--- a/include/net/sock.h
+++ b/include/net/sock.h
@@ -46,6 +46,7 @@
 #include <linux/list_nulls.h>
 #include <linux/timer.h>
 #include <linux/cache.h>
+#include <linux/bitops.h>
 #include <linux/lockdep.h>
 #include <linux/netdevice.h>
 #include <linux/skbuff.h>	/* struct sk_buff */
@@ -907,12 +908,23 @@ struct proto {
 #endif
 };

+/*
+ * Bits in struct cg_proto.flags
+ */

Page 4 of 11 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+enum cg_proto_flags {
+	/* Currently active and new sockets should be assigned to cgroups */
+	MEMCG_SOCK_ACTIVE,
+	/* It was ever activated; we must disarm static keys on destruction */
+	MEMCG_SOCK_ACTIVATED,
+};
+
 struct cg_proto {
 	void			(*enter_memory_pressure)(struct sock *sk);
 	struct res_counter	*memory_allocated;	/* Current allocated memory. */
 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
 	int			*memory_pressure;
 	long			*sysctl_mem;
+	unsigned long		flags;
 	/*
 	 * memcg field is used to find which memcg we belong directly
 	 * Each memcg struct can hold more than one cg_proto, so container_of
@@ -928,6 +940,16 @@ struct cg_proto {
 extern int proto_register(struct proto *prot, int alloc_slab);
 extern void proto_unregister(struct proto *prot);

+static inline bool memcg_proto_active(struct cg_proto *cg_proto)
+{
+	return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
+}
+
+static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
+{
+	return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
+}
+
 #ifdef SOCK_REFCNT_DEBUG
 static inline void sk_refcnt_debug_inc(struct sock *sk)
 {
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index 0b4b4c8..788be2e 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -404,6 +404,7 @@ void sock_update_memcg(struct sock *sk)
 {
 	if (mem_cgroup_sockets_enabled) {
 		struct mem_cgroup *memcg;
+		struct cg_proto *cg_proto;

 		BUG_ON(!sk->sk_prot->proto_cgroup);

@@ -423,9 +424,10 @@ void sock_update_memcg(struct sock *sk)

Page 5 of 11 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 		rcu_read_lock();
 		memcg = mem_cgroup_from_task(current);
-		if (!mem_cgroup_is_root(memcg)) {
+		cg_proto = sk->sk_prot->proto_cgroup(memcg);
+		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
 			mem_cgroup_get(memcg);
-			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
+			sk->sk_cgrp = cg_proto;
 		}
 		rcu_read_unlock();
 	}
@@ -454,6 +456,19 @@ EXPORT_SYMBOL(tcp_proto_cgroup);
 #endif /* CONFIG_INET */
 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

+#if defined(CONFIG_INET) && defined(CONFIG_CGROUP_MEM_RES_CTLR_KMEM)
+static void disarm_sock_keys(struct mem_cgroup *memcg)
+{
+	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
+		return;
+	static_key_slow_dec(&memcg_socket_limit_enabled);
+}
+#else
+static void disarm_sock_keys(struct mem_cgroup *memcg)
+{
+}
+#endif
+
 static void drain_all_stock_async(struct mem_cgroup *memcg);

 static struct mem_cgroup_per_zone *
@@ -4836,6 +4851,18 @@ static void free_work(struct work_struct *work)
 	int size = sizeof(struct mem_cgroup);

 	memcg = container_of(work, struct mem_cgroup, work_freeing);
+	/*
+	 * We need to make sure that (at least for now), the jump label
+	 * destruction code runs outside of the cgroup lock. This is because
+	 * get_online_cpus(), which is called from the static_branch update,
+	 * can't be called inside the cgroup_lock. cpusets are the ones
+	 * enforcing this dependency, so if they ever change, we might as well.
+	 *
+	 * schedule_work() will guarantee this happens. Be careful if you need
+	 * to move this code around, and make sure it is outside
+	 * the cgroup_lock.
+	 */
+	disarm_sock_keys(memcg);
 	if (size < PAGE_SIZE)

