Subject: [PATCH] BC: resource beancounters (v4) (added user memory)
Posted by dev on Tue, 05 Sep 2006 14:59:30 GMT

View Forum Message <> Reply to Message

Core Resource Beancounters (BC) + kernel/user memory control.

BC allows to account and control consumption
of kernel resources used by group of processes.

Draft UBC description on OpenVZ wiki can be found at
http://wiki.openvz.org/lUBC_parameters

The full BC patch set allows to control:

- kernel memory. All the kernel objects allocatable
on user demand should be accounted and limited
for DoS protection.

E.g. page tables, task structs, vmas etc.

- virtual memory pages. BCs allow to

limit a container to some amount of memory and
introduces 2-level OOM Kkiller taking into account
container's consumption.

pages shared between containers are correctly
charged as fractions (tunable).

- network buffers. These includes TCP/IP rcv/snd
buffers, dgram snd buffers, unix, netlinks and
other buffers.

- minor resources accounted/limited by number:
tasks, files, flocks, ptys, siginfo, pinned dcache
mem, sockets, iptentries (for containers with
virtualized networking)

As the first step we want to propose for discussion
the most complicated parts of resource management:
kernel memory and virtual memory.

The patch set to be sent provides core for BC and
management of kernel memory only. Virtual memory
management will be sent in a couple of days.

The patches in these series are:
diff-atomic-dec-and-lock-irgsave.patch
introduce atomic_dec_and_lock_irgsave()

diff-bc-kconfig.patch:
Adds kernel/bc/Kconfig file with UBC options and
includes it into arch Kconfigs

Page 1 of 250 ---- Cenerated from QpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=19
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=5922#msg_5922
https://new-forum.openvz.org/index.php?t=post&reply_to=5922
https://new-forum.openvz.org/index.php

diff-bc-core.patch:

Contains core functionality and interfaces of BC:
find/create beancounter, initialization,

charge/uncharge of resource, core objects' declarations.

diff-bc-task.patch:
Contains code responsible for setting BC on task,
it's inheriting and setting host context in interrupts.

Task contains three beancounters:

1. exec_bc - current context. all resources are charged
to this beancounter.

2. fork_bc - beancounter which is inherited by
task’s children on fork

diff-bc-syscalls.patch:

Patch adds system calls for BC management:

1. sys_get bcid - get current BC id

2.sys_set _bcid - changes exec_and fork_ BCs on current
3. sys_set_bhclimit - set limits for resources consumtions

4. sys_get_bcstat - returns limits/usages/fails for BC

diff-bc-kmem-core.patch:
Introduces BC_KMEMSIZE resource which accounts kernel
objects allocated by task's request.

Objects are accounted via struct page and slab objects.
For the latter ones each slab contains a set of pointers
corresponding object is charged to.

Allocation charge rules:

1. Pages - if allocation is performed with __ GFP_BC flag - page
is charged to current's exec_bc.

2. Slabs - kmem_cache may be created with SLAB_BC flag - in this
case each allocation is charged. Caches used by kmalloc are
created with SLAB_BC | SLAB_BC_NOCHARGE flags. In this case
only GFP_BC allocations are charged.

diff-bc-kmem-charge.patch:
Adds SLAB_BC and __ GFP_BC flags in appropriate places
to cause charging/limiting of specified resources.

diff-bc-vmlocked-core.patch:
Introduces new resource BC_LOCKEDPAGES for accounting
of mlock-ed user pages.

diff-bc-vmlocked-charge.patch:

Page 2 of 250 ---- Cenerated from QpenVZ Forum

https://new-forum.openvz.org/index.php

Places calls to BC core over the kernel to charge locked memory.

diff-bc-privvm.patch:

This patch instroduces new resource - BC_PRIVVMPAGES.
Privvmpages acointing is described in details in
http://wiki.openvz.org/User_pages_accounting

diff-bc-vmrss-prep.patch:
This patch intruduces small preparations for vmrss accounting
to make reviewing simpler.

diff-bc-vmrss-core.patch:

This is the core of vmrss accounting.

Pages are accounted in fractions and it is described in details in
http://wiki.openvz.org/RSS_fractions_accounting

diff-bc-vmrss-charge.patch:
Calls to vmrss core code over the kernel to do accounting.

Summary of changes from v3 patch set:

* Added basic user pages accounting (lockedpages/privvmpages)
* spell in Kconfig

* Makefile reworked

* EXPORT_SYMBOL_GPL

* union w/o name in struct page

* bc_task_charge is void now

* adjust minheld/maxheld splitted

Summary of changes from v2 patch set:

* introduced atomic_dec_and_lock_irgsave()

* bc_adjust_held_minmax comment

*added __must_check for bc_*charge* funcs

* use hash_long() instead of own one

* bc/Kceonfig is sourced from init/Kconfig now

* introduced bcid_t type with comment from Alan Cox
* check for barrier <= limit in sys_set_bclimit()

* removed (bc == NULL) checks

* replaced memcpy in beancounter_findcrate with assignment
* moved check 'if (mask & BC_ALLOC)' out of the lock
* removed unnecessary memset()

Summary of changes from v1 patch set:

* CONFIG_BEANCOUNTERS is 'n' by default
* fixed Kconfig includes in arches

Page 3 of 250 ---- Cenerated from QpenVZ Forum

https://new-forum.openvz.org/index.php

* removed hierarchical beancounters to simplify first patchset
* removed unused 'private’ pointer

* removed unused EXPORTS

* MAXVALUE redeclared as LONG_MAX

* peancounter_findcreate clarification

* renamed UBC -> BC, ub -> bc etc.

* moved BC inheritance into copy_process

* introduced reset_exec_bc() with proposed BUG_ON

* removed task _bc beancounter (not used yet, for numproc)
* fixed syscalls for sparc

* added sys_get_bcstat(): return info that was in /proc

* cond_syscall instead of #ifdefs

Many thanks to Oleg Nesterov, Alan Cox, Matt Helsley and others
for patch review and comments.

Patch set is applicable to 2.6.18-rc5-mm1

Thanks,
Kirill

Subject: [PATCH 1/13] BC: introduce atomic_dec_and_lock_irgsave()
Posted by dev on Tue, 05 Sep 2006 15:16:08 GMT

View Forum Message <> Reply to Message

Oleg Nesterov noticed to me that the construction like
(used in beancounter patches and free_uid()):

local_irq_save(flags);
if (atomic_dec_and_lock(&refcnt, &lock))

is not that good for preemtible kernels, since with preemption
spin_lock() can schedule() to reduce latency. However, it won't schedule
if interrupts are disabled.

So this patch introduces atomic_dec_and_lock_irgsave() as a logical
counterpart to atomic_dec_and_lock().

Signed-Off-By: Pavel Emelianov <xemul@sw.ru>
Signed-Off-By: Kirill Korotaev <dev@sw.ru>

include/linux/spinlock.h | 6 ++++++
kernel/user.c | 5+
lib/dec_and_lock.c | 19 +++++++++++++++++++

Page 4 of 250 ---- Cenerated from QpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=19
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=5923#msg_5923
https://new-forum.openvz.org/index.php?t=post&reply_to=5923
https://new-forum.openvz.org/index.php

3 files changed, 26 insertions(+), 4 deletions(-)

--- ./include/linux/spinlock.h.dlirg 2006-08-28 10:17:35.000000000 +0400
+++ ./include/linux/spinlock.h 2006-08-28 11:22:37.000000000 +0400
@@ -266,6 +266,12 @@ extern int _atomic_dec_and_lock(atomic_t
#define atomic_dec_and_lock(atomic, lock) \

__cond_lock(lock, _atomic_dec_and_lock(atomic, lock))

+extern int _atomic_dec_and_lock_irgsave(atomic_t *atomic, spinlock_t *lock,
+ unsigned long *flagsp);
+#define atomic_dec_and_lock_irgsave(atomic, lock, flags) \
+ __cond_lock(lock, \
+ _atomic_dec_and_lock_irgsave(atomic, lock, &flags))
+
/**
* spin_can_lock - would spin_trylock() succeed?
* @lock: the spinlock in question.
--- ./kernel/user.c.dlirg 2006-07-10 12:39:20.000000000 +0400
+++ ./kernel/user.c 2006-08-28 11:08:56.000000000 +0400
@@ -108,15 +108,12 @@ void free_uid(struct user_struct *up)
if (lup)
return;

- local_irg_save(flags);

- if (atomic_dec_and_lock(&up->__ count, &uidhash_lock)) {

+ if (atomic_dec_and_lock_irgsave(&up->__count, &uidhash_lock, flags)) {
uid_hash_remove(up);
spin_unlock_irgrestore(&uidhash_lock, flags);
key put(up->uid_keyring);
key put(up->session_keyring);
kmem_cache_free(uid_cachep, up);

- }else {

- local_irg_restore(flags);
}

}

--- /lib/dec_and_lock.c.dlirg 2006-04-21 11:59:36.000000000 +0400
+++ ./lib/dec_and_lock.c 2006-08-28 11:22:08.000000000 +0400
@@ -33,3 +33,22 @@ int _atomic_dec_and_lock(atomic_t *atomi

}

EXPORT_SYMBOL(_atomic_dec_and_lock);
+

+/*

+ * the same, but takes the lock with _irgsave

+ */

+int _atomic_dec_and_lock_irgsave(atomic_t *atomic, spinlock_t *lock,
+ unsigned long *flagsp)

Page 5 of 250 ---- Cenerated from QpenVZ Forum

https://new-forum.openvz.org/index.php

H

+#ifdef CONFIG_SMP

+ if (atomic_add_unless(atomic, -1, 1))
+ return O;

+#endif

+ spin_lock_irgsave(lock, *flagsp);

+ if (atomic_dec_and_test(atomic))

+ return 1;

+ spin_unlock_irgrestore(lock, *flagsp);
+ return O;

+}

+
+EXPORT_SYMBOL(_atomic_dec_and_lock_irgsave);

Subject: [PATCH 2/13] BC: kconfig
Posted by dev on Tue, 05 Sep 2006 15:16:34 GMT

View Forum Message <> Reply to Message

Add kernel/bc/Kconfig file with BC options and
include it into arch Kconfigs

Signed-off-by: Pavel Emelianov <xemul@sw.ru>
Signed-off-by: Kirill Korotaev <dev@sw.ru>

inittKconfig | 2 ++
kernel/bc/Kconfig | 25 +++++++++++++++++++++++++

2 files changed, 27 insertions(+)

--- /init/Kconfig.bckm 2006-07-10 12:39:10.000000000 +0400
+++ ./init/Kconfig 2006-07-28 14:10:41.000000000 +0400
@@ -222,6 +222,8 @@ source "crypto/Kconfig"

Say N if unsure.

+source "kernel/bc/Kconfig"
+

config SYSCTL

bool

--- ./kernel/bc/Kconfig.bckconf 2006-09-05 12:21:09.000000000 +0400
+++ ./kernel/bc/Kconfig 2006-09-05 12:19:54.000000000 +0400

@@ -0,0+1,25 @@

+#

+# Resource beancounters (BC)

+#

Page 6 of 250 ---- Cenerated from QpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=19
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=5924#msg_5924
https://new-forum.openvz.org/index.php?t=post&reply_to=5924
https://new-forum.openvz.org/index.php

+# Copyright (C) 2006 OpenVZ. SWsoft Inc

+

+menu "User resources”

+

+config BEANCOUNTERS

+ bool "Enable resource accounting/control"

+ default n

+ help

+ When Y this option provides accounting and allows configuring

limits for user's consumption of exhaustible system resources.

The most important resource controlled by this patch is unswappable
memory (either mlock'ed or used by internal kernel structures and
buffers). The main goal of this patch is to protect processes

from running short of important resources because of accidental
misbehavior of processes or malicious activity aiming to kill"

the system. It's worth mentioning that resource limits configured

by setrlimit(2) do not give an acceptable level of protection

because they cover only a small fraction of resources and work on a
per-process basis. Per-process accounting doesn't prevent malicious
users from spawning a lot of resource-consuming processes.

+ 4+ 4+ +++ A+ o+

+endmenu

Subject: [PATCH 3/17] BC: beancounters core (API)
Posted by dev on Tue, 05 Sep 2006 15:17:35 GMT

View Forum Message <> Reply to Message

Core functionality and interfaces of BC:
find/create beancounter, initialization,
charge/uncharge of resource, core objects' declarations.

Basic structures:
bc_resource_parm - resource description
beancounter - set of resources, id, lock

Signed-off-by: Pavel Emelianov <xemul@sw.ru>
Signed-off-by: Kirill Korotaev <dev@sw.ru>

include/bc/beancounter.h | 155 +++++++++++++++++++++++++++

include/linux/types.h | 16 ++
init/main.c | 4
kernel/Makefile | 1
kernel/bc/Makefile | 7+

kernel/bc/beancounter.c | 263 +++++++++++++++++++++++H+ b
6 files changed, 446 insertions(+)

Page 7 of 250 ---- Cenerated from QpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=19
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=5925#msg_5925
https://new-forum.openvz.org/index.php?t=post&reply_to=5925
https://new-forum.openvz.org/index.php

--- ./include/bc/beancounter.h.bccore 2006-09-05 12:06:35.000000000 +0400
+++ ./include/bc/beancounter.h 2006-09-05 12:15:57.000000000 +0400
@@ -0,0+1,155 @@

+/*

+ * include/bc/beancounter.h

+ *

+* Copyright (C) 2006 OpenVZ. SWsoft Inc

+ *

+ */

+

+#ifndef _LINUX_BEANCOUNTER_H

+#define _LINUX_BEANCOUNTER_H

+

+/*

+ * Resource list.

+*/

+

+#define BC_RESOURCES 0

+

+struct bc_resource_parm {

+ unsigned long barrier; /* A barrier over which resource allocations
+ * are failed gracefully. e.g. if the amount

+ *of consumed memory is over the barrier

+ *further sbrk() or mmap() calls fail, the

+ * existing processes are not killed.

+ %

+ unsigned long limit; /* hard resource limit */

+ unsigned long held; /* consumed resources */

+ unsigned long maxheld; /* maximum amount of consumed resources */
+ unsigned long minheld; /* minumum amount of consumed resources */
+ unsigned long failcnt; /* count of failed charges */

+};

+

+/*

+ * Kernel internal part.

+*/

+

+#ifdef _ KERNEL___

+

+#include <linux/spinlock.h>

+#include <linux/list.h>

+#include <asm/atomic.h>

+

+#define BC_MAXVALUE LONG_MAX

+

+/*

+ * Resource management structures

Page 8 of 250 ---- Cenerated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+ * Serialization issues:

+* beancounter list management is protected via bc_hash_lock

+ * task pointers are set only for current task and only once

+ * refcount is managed atomically

+ * value and limit comparison and change are protected by per-bc spinlock
+ */

+

+struct beancounter {

+ atomic_t bc_refcount;

+ spinlock_t bc_lock;

+bcid_t bc_id;
+ struct hlist_node hash,;
+

+ /* resources statistics and settings */

+ struct bc_resource_parm bc_parms[BC_RESOURCES];

+};

+

+enum bc_severity { BC_BARRIER, BC_LIMIT, BC_FORCE };

+

+/* Flags passed to beancounter_findcreate() */

+#define BC_LOOKUP 0x00

+#define BC_ALLOC 0x01 /* may allocate new one */

+#define BC_ALLOC_ATOMIC 0x02 /* when BC_ALLOC is set causes
+ *GFP_ATOMIC allocation

+ ¥

+

+#ifdef CONFIG_BEANCOUNTERS

+

+/*

+ * These functions tune minheld and maxheld values for a given
+ * resource when held value changes

+ */

+static inline void bc_adjust_maxheld(struct beancounter *bc, int resource)
gl

+ struct bc_resource_parm *parm;

+

+ parm = &bc->bc_parms[resource];

+ if (parm->maxheld < parm->held)

+ parm->maxheld = parm->held;

+}

+

+static inline void bc_adjust_minheld(struct beancounter *bc, int resource)
gl

+ struct bc_resource_parm *parm;

+

+ parm = &bc->bc_parms[resource];

+ if (parm->minheld > parm->held)

+ parm->minheld = parm->held;

Page 9 of 250 ---- Cenerated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+}
+

+int __must_check bc_charge_locked(struct beancounter *bc,

+ int res, unsigned long val, enum bc_severity strict);

+int __must_check bc_charge(struct beancounter *bc,

+ int res, unsigned long val, enum bc_severity strict);

+

+void bc_uncharge_locked(struct beancounter *bc, int res, unsigned long val);
+void bc_uncharge(struct beancounter *bc, int res, unsigned long val);
+

+struct beancounter *beancounter_findcreate(bcid_t id, int mask);

+

+static inline struct beancounter *get_beancounter(struct beancounter *bc)
+

+ atomic_inc(&bc->bc_refcount);

+ return bc;

+}

+

+void put_beancounter(struct beancounter *bc);

+

+void bc_init_early(void);

+void bc_init_late(void);

+void bc_init_proc(void);

+

+extern struct beancounter init_bc;

+extern const char *bc_rnames];

+

+#else /* CONFIG_BEANCOUNTERS */

+

+#define beancounter_findcreate(id, f) (NULL)

+#define get_beancounter(bc) (NULL)

+#define put_beancounter(bc) do {} while (0)

+

+static inline __must_check int bc_charge_locked(struct beancounter *bc,
+ int res, unsigned long val, enum bc_severity strict)

gl

+ return O;

+}

+

+static inline __must_check int bc_charge(struct beancounter *bc,

+ int res, unsigned long val, enum bc_severity strict)

H

+ return O;

+}

+

+static inline void bc_uncharge_locked(struct beancounter *bc, int res,
+ unsigned long val)

H

Page 10 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+}
+

+static inline void bc_uncharge(struct beancounter *bc, int res,

+ unsigned long val)

+

+}

+

+#define bc_init_early() do {} while (0)

+#define bc_init_late() do {} while (0)

+#define bc_init_proc() do {} while (0)

+

+#endif /¥ CONFIG_BEANCOUNTERS */

+#endif # KERNEL__ */

+

+#endif /* _LINUX_BEANCOUNTER_H */

--- ./include/linux/types.h.bccore 2006-09-05 11:47:33.000000000 +0400
+++ ./include/linux/types.h 2006-09-05 12:06:35.000000000 +0400

@@ -40,6 +40,21 @@ typedef _ kernel_gid32_tgid_t;

typedef _ kernel _uid16 _t uid16 t;

typedef _ kernel gid16 _t Qid16 t;

+/*

+ * Type of beancounter id (CONFIG_BEANCOUNTERS)

+ *

+ * The ancient Unix implementations of this kind of resource management and
+ * security are built around setluid() which sets a uid value that cannot

+ * be changed again and is normally used for security purposes. That

+ * happened to be a uid_t and in simple setups at login uid = luid = euid

+ * would be the norm.

+ *

+ * Thus the Linux one happens to be a uid_t. It could be something else but
+ * for the "container per user" model whatever a container is must be able
+ * to hold all possible uid_t values. Alan Cox.

+ */

+typedef uid_t bcid_t;

+

#ifdef CONFIG_UID16

[* This is defined by include/asm-{arch}/posix_types.h */

typedef _ kernel _old _uid_told_uid_t;

@@ -52,6 +67,7 @@ typedef __kernel _old_gid told_gid _t;

#else

typedef _ kernel_uid_t uid_t;

typedef _ kernel_gid_t gid_t;

+typedef _ kernel_uid_t bcid_t;

#endif # _ KERNEL__ */

#if defined(__GNUC__) && !defined(__STRICT_ANSI_)
--- /init/main.c.bccore 2006-09-05 11:47:33.000000000 +0400

Page 11 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+++ ./init/main.c 2006-09-05 12:06:35.000000000 +0400
@@ -50,6 +50,8 @@

#include <linux/debug_locks.h>

#include <linux/lockdep.h>

+#include <bc/beancounter.h>

+

#include <asm/io.h>

#include <asm/bugs.h>

#include <asm/setup.h>

@@ -493,6 +495,7 @@ asmlinkage void __init start_kernel(void
early_boot_irgs_off();
early_init_irg_lock_class();

+ bc_init_early();

/*

* Interrupts are still disabled. Do necessary setups, then

* enable them
@@ -585,6 +588,7 @@ asmlinkage void __init start_kernel(void
#endif

fork_init(num_physpages);

proc_caches_init();
+ bc_init_late();

buffer_init();

unnamed_dev_init();

key_init();
--- ./kernel/Makefile.bccore 2006-09-05 11:47:33.000000000 +0400
+++ ./kernel/Makefile 2006-09-05 12:09:53.000000000 +0400
@@ -12,6 +12,7 @@ obj-y = sched.o fork.o exec_domain.o

0bj-$(CONFIG_STACKTRACE) += stacktrace.o

obj-y +=time/

+0bj-$(CONFIG_BEANCOUNTERS) += bc/
obj-$(CONFIG_DEBUG_MUTEXES) += mutex-debug.o
0bj-$(CONFIG_LOCKDEP) += lockdep.o

ifeq ($(CONFIG_PROC_FS),y)

--- ./kernel/bc/Makefile.bccore 2006-09-05 12:06:35.000000000 +0400
+++ ./kernel/bc/Makefile 2006-09-05 12:10:05.000000000 +0400

@@ -0,0+1,7 @@

+#

+# Beancounters (BC)

+#

+# Copyright (C) 2006 OpenVZ. SWsoft Inc

+#

+

+0bj-y += beancounter.o

--- ./kernel/bc/beancounter.c.bccore 2006-09-05 12:06:35.000000000 +0400
+++ ./kernel/bc/beancounter.c 2006-09-05 12:16:50.000000000 +0400

Page 12 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

@@ -0,0 +1,263 @@

+/*

+* kernel/bc/beancounter.c

+ *

+ * Copyright (C) 2006 OpenVZ. SWsoft Inc

+ * Original code by (C) 1998 Alan Cox

+* 1998-2000 Andrey Savochkin <saw@saw.sw.com.sg>
+ */

+

+#include <linux/slab.h>

+#include <linux/module.h>

+#include <linux/hash.h>

+

+#include <bc/beancounter.h>

+

+static kmem_cache_t *bc_cachep;

+static struct beancounter default_beancounter;

+

+static void init_beancounter_struct(struct beancounter *bc, bcid_t id);
+

+struct beancounter init_bc;

+

+const char *bc_rnamesJ] = {

+};

+

+#define BC_HASH_BITS 8

+#define BC_HASH_SIZE (1 << BC_HASH_BITS)

+

+static struct hlist_head bc_hash[BC_HASH_SIZE];

+static spinlock _t bc_hash_lock;

+#define bc_hash_fn(bcid) (hash_long(bcid, BC_HASH_BITS))

+

+/*

+ * Per resource beancounting. Resources are tied to their bc id.