Page 6 of 11 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 		kfree(memcg);
 	else
diff --git a/net/ipv4/tcp_memcontrol.c b/net/ipv4/tcp_memcontrol.c
index 1517037..b6f3583 100644
--- a/net/ipv4/tcp_memcontrol.c
+++ b/net/ipv4/tcp_memcontrol.c
@@ -74,9 +74,6 @@ void tcp_destroy_cgroup(struct mem_cgroup *memcg)
 	percpu_counter_destroy(&tcp->tcp_sockets_allocated);

 	val = res_counter_read_u64(&tcp->tcp_memory_allocated, RES_LIMIT);
-
-	if (val != RESOURCE_MAX)
-		static_key_slow_dec(&memcg_socket_limit_enabled);
 }
 EXPORT_SYMBOL(tcp_destroy_cgroup);

@@ -107,10 +104,33 @@ static int tcp_update_limit(struct mem_cgroup *memcg, u64 val)
 		tcp->tcp_prot_mem[i] = min_t(long, val >> PAGE_SHIFT,
 					 net->ipv4.sysctl_tcp_mem[i]);

-	if (val == RESOURCE_MAX && old_lim != RESOURCE_MAX)
-		static_key_slow_dec(&memcg_socket_limit_enabled);
-	else if (old_lim == RESOURCE_MAX && val != RESOURCE_MAX)
-		static_key_slow_inc(&memcg_socket_limit_enabled);
+	if (val == RESOURCE_MAX)
+		clear_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
+	else if (val != RESOURCE_MAX) {
+		/*
+		 * The active bit needs to be written after the static_key
+		 * update. This is what guarantees that the socket activation
+		 * function is the last one to run. See sock_update_memcg() for
+		 * details, and note that we don't mark any socket as belonging
+		 * to this memcg until that flag is up.
+		 *
+		 * We need to do this, because static_keys will span multiple
+		 * sites, but we can't control their order. If we mark a socket
+		 * as accounted, but the accounting functions are not patched in
+		 * yet, we'll lose accounting.
+		 *
+		 * We never race with the readers in sock_update_memcg(),
+		 * because when this value change, the code to process it is not
+		 * patched in yet.
+		 *
+		 * The activated bit is used to guarantee that no two writers
+		 * will do the update in the same memcg. Without that, we can't
+		 * properly shutdown the static key.
+		 */
+		if (!test_and_set_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags))

Page 7 of 11 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+			static_key_slow_inc(&memcg_socket_limit_enabled);
+		set_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
+	}

 	return 0;
 }
--
1.7.7.6

Subject: Re: [PATCH v7 1/2] Always free struct memcg through schedule_work()
Posted by Michal Hocko on Fri, 25 May 2012 09:50:08 GMT
View Forum Message <> Reply to Message

On Fri 25-05-12 13:32:07, Glauber Costa wrote:
> Right now we free struct memcg with kfree right after a
> rcu grace period, but defer it if we need to use vfree() to get
> rid of that memory area. We do that by need, because we need vfree
> to be called in a process context.
>
> This patch unifies this behavior, by ensuring that even kfree will
> happen in a separate thread. The goal is to have a stable place to
> call the upcoming jump label destruction function outside the realm
> of the complicated and quite far-reaching cgroup lock (that can't be
> held when calling neither the cpu_hotplug.lock nor the jump_label_mutex)
>
> Signed-off-by: Glauber Costa <glommer@parallels.com>
> Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>

Acked-by: Michal Hocko <mhocko@suse.cz>

Just one comment below

> CC: Tejun Heo <tj@kernel.org>
> CC: Li Zefan <lizefan@huawei.com>
> CC: Johannes Weiner <hannes@cmpxchg.org>
> CC: Michal Hocko <mhocko@suse.cz>
> CC: Andrew Morton <akpm@linux-foundation.org>
> ---
> mm/memcontrol.c | 24 +++++++++++++-----------
> 1 files changed, 13 insertions(+), 11 deletions(-)
>
> diff --git a/mm/memcontrol.c b/mm/memcontrol.c
> index 932a734..0b4b4c8 100644
> --- a/mm/memcontrol.c
> +++ b/mm/memcontrol.c
[...]
> @@ -4826,23 +4826,28 @@ out_free:

Page 8 of 11 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5820
https://new-forum.openvz.org/index.php?t=rview&th=10842&goto=46511#msg_46511
https://new-forum.openvz.org/index.php?t=post&reply_to=46511
https://new-forum.openvz.org/index.php