+ * The resource structure itself is tagged both to the process and

+ * the charging resources (a socket doesn't want to have to search for
+ * things at irq time for example). Reference counters keep things in
+* hand.

+ *

+ * The case where a user creates resource, Kills all his processes and
+ * then starts new ones is correctly handled this way. The refcounters
+ * will mean the old entry is still around with resource tied to it.

+ */

+

+struct beancounter *beancounter_findcreate(bcid_t id, int mask)

+H

+ struct beancounter *new_bc, *bc;

+ unsigned long flags;

Page 13 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+ struct hlist_head *slot;

+ struct hlist_node *pos;

+

+ slot = &bc_hash[bc_hash_fn(id)];

+ new_bc = NULL;

+

+retry:

+ spin_lock_irgsave(&bc_hash_lock, flags);

+ hlist_for_each_entry (bc, pos, slot, hash)

+ if (bc->bc_id ==id)

+ break;

+

+if (pos !'= NULL) {

+ get_beancounter(bc);
spin_unlock_irgrestore(&bc_hash_lock, flags);

+
+
+ if (new_bc = NULL)

+ kmem_cache_free(bc_cachep, new_bc);
+ return bc;

+

+

}

+ if (new_bc !'= NULL)

+ goto out_install;

+

+ spin_unlock_irgrestore(&bc_hash_lock, flags);
+

+if ({(mask & BC_ALLOC))

+ goto out;

+

+ new_bc = kmem_cache_alloc(bc_cachep,

+ mask & BC_ALLOC_ATOMIC ? GFP_ATOMIC : GFP_KERNEL);
+if (new_bc == NULL)

+ goto out;

+

+ *new_bc = default_beancounter;

+ init_beancounter_struct(new_bc, id);

+ goto retry;

+

+out_install:

+ hlist_add_head(&new_bc->hash, slot);

+ spin_unlock_irgrestore(&bc_hash_lock, flags);
+out:

+ return new_bc;

+}

+

+void put_beancounter(struct beancounter *bc)
+H

+inti;

Page 14 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+ unsigned long flags;

+

+ if (atomic_dec_and_lock_irgsave(&bc->bc_refcount,
+ &bc_hash_lock, flags))

+ return;

+

+ BUG_ON(bc == &init_bc);

+

+ for (i=0; i < BC_RESOURCES; i++)

+ if (bc->bc_parms]i].held != 0)

+ printk("BC: %d has %lu of %s held on put", bc->bc_id,
+ bc->bc_parmsii].held, bc_rnamesii]);

+

+ hlist_del(&bc->hash);

+ spin_unlock_irgrestore(&bc_hash_lock, flags);

+

+ kmem_cache_free(bc_cachep, bc);

+}
+

+EXPORT_SYMBOL_GPL(put_beancounter);

+

+/*

+ * Generic resource charging stuff

+ */

+

+/* called with bc->bc_lock held and interrupts disabled */
+int bc_charge_locked(struct beancounter *bc, int resource, unsigned long val,
+ enum bc_severity strict)

+H

+ unsigned long new_held;

+

+ [*

+ *bc_value <= BC_MAXVALUE, value <= BC_MAXVALUE, and only one addition
+ * at the moment is possible so an overflow is impossible.
+ */

+ new_held = bc->bc_parms|resource].held + val;

+

+ switch (strict) {

+ case BC_BARRIER:

+ if (bc->bc_parms[resource].held >

+ bc->bc_parms[resource].barrier)

+ break;

+ [* fallthrough */

+ case BC_LIMIT:

+ if (bc->bc_parms[resource].held >

+ bc->bc_parms[resource].limit)

+ break;

+ [* fallthrough */

Page 15 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+ case BC_FORCE:

+ bc->bc_parms[resource].held = new_held;

+ bc_adjust_maxheld(bc, resource);

+ return O;

+

+ default:

+ BUG();

+}

+

+ bc->bc_parms|[resource].failent++;

+ return -ENOMEM,;

+}

+EXPORT_SYMBOL_GPL(bc_charge_locked);

+

+int bc_charge(struct beancounter *bc, int resource, unsigned long val,
+ enum bc_severity strict)

gl

+ int retval;

+ unsigned long flags;

+

+ BUG_ON(val > BC_MAXVALUE);

+

+ spin_lock_irgsave(&bc->bc_lock, flags);

+ retval = bc_charge_locked(bc, resource, val, strict);

+ spin_unlock_irgrestore(&bc->bc_lock, flags);

+ return retval,

+}

+EXPORT_SYMBOL_GPL(bc_charge);

+

+/* called with bc->bc_lock held and interrupts disabled */
+void bc_uncharge_locked(struct beancounter *bc, int resource, unsigned long val)
gl

+ if (unlikely(bc->bc_parms[resource].held < val)) {

+ printk("BC: overuncharging bc %d %s: val %lu, holds %lu\n",
+ bc->bc_id, bc_rnames|resource], val,

+ bc->bc_parms|resource].held);

+ val = bc->bc_parms|resource].held;

+}

+

+ bc->bc_parms[resource].held -= val,

+ bc_adjust_minheld(bc, resource);

+}

+EXPORT_SYMBOL_GPL(bc_uncharge_locked);

+

+void bc_uncharge(struct beancounter *bc, int resource, unsigned long val)
+H

+ unsigned long flags;

+

Page 16 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+ BUG_ON(val > BC_MAXVALUE);

+

+ spin_lock_irgsave(&bc->bc_lock, flags);

+ bc_uncharge_locked(bc, resource, val);

+ spin_unlock_irgrestore(&bc->bc_lock, flags);

+}

+EXPORT_SYMBOL_GPL(bc_uncharge);

+

+/*

+ * Initialization

+ *

+ * struct beancounter contains

+* - limits and other configuration settings

+ * - structural fields: lists, spinlocks and so on.

+ *

+ * Before these parts are initialized, the structure should be memset
+ *to 0 or copied from a known clean structure. That takes care of a lot
+ * of fields not initialized explicitly.

+*/

+

+static void init_beancounter_struct(struct beancounter *bc, bcid_t id)
+

+ atomic_set(&bc->bc_refcount, 1);

+ spin_lock_init(&bc->bc_lock);

+ bc->be_id =id;

+}

+

+static void init_beancounter_nolimits(struct beancounter *bc)
+

+int k;

+

+ for (k = 0; k < BC_RESOURCES; k++) {

+ bc->bc_parms[k].limit = BC_MAXVALUE;

+ bc->bc_parms[k].barrier = BC_MAXVALUE;

+}

+}

+

+static void init_beancounter_syslimits(struct beancounter *bc)
H

+intk;

+

+ for (k = 0; k < BC_RESOURCES; k++)

+ bc->bc_parms[k].barrier = bc->bc_parms[k].limit;

+}

+

+void __init bc_init_early(void)

gl

+ struct beancounter *bc;

Page 17 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+ struct hlist_head *slot;

+

+ bc = &init_bc;

+

+ init_beancounter_nolimits(bc);

+ init_beancounter_struct(bc, 0);

+

+ spin_lock_init(&bc_hash_lock);

+ slot = &bc_hash[bc_hash_fn(bc->bc_id)];
+ hlist_add_head(&bc->hash, slot);

+}

+

+void __init bc_init_late(void)

+

+ struct beancounter *bc;

+

+ bc_cachep = kmem_cache_create("beancounters”,
+ sizeof(struct beancounter), 0,

+ SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL, NULL);
+

+ bc = &default_beancounter;

+ init_beancounter_syslimits(bc);

+ init_beancounter_struct(bc, 0);

+}

Subject: [PATCH 4/13] BC: context inheriting and changing
Posted by dev on Tue, 05 Sep 2006 15:19:40 GMT

View Forum Message <> Reply to Message

Contains code responsible for setting BC on task,
it's inheriting and setting host context in interrupts.

Task references 2 beancounters:

1. exec_bc: current context. all resources are
charged to this beancounter.

3. fork_bc: beancounter which is inherited by
task’s children on fork

Signed-off-by: Pavel Emelianov <xemul@sw.ru>
Signed-off-by: Kirill Korotaev <dev@sw.ru>

include/bc/task.h | 57 ++++++++++++H++H++HH+ bbb
include/linux/sched.h | 5 ++++
kernel/bc/Makefile | 1

kernel/bc/beancounter.c| 3 ++

Page 18 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=19
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=5926#msg_5926
https://new-forum.openvz.org/index.php?t=post&reply_to=5926
https://new-forum.openvz.org/index.php

kernel/bc/misc.c | 31 ++++++++++++++H
kernel/fork.c | 5 ++++

kernel/irg/handle.c | 9 +++++++

kernel/softirg.c | 8 ++++++

8 files changed, 119 insertions(+)

--- ./include/bc/task.h.bctask 2006-09-05 12:24:07.000000000 +0400
+++ ./include/bc/task.h 2006-09-05 12:38:53.000000000 +0400
@@ -0,0 +1,57 @@

+/*

+* include/bc/task.h

+ *

+* Copyright (C) 2006 OpenVZ. SWsoft Inc

+ *

+ */

+

+#ifndef _ BC_TASK H_

+#define __ BC_TASK H_

+

+struct beancounter;

+

+struct task_beancounter {

+ struct beancounter *exec_bc;

+ struct beancounter *fork _bc;

+};

+

+#ifdef CONFIG_BEANCOUNTERS

+

+#define get_exec_bc() (current->task_bc.exec_bc)
+

+#define set_exec_bc(new) ({ \

+ struct task_beancounter *tbc; \
+ struct beancounter *old; \

+ tbc = ¤t->task_bc; \

+ old = tbc->exec_bc; \

+ tbc->exec_bc = new; \

+ old; \

+})

+

+#define reset_exec_bc(old, expected) do { \

+ struct task_beancounter *tbc; \

+ tbc = ¤t->task bc; \

+ BUG_ON(tbc->exec_bc !'= expected); \

+ tbc->exec_bc =old; \

+ } while (0)

+

+void bc_task charge(struct task_struct *parent, struct task_struct *new);
+void bc_task _uncharge(struct task_struct *tsk);

Page 19 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+

+#else

+

+#define get_exec_bc() (NULL)

+#define set_exec_bc(new) (NULL)

+#define reset_exec_bc(new, expected) do { } while (0)

+

+static inline void bc_task _charge(struct task_struct *parent,
+ struct task_struct *new)

+H

+}
+

+static inline void bc_task _uncharge(struct task_struct *tsk)
H

+}
+

+#endif

+#endif

--- ./include/linux/sched.h.bctask 2006-09-05 11:47:33.000000000 +0400
+++ ./include/linux/sched.h 2006-09-05 12:33:45.000000000 +0400

@@ -83,6 +83,8 @@ struct sched_param {

#include <linux/timer.h>

#include <linux/hrtimer.h>

+#include <bc/task.h>
+

#include <asm/processor.h>

struct exec_domain;
@@ -1041,6 +1043,9 @@ struct task_struct {
#ifdef CONFIG_TASK_DELAY_ACCT
struct task_delay_info *delays;
#endif
+#ifdef CONFIG_BEANCOUNTERS
+ struct task_beancounter task _bc;
+#endif

|3

static inline pid_t process_group(struct task_struct *tsk)
--- ./kernel/bc/Makefile.bctask 2006-09-05 12:10:05.000000000 +0400
+++ ./kernel/bc/Makefile 2006-09-05 12:24:39.000000000 +0400

@@ -53+54 @@
#

obj-y += beancounter.o

+0bj-y += misc.o

--- ./kernel/bc/beancounter.c.bctask 2006-09-05 12:16:50.000000000 +0400
+++ ./kernel/bc/beancounter.c 2006-09-05 12:24:07.000000000 +0400

Page 20 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

@@ -247,6 +247,9 @@ void __init bc_init_early(void)
spin_lock_init(&bc_hash_lock);
slot = &bc_hash[bc_hash_fn(bc->bc_id)];
hlist_add_head(&bc->hash, slot);

+

+ current->task _bc.exec_bc = get_beancounter(bc);

+ current->task _bc.fork_bc = get_beancounter(bc);

}

void __init bc_init_late(void)

--- /dev/null 2006-07-18 14:52:43.075228448 +0400

+++ ./kernel/bc/misc.c 2006-09-05 12:30:57.000000000 +0400
@@ -0,0+1,31 @@

+/*

+ * kernel/bc/misc.c

+ *

+ * Copyright (C) 2006 OpenVZ. SWsoft Inc.

+ *

+*/

+

+#include <linux/sched.h>

+

+#include <bc/beancounter.h>

+#include <bc/task.h>

+

+void bc_task charge(struct task_struct *parent, struct task_struct *new)
gl

+ struct task_beancounter *old_bc;

+ struct task_beancounter *new_bc;

+ struct beancounter *bc;

+

+ old_bc = &parent->task_bc;

+ new_bc = &new->task_bc;

+

+ bc = old_bc->fork_bc;

+ new_bhc->exec_bc = get_beancounter(bc);

+ new_hc->fork_bc = get_beancounter(bc);

+}

+

+void bc_task uncharge(struct task_struct *tsk)

gl

+ put_beancounter(tsk->task_bc.exec_bc);

+ put_beancounter(tsk->task bc.fork _bc);

+}

--- ./kernel/fork.c.bctask 2006-09-05 11:47:33.000000000 +0400
+++ ./kernel/fork.c 2006-09-05 12:30:38.000000000 +0400
@@ -48,6 +48,8 @@

#include <linux/delayacct.h>

Page 21 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

#include <linux/taskstats_kern.h>

+#include <bc/task.h>

+

#include <asm/pgtable.h>

#include <asm/pgalloc.h>

#include <asm/uaccess.h>

@@ -104,6 +106,7 @@ static kmem_cache_t *mm_cachep;

void free_task(struct task_struct *tsk)

{

+ bc_task_uncharge(tsk);
free_thread_info(tsk->thread_info);
rt_mutex_debug_task_free(tsk);
free_task_struct(tsk);

@@ -979,6 +982,8 @@ static struct task_struct *copy_process(
if (p)
goto fork_out;

+ bc_task_charge(current, p);

+

#ifdef CONFIG_TRACE_IRQFLAGS
DEBUG_LOCKS_WARN_ON(!p->hardirgs_enabled);
DEBUG_LOCKS_ WARN_ON(!p->softirgs_enabled);

--- ./kernel/irg/handle.c.bctask 2006-09-05 11:47:33.000000000 +0400

+++ ./kernel/irg/handle.c 2006-09-05 12:24:07.000000000 +0400

@@ -16,6 +16,9 @@

#include <linux/interrupt.h>

#include <linux/kernel_stat.h>

+#include <bc/beancounter.h>
+#include <bc/task.h>
+

#include "internals.h"

/**

@@ -171,6 +174,9 @@ fastcall unsigned int __do_IRQ(unsigned
struct irg_desc *desc = irg_desc + irq;
struct irgaction *action;
unsigned int status;

+ struct beancounter *bc;

+

+ bc = set_exec_bc(&init_bc);

kstat_this_cpu.irgsfirg]++;
if (CHECK_IRQ_PER_CPU(desc->status)) {
@@ -183,6 +189,8 @@ fastcall unsigned int __do_IRQ(unsigned
desc->chip->ack(irq);

Page 22 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

action_ret = handle_IRQ_event(irqg, regs, desc->action);
desc->chip->end(irq);

+

+ reset_exec_bc(bc, &init_bc);
return 1,

}

@@ -251,6 +259,7 @@ out:
desc->chip->end(irqg);
spin_unlock(&desc->lock);

+ reset_exec_bc(bc, &init_bc);
return 1;

}

--- ./kernel/softirqg.c.bctask 2006-09-05 11:47:33.000000000 +0400
+++ ./kernel/softirqg.c 2006-09-05 12:38:42.000000000 +0400

@@ -18,6 +189 @@

#include <linux/rcupdate.h>

#include <linux/smp.h>

+#include <bc/beancounter.h>
+#include <bc/task.h>
+
#include <asm/irq.h>
/~k
- No shared variables, all the data are CPU local.
@@ -209,6 +212,9 @@ asmlinkage void __do_softirg(void)
__u32 pending;
int max_restart = MAX_SOFTIRQ_RESTART;
int cpu;
+ struct beancounter *bc;
+

+ bc = set_exec_bc(&init_bc);

pending = local_softirq_pending();
account_system_vtime(current);
@@ -247,6 +253,8 @@ restart:

account_system_vtime(current);
_local_bh_enable();
+

+ reset_exec_bc(bc, &init_bc);

}

#ifndef _ ARCH_HAS_DO_SOFTIRQ

Page 23 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

Subject: [PATCH 5/13] BC: user interface (syscalls)
Posted by dev on Tue, 05 Sep 2006 15:21:07 GMT

View Forum Message <> Reply to Message

Add the following system calls for BC management:

1. sys _get bcid - getcurrent BCid

2.sys_set _bcid - change exec_ and fork_ BCs on current
3. sys_set_bclimit - set limits for resources consumtions

4. sys_get_bcstat - return br_resource_parm on resource

Signed-off-by: Pavel Emelianov <xemul@sw.ru>
Signed-off-by: Kirill Korotaev <dev@sw.ru>

arch/i386/kernel/syscall_table.S| 4 +

arch/iab4/kernel/entry.S | 4+
arch/sparc/kernel/entry.S | 2
arch/sparc/kernel/systbls.S | 6+
arch/sparc64/kernel/lentry.S | 2
arch/sparc64/kernel/systbls.S | 10 ++-
include/asm-i386/unistd.h | 6+
include/asm-ia64/unistd.h | 6+
include/asm-powerpc/systbl.h | 4+
include/asm-powerpc/unistd.h | 6+
include/asm-sparc/unistd.h | 4+
include/asm-sparc64/unistd.h | 4+
include/asm-x86_64/unistd.h | 10 ++-
kernel/bc/Makefile | 1
kernel/bc/sys.c | 120 +++++++++++++++++H++HH+Ht b
kernel/sys_ni.c | 6+

16 files changed, 186 insertions(+), 9 deletions(-)

--- ./arch/i386/kernel/syscall_table.S.bcsys 2006-09-05 11:47:31.000000000 +0400
+++ ./arch/i386/kernel/syscall_table.S 2006-09-05 12:47:21.000000000 +0400
@@ -318,3 +318,7 @@ ENTRY(sys_call_table)
Jong sys_vmsplice
Jong sys_move_pages
Jong sys_getcpu
Jong sys_get_bcid
Jong sys_set_bcid /* 320 */
Jong sys_set_bclimit
Jong sys_get_bcstat
--- ./larch/ia64/kernel/entry.S.bcsys 2006-09-05 11:47:31.000000000 +0400
+++ .Jarch/ia64/kernel/entry.S 2006-09-05 12:47:21.000000000 +0400
@@ -1610,5 +1610,9 @@ sys_call_table:
data8 sys_sync_file_range // 1300
data8 sys_tee
data8 sys_vmsplice

+
+
+
+

Page 24 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=19
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=5927#msg_5927
https://new-forum.openvz.org/index.php?t=post&reply_to=5927
https://new-forum.openvz.org/index.php

+ data8 sys_get _bcid

+ data8 sys_set bcid

+ data8 sys_set_bclimit // 1305
+ data8 sys_get bcstat

.org sys_call_table + 8*NR_syscalls // guard against failures to increase NR_syscalls
--- .Jarch/sparc/kernel/entry.S.bcsys 2006-07-10 12:39:10.000000000 +0400
+++ ./arch/sparc/kernel/entry.S 2006-09-05 12:47:21.000000000 +0400

@@ -37,7+37,7 @@
#define curptr g6

-#define NR_SYSCALLS 300 /* Each OS is different... */
+#define NR_SYSCALLS 304 /* Each OS is different... */

[* These are just handy. */

#define _SV save %sp, -STACKFRAME_SZ, %sp

--- .Jarch/sparc/kernel/systbls.S.bcsys 2006-07-10 12:39:10.000000000 +0400

+++ ./arch/sparc/kernel/systbls.S 2006-09-05 12:47:21.000000000 +0400

@@ -78,7 +78,8 @@ sys_call_table:

[*285*/ .long sys_mkdirat, sys_mknodat, sys fchownat, sys_futimesat, sys fstatat64
[¥290*/ .long sys_unlinkat, sys_renameat, sys_linkat, sys_symlinkat, sys_readlinkat
[¥295*/ .long sys_fchmodat, sys_faccessat, sys_pselect6, sys_ppoll, sys_unshare
-/*300*/ .long sys_set_robust_list, sys_get_robust_list

+/*300*/ .long sys_set_robust_list, sys_get _robust_list, sys get bcid, sys_set bcid,
sys_set_bclimit

+/*305*/ .long sys_get_bcstat

#ifdef CONFIG_SUNOS_EMUL

/* Now the SunOS syscall table. */

@@ -192,4 +193,7 @@ sunos_sys_table:
Jong sunos_nosys, sunos_nosys, sunos_nosys
Jong sunos_nosys, sunos_nosys, sunos_nosys

+ .long sunos_nosys, sunos_nosys, Sunos_nosys,

+ .long sunos_nosys

+

#endif

--- .Jlarch/sparc64/kernel/entry.S.bcsys 2006-07-10 12:39:10.000000000 +0400
+++ ./arch/sparc64/kernel/entry.S 2006-09-05 12:47:21.000000000 +0400