> }
>
> /*
> - * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
> + * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
> * but in process context. The work_freeing structure is overlaid
> * on the rcu_freeing structure, which itself is overlaid on memsw.
> */
> -static void vfree_work(struct work_struct *work)
> +static void free_work(struct work_struct *work)
> {
> 	struct mem_cgroup *memcg;
> +	int size = sizeof(struct mem_cgroup);
>
> 	memcg = container_of(work, struct mem_cgroup, work_freeing);
> -	vfree(memcg);
> +	if (size < PAGE_SIZE)

What about
	if (is_vmalloc_addr(memcg))
> +		kfree(memcg);
> +	else
> +		vfree(memcg);
> }

--
Michal Hocko
SUSE Labs
SUSE LINUX s.r.o.
Lihovarska 1060/12
190 00 Praha 9
Czech Republic

Subject: Re: [PATCH v7 1/2] Always free struct memcg through schedule_work()
Posted by Glauber Costa on Fri, 25 May 2012 09:51:22 GMT
View Forum Message <> Reply to Message

On 05/25/2012 01:50 PM, Michal Hocko wrote:
> On Fri 25-05-12 13:32:07, Glauber Costa wrote:
>> Right now we free struct memcg with kfree right after a
>> rcu grace period, but defer it if we need to use vfree() to get
>> rid of that memory area. We do that by need, because we need vfree
>> to be called in a process context.
>>
>> This patch unifies this behavior, by ensuring that even kfree will
>> happen in a separate thread. The goal is to have a stable place to
>> call the upcoming jump label destruction function outside the realm

Page 9 of 11 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=5626
https://new-forum.openvz.org/index.php?t=rview&th=10842&goto=46512#msg_46512
https://new-forum.openvz.org/index.php?t=post&reply_to=46512
https://new-forum.openvz.org/index.php

>> of the complicated and quite far-reaching cgroup lock (that can't be
>> held when calling neither the cpu_hotplug.lock nor the jump_label_mutex)
>>
>> Signed-off-by: Glauber Costa<glommer@parallels.com>
>> Acked-by: Kamezawa Hiroyuki<kamezawa.hiroyu@jp.fujitsu.com>
>
> Acked-by: Michal Hocko<mhocko@suse.cz>
>
> Just one comment below
>
>> CC: Tejun Heo<tj@kernel.org>
>> CC: Li Zefan<lizefan@huawei.com>
>> CC: Johannes Weiner<hannes@cmpxchg.org>
>> CC: Michal Hocko<mhocko@suse.cz>
>> CC: Andrew Morton<akpm@linux-foundation.org>
>> ---
>> mm/memcontrol.c | 24 +++++++++++++-----------
>> 1 files changed, 13 insertions(+), 11 deletions(-)
>>
>> diff --git a/mm/memcontrol.c b/mm/memcontrol.c
>> index 932a734..0b4b4c8 100644
>> --- a/mm/memcontrol.c
>> +++ b/mm/memcontrol.c
> [...]
>> @@ -4826,23 +4826,28 @@ out_free:
>> }
>>
>> /*
>> - * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
>> + * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
>> * but in process context. The work_freeing structure is overlaid
>> * on the rcu_freeing structure, which itself is overlaid on memsw.
>> */
>> -static void vfree_work(struct work_struct *work)
>> +static void free_work(struct work_struct *work)
>> {
>> 	struct mem_cgroup *memcg;
>> +	int size = sizeof(struct mem_cgroup);
>>
>> 	memcg = container_of(work, struct mem_cgroup, work_freeing);
>> -	vfree(memcg);
>> +	if (size< PAGE_SIZE)
>
> What about
> 	if (is_vmalloc_addr(memcg))
>> +		kfree(memcg);
>> +	else
>> +		vfree(memcg);

Page 10 of 11 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>> }
>
Could be, but I believe this one is already in Andrew's tree from last
submission (might be wrong)

Subject: Re: [PATCH v7 2/2] decrement static keys on real destroy time
Posted by davem on Sun, 27 May 2012 05:10:49 GMT
View Forum Message <> Reply to Message

From: Glauber Costa <glommer@parallels.com>
Date: Fri, 25 May 2012 13:32:08 +0400

 ...
> Signed-off-by: Glauber Costa <glommer@parallels.com>

Acked-by: David S. Miller <davem@davemloft.net>

Page 11 of 11 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=259
https://new-forum.openvz.org/index.php?t=rview&th=10842&goto=46548#msg_46548
https://new-forum.openvz.org/index.php?t=post&reply_to=46548
https://new-forum.openvz.org/index.php