@@ -25,7 +25,7 @@
#define curptr g6

-#define NR_SYSCALLS 300 /* Each OS is different... */
+#define NR_SYSCALLS 304 /* Each OS is different... */

text

Page 25 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

.align 32
--- .Jarch/sparc64/kernel/systbls.S.bcsys 2006-07-10 12:39:11.000000000 +0400
+++ .Jarch/sparc64/kernel/systbls.S 2006-09-05 12:47:21.000000000 +0400
@@ -79,7 +79,8 @@ sys_call_table32:

.word sys_mkdirat, sys_mknodat, sys_fchownat, compat_sys_futimesat, compat_sys_fstatat64
[*290*/ .word sys_unlinkat, sys_renameat, sys_linkat, sys_symlinkat, sys_readlinkat

.word sys_fchmodat, sys_faccessat, compat_sys_pselect6, compat_sys_ppoll, sys_unshare
-/*300*/ .word compat_sys_set_robust_list, compat_sys_get_robust_list
+/*300*/ .word compat_sys_set_robust_list, compat_sys_get_robust_list, sys_nis_syscall,
sys_nis_syscall, sys_nis_syscall
+ .word sys_nis_syscall

#endif /* CONFIG_COMPAT */

@@ -149,7 +150,9 @@ sys_call_table:
.word sys_mkdirat, sys_mknodat, sys_fchownat, sys_futimesat, sys_fstatat64
[*290*/ .word sys_unlinkat, sys_renameat, sys_linkat, sys symlinkat, sys_readlinkat
.word sys_fchmodat, sys_faccessat, sys_pselect6, sys_ppoll, sys_unshare
-/*300*/ .word sys_set_robust_list, sys_get_robust_list
+/*300*/ .word sys_set_robust_list, sys_get robust_list, sys_get bcid, sys_set bcid,
sys_set_bclimit
+ .word sys_get_bcstat
+

#if defined(CONFIG_SUNOS_EMUL) || defined(CONFIG_SOLARIS_EMUL) ||\
defined(CONFIG_SOLARIS_EMUL_MODULE)
@@ -263,4 +266,7 @@ sunos_sys_table:
.word sunos_nosys, Sunos_nosys, sunos_nosys
.word sunos_nosys, Sunos_nosys, sunos_nosys
.word sunos_nosys, Sunos_nosys, sunos_nosys
+
+ .word sunos_nosys, sunos_nosys, Sunos_nosys
+ .word sunos_nosys
#endif
--- ./linclude/asm-i386/unistd.h.bcsys 2006-09-05 11:47:33.000000000 +0400
+++ ./include/asm-i386/unistd.h 2006-09-05 12:48:37.000000000 +0400
@@ -324,8 +324,12 @@
#define _ NR_vmsplice 316
#define __ NR_move_pages 317
#define _ NR_getcpu 318
+#define _ NR_get bcid 319
+#define _ NR_set bcid 320
+#define __NR_set_bclimit 321
+#define _ NR_get bcstat 322

-#define NR_syscalls 318
+#define NR_syscalls 323
#include <linux/err.h>

Page 26 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

/*

--- ./linclude/asm-ia64/unistd.h.bcsys 2006-09-05 11:47:33.000000000 +0400
+++ ./include/asm-ia64/unistd.h 2006-09-05 12:47:21.000000000 +0400
@@ -291,11 +291,15 @@

#define __ NR_sync_file_range 1300

#define _ NR_tee 1301

#define __ NR_vmsplice 1302

+#define _ NR_get_bcid 1303

+#define _ NR_set bcid 1304

+#define _ NR_set_bclimit 1305

+#define _ NR_get _bcstat 1306

#ifdef KERNEL__

-#define NR_syscalls 279 /* length of syscall table */
+#define NR_syscalls 283 /* length of syscall table */

#define _ ARCH_WANT_SYS_RT_SIGACTION

--- ./include/asm-powerpc/systbl.h.bcsys 2006-07-10 12:39:19.000000000 +0400
+++ ./include/asm-powerpc/systbl.h 2006-09-05 12:47:21.000000000 +0400
@@ -304,3 +304,7 @@ SYSCALL_SPU(fchmodat)

SYSCALL_SPU(faccessat)

COMPAT_SYS_SPU(get_robust_list)

COMPAT_SYS_SPU(set_robust_list)

+SYSCALL(sys_get_bcid)

+SYSCALL(sys_set_bcid)

+SYSCALL(sys_set_bclimit)

+SYSCALL(sys_get_bcstat)

--- ./include/asm-powerpc/unistd.h.bcsys 2006-09-05 11:47:33.000000000 +0400
+++ ./include/asm-powerpc/unistd.h 2006-09-05 12:47:21.000000000 +0400
@@ -323,10 +323,14 @@

#define _ NR_faccessat 298

#define _ NR_get robust_list 299

#define _ NR_set_robust_list 300

+#define _ NR_get bcid 301

+#define _ NR_set_bcid 302

+#define __ NR_set_bclimit 303

+#define _ NR_get bcstat 304

#ifdef KERNEL__

-#define __ NR_syscalls 301
+#define __ NR_syscalls 305

#define _ NR__exit _ NR_exit

Page 27 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

#define NR_syscalls _ NR_syscalls

--- ./linclude/asm-sparc/unistd.h.bcsys 2006-09-05 11:47:33.000000000 +0400
+++ ./include/asm-sparc/unistd.h 2006-09-05 12:47:21.000000000 +0400
@@ -318,6 +318,10 @@

#define __ NR_unshare 299

#define _ NR_set robust_list 300

#define __NR_get_robust_list 301

+#define __ NR_get_bcid 302

+#define _ NR_set bcid 303

+#define __ NR_set_bclimit 304

+#define _ NR_get_bcstat 305

#ifdef KERNEL__

/* WARNING: You MAY NOT add syscall numbers larger than 301, since
--- ./linclude/asm-sparc64/unistd.h.bcsys 2006-09-05 11:47:33.000000000 +0400
+++ ./include/asm-sparc64/unistd.h 2006-09-05 12:47:21.000000000 +0400
@@ -320,6 +320,10 @@

#define _ NR_unshare 299

#define _ NR_set_robust_list 300

#define _ NR_get robust_list 301

+#define _ NR_get bcid 302

+#define _ NR_set bcid 303

+#define __ NR_set_bclimit 304

+#define _ NR_get bcstat 305

#ifdef KERNEL__

/* WARNING: You MAY NOT add syscall numbers larger than 301, since
--- ./include/asm-x86_64/unistd.h.bcsys 2006-09-05 11:47:33.000000000 +0400
+++ ./include/asm-x86_64/unistd.h 2006-09-05 12:49:03.000000000 +0400
@@ -619,8 +619,16 @@ __ SYSCALL(__NR_sync_file_range, sys_sync
__ SYSCALL(__NR_vmsplice, sys_vmsplice)

#define __ NR_move_pages 279

__SYSCALL(__NR_move_pages, sys_move_pages)

+#define __ NR_get_bcid 280

+ SYSCALL(__NR_get bcid, sys_get_bcid)

+#define _ NR_set_bcid 281

+ SYSCALL(__NR_set _bcid, sys_set_bcid)

+#define _ NR_set_bclimit 282

+ SYSCALL(__NR_set_bclimit, sys_set_bclimit)

+#define _ NR_get bcstat 283

+ SYSCALL(__NR_get bcstat, sys_get_bcstat)

-#define _ NR_syscall max __NR_move pages
+#define _ NR_syscall max _NR_get bcstat
#include <linux/err.h>

#ifndef _NO_STUBS
- /kernel/lbc/Makefile.bcsys 2006-09-05 12:24:39.000000000 +0400

Page 28 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+++ ./kernel/bc/Makefile 2006-09-05 12:49:28.000000000 +0400
@@ _613 +6!4 @@

obj-y += beancounter.o

obj-y += misc.o

+0bj-y +=sys.o

--- /dev/null 2006-07-18 14:52:43.075228448 +0400
+++ ./kernel/bc/sys.c 2006-09-05 12:47:21.000000000 +0400
@@ -0,0+1,120 @@

+/*

+* kernel/bc/sys.c

+ *

+* Copyright (C) 2006 OpenVZ. SWsoft Inc
+ *

+ */

+

+#include <linux/sched.h>

+#include <asm/uaccess.h>

+

+#include <bc/beancounter.h>

+#include <bc/task.h>

+

+asmlinkage long sys_get bcid(void)

H

+ struct beancounter *bc;

+

+ bc = get_exec_bc();

+ return bc->bc_id;

+}

+

+asmlinkage long sys_set_bcid(bcid_t id)

gl

+ int error;

+ struct beancounter *bc;

+ struct task_beancounter *task_bc;

+

+ task_bc = ¤t->task_bc;

+

+ /* You may only set an bc as root */

+ error = -EPERM,;

+ if (Icapable(CAP_SETUID))

+ goto out;

+

+ /* Ok - set up a beancounter entry for this user */
+ error = -ENOMEM,;

+ bc = beancounter_findcreate(id, BC_ALLOC);
+if (bc == NULL)

+ goto out;

Page 29 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+

+ /* install bc */

+ put_beancounter(task _bc->exec_hc);

+ task_bc->exec_bc = bc;

+ put_beancounter(task_bc->fork_bc);

+ task_bc->fork_bc = get_beancounter(bc);

+ error = 0;
+out:

+ return error;
+}

+

+asmlinkage long sys_set_bclimit(bcid_t id, unsigned long resource,
+ unsigned long __user *limits)

gl

+ int error;

+ unsigned long flags;

+ struct beancounter *bc;

+ unsigned long new_limits[2];

+

+ error = -EPERM,;

+ if(lcapable(CAP_SYS_RESOURCE))

+ goto out;

+

+ error = -EINVAL,;

+ if (resource >= BC_RESOURCES)

+ goto out;

+

+ error = -EFAULT;

+ if (copy_from_user(&new_limits, limits, sizeof(new_limits)))
+ goto out;

+

+ error = -EINVAL,;

+ if (new_limits[0] > BC_MAXVALUE || new_limits[1] > BC_MAXVALUE ||
+ new_limits[0] > new_limits[1])

+ goto out;

+

+ error = -ENOENT,

+ bc = beancounter_findcreate(id, BC_LOOKUP);
+if (bc == NULL)

+ goto out;

+

+ spin_lock_irgsave(&bc->bc_lock, flags);

+ bc->bc_parms[resource].barrier = new_Ilimits[0];
+ bc->bc_parms[resource].limit = new_limits[1];

+ spin_unlock_irgrestore(&bc->bc_lock, flags);

+
+ put_beancounter(bc);
+error = 0;

Page 30 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+out:

+ return error;

+}

+

+int sys_get_bcstat(bcid_t id, unsigned long resource,
+ struct bc_resource_parm __user *uparm)

+

+ int error;

+ unsigned long flags;

+ struct beancounter *bc;

+ struct bc_resource_parm parm;

+

+ error = -EINVAL;

+ if (resource >= BC_RESOURCEYS)

+ goto out;

+

+ error = -ENOENT;

+ bc = beancounter_findcreate(id, BC_LOOKUP);
+if (bc == NULL)

+ goto out;

+

+ spin_lock_irgsave(&bc->bc_lock, flags);

+ parm = bc->bc_parms[resource];

+ spin_unlock_irgrestore(&bc->bc_lock, flags);

+ put_beancounter(bc);

+

+ error = 0;

+ if (copy_to_user(uparm, &parm, sizeof(parm)))
+ error = -EFAULT;

+

+out:

+ return error;

+}

--- ./kernel/sys_ni.c.bcsys 2006-09-05 11:47:33.000000000 +0400
+++ ./kernel/sys_ni.c 2006-09-05 12:49:16.000000000 +0400
@@ -139,3 +139,9 @@ cond_syscall(compat_sys_move_pages);
cond_syscall(sys_bdflush);
cond_syscall(sys_ioprio_set);
cond_syscall(sys_ioprio_get);

+

+/* user resources syscalls */
+cond_syscall(sys_set_bcid);
+cond_syscall(sys_get_bcid);
+cond_syscall(sys_set_bclimit);
+cond_syscall(sys_get_bcstat);

Page 31 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

Subject: [PATCH 6/13] BC: kernel memory (core)
Posted by dev on Tue, 05 Sep 2006 15:21:47 GMT

View Forum Message <> Reply to Message

Introduce BC_KMEMSIZE resource which accounts kernel
objects allocated by task's request.

Reference to BC is kept on struct page or slab object.
For slabs each struct slab contains a set of pointers
corresponding objects are charged to.

Allocation charge rules:

1. Pages - if allocation is performed with _ GFP_BC flag - page
is charged to current's exec_bc.

2. Slabs - kmem_cache may be created with SLAB_BC flag - in this
case each allocation is charged. Caches used by kmalloc are
created with SLAB_BC | SLAB_BC_NOCHARGE flags. In this case
only _ GFP_BC allocations are charged.

Signed-off-by: Pavel Emelianov <xemul@sw.ru>
Signed-off-by: Kirill Korotaev <dev@sw.ru>

include/bc/beancounter.h | 4 +

include/bc/kmem.h | 46 +++++++++++++++++

include/linux/gfp.h | 8 ++-

include/linux/mm.h | 4+

include/linux/slab.h | 4+

include/linux/vmalloc.h | 1

kernel/bc/Makefile | 1

kernel/bc/beancounter.c | 3+

kernel/bc/kmem.c | 85 ++++++++++++++++++++++H++HHHH+HH
mm/mempool.c | 2

mm/page_alloc.c | 11 ++++

mm/slab.c | 121 ++++++++++++++++H+H++H+ -
mm/vmalloc.c | 6++

13 files changed, 271 insertions(+), 25 deletions(-)

--- ./include/bc/beancounter.h.bckmemcore 2006-09-05 12:54:17.000000000 +0400
+++ ./include/bc/beancounter.h 2006-09-05 12:54:40.000000000 +0400
@@ -12,7+129 @@

* Resource list.

*/

-#define BC_RESOURCES 0
+#define BC_KMEMSIZE 0
+

+#define BC_RESOURCES 1

Page 32 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=19
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=5928#msg_5928
https://new-forum.openvz.org/index.php?t=post&reply_to=5928
https://new-forum.openvz.org/index.php

struct bc_resource_parm {
unsigned long barrier; /* A barrier over which resource allocations
--- /dev/null 2006-07-18 14:52:43.075228448 +0400
+++ ./include/bc/kmem.h 2006-09-05 12:54:40.000000000 +0400
@@ -0,0 +1,46 @@
+/*
+ * include/bc/kmem.h
+ *
+* Copyright (C) 2006 OpenVZ. SWsoft Inc
+ *
+ */
+
+#ifndef _ BC_KMEM_H_
+#define _ BC_KMEM_H_
+
+/*
+ * BC_KMEMSIZE accounting
+*/
+
+struct mm_struct;
+struct page;
+struct beancounter;
+
+#ifdef CONFIG_BEANCOUNTERS
+int __must_check bc_page_charge(struct page *page, int order, gfp_t flags);
+void bc_page_uncharge(struct page *page, int order);
+
+int __must_check bc_slab_charge(kmem_cache_t *cachep, void *obj, gfp_t flags);
+void bc_slab_uncharge(kmem_cache_t *cachep, void *obj);
+#else
+static inline int __must_check bc_page_charge(struct page *page,
+ int order, gfp_t flags)
gl
+ return O;
+}
+
+static inline void bc_page_uncharge(struct page *page, int order)
H
+}
+
+static inline int __must_check bc_slab_charge(kmem_cache_t *cachep,
+ void *obj, gfp_t flags)
+
+ return O;
+}
+
+static inline void bc_slab_uncharge(kmem_cache_t *cachep, void *obj)

Page 33 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

H

+}

+#endif

+#endif /* __ BC_SLAB_H_ */

--- ./include/linux/gfp.h.bckmemcore 2006-09-05 12:53:55.000000000 +0400

+++ ./include/linux/gfp.h 2006-09-05 12:54:40.000000000 +0400

@@ -46,15 +46,18 @@ struct vm_area_struct;

#define _ GFP_NOMEMALLOC ((__force gfp_t)0x10000u) /* Don't use emergency reserves */
#define _ GFP_HARDWALL ((__force gfp_t)0x20000u) /* Enforce hardwall cpuset memory
allocs */

#define _ GFP_THISNODE ((__force gfp_t)0x40000u)/* No fallback, no policies */

+#define _ GFP_BC ((__force gfp_t)0x80000u) /* Charge allocation with BC */

+#define _ GFP_BC_LIMIT ((__force gfp_t)0x100000u) /* Charge against BC limit */

-#define __ GFP_BITS_SHIFT 20 /* Room for 20 __ GFP_FOO bits */
+#define __ GFP_BITS_SHIFT 21 /* Room for 21 _ GFP_FOO bits */
#define _ GFP_BITS _MASK ((__force gfp_t)((1 << _ GFP_BITS_SHIFT) - 1))

[* if you forget to add the bitmask here kernel will crash, period */

#define GFP_LEVEL_MASK (__GFP_WAIT|__GFP_HIGH|_GFP_IO|_GFP_FS|\
__GFP_COLD|__GFP_NOWARN|__GFP_REPEAT]|\
__GFP_NOFAIL|__GFP_NORETRY|_GFP_NO_GROW|__GFP_COMP|\

- _ GFP_NOMEMALLOC|__GFP_HARDWALL|__GFP_THISNODE)

+ _ GFP_NOMEMALLOC|__GFP_HARDWALL|__GFP_THISNODE|\

+ _ GFP_BC|_GFP_BC_LIMIT)

[* This equals 0, but use constants in case they ever change */
#define GFP_NOWAIT (GFP_ATOMIC & ~__ GFP_HIGH)
@@ -63,6 +66,7 @@ struct vm_area_struct;
#define GFP_NOIO (__GFP_WAIT)
#define GFP_NOFS (__ GFP_WAIT | _ GFP_IO)
#define GFP_KERNEL (__ GFP_WAIT| __ GFP_IO| _ GFP_FS)
+#define GFP_KERNEL_BC (__ GFP_WAIT | _ GFP_IO | __ GFP_FS|__GFP_BC)
#define GFP_USER (__ GFP_WAIT | __ GFP_IO| _ GFP_FS|_ GFP_HARDWALL)
#define GFP_HIGHUSER (__GFP_WAIT | __ GFP_IO | _ GFP_FS|_ GFP_HARDWALL |\
__GFP_HIGHMEM)
--- ./include/linux/mm.h.bckmemcore 2006-09-05 12:53:55.000000000 +0400
+++ ./include/linux/mm.h 2006-09-05 12:55:28.000000000 +0400
@@ -274,8 +274,12 @@ struct page {
unsigned int gfp_mask;
unsigned long trace[8];
#endif
+#ifdef CONFIG_BEANCOUNTERS
+ struct beancounter *page_bc;
+#endif

3
+#define page_bc(page) ((page)->page_bc)

Page 34 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

#define page_private(page) ((page)->private)
#define set_page_private(page, v) ((page)->private = (v))

--- ./include/linux/slab.h.bckmemcore 2006-09-05 12:53:59.000000000 +0400

+++ ./include/linux/slab.h 2006-09-05 12:54:40.000000000 +0400

@@ -46,6 +46,8 @@ typedef struct kmem_cache kmem_cache _t;

#define SLAB_PANIC 0x00040000UL /* panic if kmem_cache_create() fails */

#define SLAB_DESTROY_BY_RCU 0x00080000UL /* defer freeing pages to RCU */
#define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */
+#define SLAB_BC 0x00200000UL /* Account with BC */

+#define SLAB_BC_NOCHARGE 0x00400000UL /* Explicit accounting */

/* flags passed to a constructor func */

#define SLAB_CTOR_CONSTRUCTOR 0x001UL /*if not set, then deconstructor */
@@ -291,6 +293,8 @@ extern kmem_cache_t *fs_cachep;

extern kmem_cache_t *sighand_cachep;

extern kmem_cache_t *bio_cachep;

+struct beancounter;
+struct beancounter **kmem_cache_bcp(kmem_cache_t *cachep, void *obj);
#endif /¥ _ KERNEL__ */

#endif /* _LINUX_SLAB_H */
--- ./include/linux/vmalloc.h.bckmemcore 2006-09-05 12:53:59.000000000 +0400
+++ ./include/linux/vmalloc.h 2006-09-05 12:54:40.000000000 +0400
@@ -36,6 +36,7 @@ struct vm_struct {
* Highlevel APIs for driver use
*/
extern void *vmalloc(unsigned long size);
+extern void *vmalloc_bc(unsigned long size);
extern void *vmalloc_user(unsigned long size);
extern void *vmalloc_node(unsigned long size, int node);
extern void *vmalloc_exec(unsigned long size);
--- ./kernel/bc/Makefile.bckmemcore 2006-09-05 12:54:24.000000000 +0400
+++ ./kernel/bc/Makefile 2006-09-05 12:54:50.000000000 +0400
Q@ -73+74 @@
obj-y += beancounter.o
obj-y += misc.o
obj-y +=sys.o
+obj-y += kmem.o
--- ./kernel/bc/beancounter.c.bckmemcore 2006-09-05 12:54:21.000000000 +0400
+++ ./kernel/bc/beancounter.c 2006-09-05 12:55:13.000000000 +0400
@@ -20,6 +20,7 @@ static void init_beancounter_struct(stru
struct beancounter init_bc;

const char *bc_rnames[] = {
+ "kmemsize", /* 0 */

8

Page 35 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

#define BC_HASH_BITS 8
@@ -230,6 +231,8 @@ static void init_beancounter_syslimits(s

{
int k;

+ bc->bc_parms[BC_KMEMSIZE].limit = 32 * 1024 * 1024,

+

for (k = 0; k < BC_RESOURCES; k++)
bc->bc_parmsik].barrier = bc->bc_parms[k].limit;

}

--- /dev/null 2006-07-18 14:52:43.075228448 +0400

+++ ./kernel/bc/kmem.c 2006-09-05 12:54:40.000000000 +0400

@@ -0,0+1,85 @@

+/*

+* kernel/bc/kmem.c

+ *

+* Copyright (C) 2006 OpenVZ. SWsoft Inc

+ *

+*/

+

+#include <linux/sched.h>

+#include <linux/gfp.h>

+#include <linux/slab.h>

+#include <linux/mm.h>

+

+#include <bc/beancounter.h>

+#include <bc/kmem.h>

+#include <bc/task.h>

+

+/*

+ * Slab accounting

+ */

+

+int bc_slab_charge(kmem_cache_t *cachep, void *objp, gfp_t flags)

gl

+ unsigned int size;

+ struct beancounter *bc, **slab_bcp;

+

+ bc = get_exec_bhc();

+

+ size = kmem_cache_size(cachep);

+ if (bc_charge(bc, BC_KMEMSIZE, size,

+ (flags & __ GFP_BC_LIMIT ? BC_LIMIT : BC_BARRIERY)))

+ return -ENOMEM;

+

+ slab_bcp = kmem_cache_bcp(cachep, objp);

+ *slab_bcp = get_beancounter(bc);

Page 36 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+ return O;

+}
+

+void bc_slab_uncharge(kmem_cache_t *cachep, void *objp)
gl

+ unsigned int size;

+ struct beancounter *bc, **slab_bcp;

+

+ slab_bcp = kmem_cache_bcp(cachep, objp);

+if (*slab_bcp == NULL)

+ return;

+

+ bc = *slab_bcp;

+ size = kmem_cache_size(cachep);

+ bc_uncharge(bc, BC_KMEMSIZE, size);

+ put_beancounter(bc);

+ *slab_bcp = NULL;

+}

+

+/*

+ * Pages accounting

+ */

+

+int bc_page_charge(struct page *page, int order, gfp_t flags)
gl

+ struct beancounter *bc;

+

+ BUG_ON(page_bc(page) != NULL);

+

+ bc = get_exec_bc();

+

+if (bc_charge(bc, BC_KMEMSIZE, PAGE_SIZE << order,
+ (flags & __ GFP_BC_LIMIT ? BC_LIMIT : BC_BARRIER)))
+ return -ENOMEM,;

+

+ page_bc(page) = get_beancounter(bc);

+ return O;

+}

+

+void bc_page_uncharge(struct page *page, int order)

gl

+ struct beancounter *bc;

+

+ bc = page_bc(page);

+if (bc == NULL)

+ return;

+

+ bc_uncharge(bc, BC_KMEMSIZE, PAGE_SIZE << order);

Page 37 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+ put_beancounter(bc);

+ page_bc(page) = NULL;

+}

--- ./mm/mempool.c.bckmemcore 2006-09-05 12:53:59.000000000 +0400

+++ ./mm/mempool.c 2006-09-05 12:54:40.000000000 +0400

@@ -119,6 +119,7 @@ int mempool_resize(mempool_t *pool, int
unsigned long flags;

BUG_ON(new_min_nr <= 0);
+ gfp_mask &= ~__ GFP_BC;

spin_lock_irgsave(&pool->lock, flags);
if (new_min_nr <= pool->min_nr) {
@@ -212,6 +213,7 @@ void * mempool_alloc(mempool_t *pool, gf
gfp_mask |= __ GFP_NOMEMALLOC,; /* don't allocate emergency reserves */
gfp_mask |= _ GFP_NORETRY; /* don't loop in __alloc_pages */
gfp_mask |= __ GFP_NOWARN; /* failures are OK */
+ gfp_mask &= ~_ GFP_BC; /* do not charge */

gfp_temp = gfp_mask & ~(__GFP_WAIT|__GFP_I0);

--- ./mm/page_alloc.c.bckmemcore 2006-09-05 12:53:59.000000000 +0400
+++ ./mm/page_alloc.c 2006-09-05 12:54:40.000000000 +0400

@@ -40,6 +40,8 @@

#include <linux/sort.h>

#include <linux/pfn.h>

+#include <bc/kmem.h>

+

#include <asm/tlbflush.h>

#include <asm/div64.h>

#include "internal.h”

@@ -516,6 +518,8 @@ static void __free_pages_ok(struct page
if (reserved)
return;

+ bc_page_uncharge(page, order);
+
kernel_map_pages(page, 1 << order, 0);
local_irg_save(flags);
__count_vm_events(PGFREE, 1 << order);
@@ -799,6 +803,8 @@ static void fastcall free_hot_cold_page(
if (free_pages_check(page))
return;

+ bc_page_uncharge(page, 0);
+
kernel_map_pages(page, 1, 0);

Page 38 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
@@ -1188,6 +1194,11 @@ nopage:
show_mem();
}
got_pg:
+if ((gfp_mask & _ GFP_BC) &&
+ bc_page_charge(page, order, gfp_mask)) {
+ _ free_pages(page, order);
+ page = NULL;
+}
#ifdef CONFIG_PAGE_OWNER
if (page)
set_page_owner(page, order, gfp_mask);
--- ./mm/slab.c.bckmemcore 2006-09-05 12:53:59.000000000 +0400
+++ ./mm/slab.c 2006-09-05 12:54:40.000000000 +0400
@@ -108,6 +108,8 @@
#include <linux/mutex.h>
#include <linux/rtmutex.h>

+#include <bc/kmem.h>

+

#include <asm/uaccess.h>

#include <asm/cacheflush.h>

#include <asm/tlbflush.h>

@@ -175,11 +177,13 @@
SLAB_CACHE_DMA |\
SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER |\
SLAB_RECLAIM_ACCOUNT | SLAB_PANIC |\

+ SLAB BC | SLAB BC_NOCHARGE |\
SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)

#else

define CREATE_MASK (SLAB_HWCACHE_ALIGN |\
SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN |\
SLAB_RECLAIM_ACCOUNT | SLAB_PANIC |\

+ SLAB BC|SLAB BC_NOCHARGE |\
SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)

#endif

@@ -793,9 +797,33 @@ static struct kmem_cache *kmem_find_gene
return __ find_general_cachep(size, gfpflags);

}

-static size_t slab_mgmt_size(size_t nr_objs, size_t align)

+static size_t slab_mgmt_size_raw(size_t nr_objs)

{

- return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
+ return sizeof(struct slab) + nr_objs * sizeof(kmem_bufctl_t);

Page 39 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+}
+

+#ifdef CONFIG_BEANCOUNTERS

+#define BC_EXTRASIZE sizeof(struct beancounter *)

+static inline size_t slab_mgmt_size noalign(int flags, size_t nr_objs)
+H

+ size_t size;

+

+ size = slab_mgmt_size_raw(nr_objs);

+if (flags & SLAB_BC)

+ size = ALIGN(size, BC_EXTRASIZE) + nr_objs * BC_EXTRASIZE;
+ return size;

+}

+#else

+#define BC_EXTRASIZE 0

+static inline size_t slab_mgmt_size_noalign(int flags, size_t nr_objs)
+

+ return slab_mgmt_size raw(nr_objs);

+}

+#endif

+

+static inline size_t slab_mgmt_size(int flags, size_t nr_objs, size_t align)
+H

+ return ALIGN(slab_mgmt_size noalign(flags, nr_objs), align);

}

/*

@@ -840,20 +868,21 @@ static void cache_estimate(unsigned long
* into account.
*/
nr_objs = (slab_size - sizeof(struct slab)) /

- (buffer_size + sizeof(kmem_bufctl_t));

+ (buffer_size + sizeof(kmem_bufctl_t) +

+ (flags & SLAB_BC ? BC_EXTRASIZE : 0));

/*
* This calculated number will be either the right
* amount, or one greater than what we want.
*/
- if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
+ if (slab_mgmt_size(flags, nr_objs, align) + nr_objs*buffer_size
> slab_size)
nr_objs--;

if (nr_objs > SLAB_LIMIT)
nr_objs = SLAB_LIMIT;

- mgmt_size = slab_mgmt_size(nr_objs, align);

Page 40 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+ mgmt_size = slab_mgmt_size(flags, nr_objs, align);
}
*num = nr_objs;
*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
@@ -1412,7 +1441,8 @@ void __init kmem_cache_init(void)
sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_ AC].name,
sizes[INDEX_AC].cs_size,
ARCH_KMALLOC_MINALIGN,
- ARCH_KMALLOC_FLAGS|SLAB_PANIC,
+ ARCH_KMALLOC_FLAGS | SLAB_BC |
+ SLAB_BC_NOCHARGE | SLAB_PANIC,
NULL, NULL);

if INDEX_AC != INDEX_L3) {

@@ -1420,7 +1450,8 @@ void __init kmem_cache_init(void)
kmem_cache_create(names[INDEX_L3].name,
sizes[INDEX_L3].cs_size,

ARCH_KMALLOC_MINALIGN,

- ARCH_KMALLOC_FLAGS|SLAB_PANIC,

+ ARCH_KMALLOC_FLAGS | SLAB_BC |

+ SLAB_BC_NOCHARGE | SLAB_PANIC,

NULL, NULL);

}

@@ -1438,7 +1469,8 @@ void __init kmem_cache_init(void)
sizes->cs_cachep = kmem_cache_create(names->name,

sizes->Cs_size,
ARCH_KMALLOC_ MINALIGN,

- ARCH_KMALLOC_FLAGS|SLAB_PANIC,

+ ARCH_KMALLOC_FLAGS | SLAB_BC |

+ SLAB_BC_NOCHARGE | SLAB_PANIC,
NULL, NULL);

}

@@ -1941,7 +1973,8 @@ static size_t calculate_slab_order(struc
* looping condition in cache_grow().
*/
offslab_limit = size - sizeof(struct slab);

- offslab_limit /= sizeof(kmem_bufctl_t);

+ offslab_limit /= (sizeof(kmem_bufctl_t) +

+ (flags & SLAB_BC ? BC_EXTRASIZE : 0));

if (num > offslab_limit)
break;
@@ -2249,8 +2282,8 @@ kmem_cache_create (const char *name, siz
cachep = NULL;
goto oops;

}

Page 41 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

- slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
-+ sizeof(struct slab), align);
+

+ slab_size = slab_mgmt_size(flags, cachep->num, align);

/*

* |If the slab has been placed off-slab, and we have enough space then
@@ -2261,11 +2294,9 @@ kmem_cache_create (const char *name, siz

left_over -=slab_size;

}

- if (flags & CFLGS_OFF_SLAB) {
+if (flags & CFLGS_OFF_SLAB)
[* really off slab. No need for manual alignment */
- slab_size =
- cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
-}

+ slab_size = slab_mgmt_size_ noalign(flags, cachep->num);

cachep->colour_off = cache_line_size();
/* Offset must be a multiple of the alignment. */
@@ -2509,6 +2540,30 @@ void kmem_cache_destroy(struct kmem_cach

}
EXPORT_SYMBOL(kmem_cache_destroy);

+static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
gl

+ return (kmem_bufctl_t *) (slabp + 1);

+}

+

+#ifdef CONFIG_BEANCOUNTERS

+static inline struct beancounter **slab_bc_ptrs(kmem_cache_t *cachep,
+ struct slab *slabp)

H

+ return (struct beancounter **) ALIGN((unsigned long)

+ (slab_bufctl(slabp) + cachep->num), BC_EXTRASIZE);
+}

+

+struct beancounter **kmem_cache_bcp(kmem_cache_t *cachep, void *objp)
+

+ struct slab *slabp;

+ struct beancounter **bcs;

+

+ slabp = virt_to_slab(objp);

+ bcs = slab_bc_ptrs(cachep, slabp);

+ return bcs + obj_to_index(cachep, slabp, objp);

+}

+#endif

Page 42 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+
/*
* Get the memory for a slab management obj.
* For a slab cache when the slab descriptor is off-slab, slab descriptors
@@ -2529,7 +2584,8 @@ static struct slab *alloc_slabmgmt(struc
if (OFF_SLAB(cachep)) {
[* Slab management obj is off-slab. */
slabp = kmem_cache_alloc_node(cachep->slabp_cache,
- local_flags, nodeid);
+ local_flags & (~__GFP_BC),
+ nodeid);
if (Islabp)
return NULL;
} else {
@@ -2540,14 +2596,14 @ @ static struct slab *alloc_slabmgmt(struc
slabp->colouroff = colour_off;
slabp->s_mem = objp + colour_off;
slabp->nodeid = nodeid;
+#ifdef CONFIG_BEANCOUNTERS
+ if (cachep->flags & SLAB_BC)
+ memset(slab_bc_ptrs(cachep, slabp), 0,
+ cachep->num * BC_EXTRASIZE);

+#endif
return slabp;
}
-static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
-{
- return (kmem_Dbufctl_t *) (slabp + 1);
-}

static void cache_init_objs(struct kmem_cache *cachep,
struct slab *slabp, unsigned long ctor_flags)
{

@@ -2725,7 +2781,7 @@ static int cache_grow(struct kmem_cache
* Get mem for the objs. Attempt to allocate a physical page from
*'nodeid'.

*/

- objp = kmem_getpages(cachep, flags, nodeid);

+ objp = kmem_getpages(cachep, flags & (~___GFP_BC), nodeid);
if (objp)
goto failed,;

@@ -3073,6 +3129,19 @@ static inline void * cache_alloc(stru
return objp;

}

+static inline int bc_should_charge(kmem_cache_t *cachep, gfp_t flags)

Page 43 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

H

+#ifdef CONFIG_BEANCOUNTERS

+ if (!(cachep->flags & SLAB_BC))

+ return O;

+if (flags & _ GFP_BC)

+ return 1;

+ if (!(cachep->flags & SLAB_BC_NOCHARGE))

+ return 1;

+#endif

+ return O;

+}

+

static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
gfp_t flags, void *caller)

{

@@ -3086,6 +3155,12 @@ static __always_inline void *__cache_all
local_irq_restore(save_flags);
objp = cache_alloc_debugcheck_after(cachep, flags, objp,

caller);

+

+ if (objp && bc_should_charge(cachep, flags))

+ if (bc_slab_charge(cachep, objp, flags)) {

+ kmem_cache_free(cachep, objp);

+ objp = NULL,;

+}
prefetchw(objp);
return objp;

}

@@ -3283,6 +3358,8 @@ static inline void __cache_free(struct k
struct array_cache *ac = cpu_cache_get(cachep);

check_irg_off();
+ if (cachep->flags & SLAB_BC)
+ bc_slab_uncharge(cachep, objp);
objp = cache_free_debugcheck(cachep, objp, __ builtin_return_address(0));

if (cache_free_alien(cachep, objp))
--- ./mm/vmalloc.c.bckmemcore 2006-09-05 12:53:59.000000000 +0400
+++ ./mm/vmalloc.c 2006-09-05 12:54:40.000000000 +0400
@@ -520,6 +520,12 @@ void *vmalloc(unsigned long size)

}
EXPORT_SYMBOL(vmalloc);

+void *vmalloc_bc(unsigned long size)

H

+ return __vmalloc(size, GFP_KERNEL_BC | __ GFP_HIGHMEM, PAGE_KERNEL);
+}

+EXPORT_SYMBOL(vmalloc_bc);

Page 44 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+

/**
*vmalloc_user - allocate virtually contiguous memory which has
* been zeroed so it can be mapped to userspace without

Subject: [PATCH 7/13] BC: kernel memory (marks)
Posted by dev on Tue, 05 Sep 2006 15:23:00 GMT

View Forum Message <> Reply to Message

Mark some kmem caches with SLAB_BC and some allocations
with _ GFP_BC to cause charging/limiting of appropriate
kernel resources.

Signed-off-by: Pavel Emelianov <xemul@sw.ru>
Signed-off-by: Kirill Korotaev <dev@sw.ru>

arch/i386/kernel/ldt.c | 4 ++--
arch/i386/mm/init.c | 4 ++--
arch/i386/mm/pgtable.c | 6 ++++--
drivers/char/tty_io.c | 10 +++++-----
fs/file.c | 8 ++++----

fs/locks.c | 2+
fs/namespace.c | 3 ++-
fs/select.c | 7 ++++---
include/asm-i386/thread_info.h | 4 ++--
include/asm-ia64/pgalloc.h | 24 +++++++++++++ttt e
include/asm-x86_64/pgalloc.h | 12 ++++++++----
include/asm-x86_64/thread_info.h | 5 +++--
ipc/msgutil.c | 4 ++--

ipc/sem.c | 7 ++++---

ipc/util.c | 8 ++++-—--
kernel/fork.c | 15 ++++++++----
kernel/posix-timers.c | 3 ++-
kernel/signal.c | 2+
kernel/user.c | 2 +-

mm/rmap.c | 3 ++-
mm/shmem.c | 3 ++-

21 files changed, 80 insertions(+), 56 deletions(-)

--- ./arch/i386/kernel/ldt.c.ockmemch 2006-09-05 12:53:51.000000000 +0400
+++ ./arch/i386/kernel/ldt.c 2006-09-05 12:58:17.000000000 +0400
@@ -39,9 +39,9 @@ static int alloc_Idt(mm_context_t *pc, i

oldsize = pc->size;

mincount = (mincount+511)&(~511);

if (mincount*LDT_ENTRY_SIZE > PAGE_SIZE)

Page 45 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=19
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=5929#msg_5929
https://new-forum.openvz.org/index.php?t=post&reply_to=5929
https://new-forum.openvz.org/index.php

- newldt = vmalloc(mincount*LDT_ENTRY_SIZE);
+ newldt = vmalloc_bc(mincount*LDT_ENTRY_SIZE);
else
- newldt = kmalloc(mincount*LDT_ENTRY_SIZE, GFP_KERNEL);
+ newldt = kmalloc(mincount*LDT_ENTRY_SIZE, GFP_KERNEL_BC);

if (Inewldt)
return -ENOMEM;
--- ./arch/i386/mm/init.c.ockmemch 2006-09-05 12:53:51.000000000 +0400
+++ ./arch/i386/mm/init.c 2006-09-05 12:58:17.000000000 +0400
@@ -709,7 +709,7 @@ void __init pgtable_cache_init(void)
pmd_cache = kmem_cache_create("pmd",
PTRS_PER_PMDt*sizeof(pmd_t),
PTRS_PER_PMDt*sizeof(pmd_t),
- 0,
+ SLAB_BC,
pmd_ctor,
NULL);
if ('pmd_cache)
@@ -718,7 +718,7 @@ void __init pgtable_cache_init(void)
pgd_cache = kmem_cache_create("pgd",
PTRS_PER_PGD*sizeof(pgd_t),
PTRS_PER_PGD*sizeof(pgd 1),
- 0,
+ SLAB BC,
pgd_ctor,
PTRS_PER_PMD == 1 ? pgd_dtor : NULL);
if ('pgd_cache)
--- ./arch/i386/mm/pgtable.c.bckmemch 2006-09-05 12:53:51.000000000 +0400
+++ ./arch/i386/mm/pgtable.c 2006-09-05 12:58:17.000000000 +0400
@@ -186,9 +186,11 @@ struct page *pte_alloc_one(struct mm_str
struct page *pte;

#ifdef CONFIG_HIGHPTE
- pte = alloc_pages(GFP_KERNEL|__GFP_HIGHMEM|__ GFP_REPEAT|__GFP_ZERO, 0);
+ pte = alloc_pages(GFP_KERNEL|__GFP_HIGHMEM|__GFP_REPEAT|__GFP_ZERO |
+ _ GFP_BC|__GFP_BC_LIMIT, 0);
#else
- pte = alloc_pages(GFP_KERNEL| _GFP_REPEAT| _GFP_ZERO, 0);
+ pte = alloc_pages(GFP_KERNEL| GFP_REPEAT|__GFP_ZERO|
+ _ GFP_BC|__GFP_BC_LIMIT, 0);
#endif
return pte;
}
--- ./drivers/char/tty_io.c.bckmemch 2006-09-05 12:53:52.000000000 +0400
+++ ./drivers/char/tty_io.c 2006-09-05 12:58:17.000000000 +0400
@@ -165,7 +165,7 @@ static void release_mem(struct tty_struc

Page 46 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

static struct tty struct *alloc_tty struct(void)

{

- return kzalloc(sizeof(struct tty _struct), GFP_KERNEL);

+ return kzalloc(sizeof(struct tty struct), GFP_KERNEL_BC);

}

static void tty_buffer_free_all(struct tty_struct *);
@@ -1904,7 +1904,7 @@ static int init_dev(struct tty driver *d

if (I*tp_loc) {
tp = (struct termios *) kmalloc(sizeof(struct termios),
- GFP_KERNEL);
+ GFP_KERNEL_BC);
if ('tp)
goto free_mem_out;
*tp = driver->init_termios;
@@ -1912,7 +1912,7 @@ static int init_dev(struct tty _driver *d

if ("*Itp_loc) {
Itp = (struct termios *) kmalloc(sizeof(struct termios),
- GFP_KERNEL);
+ GFP_KERNEL_BOC);
if (Ntp)
goto free_mem_out;
memset(Itp, 0, sizeof(struct termios));
@@ -1937,7 +1937,7 @@ static int init_dev(struct tty driver *d

if ("*o_tp_loc) {
0_tp = (struct termios *)
- kmalloc(sizeof(struct termios), GFP_KERNEL);
+ kmalloc(sizeof(struct termios), GFP_KERNEL_BC);
if (lo_tp)
goto free_mem_out;
*0_tp = driver->other->init_termios;
@@ -1945,7 +1945,7 @@ static int init_dev(struct tty _driver *d

if ("*o_Itp_loc) {
0_ltp = (struct termios *)
- kmalloc(sizeof(struct termios), GFP_KERNEL);
+ kmalloc(sizeof(struct termios), GFP_KERNEL_BC);
if (lo_lItp)
goto free_mem_out;
memset(o_ltp, 0, sizeof(struct termios));
--- .[ts/file.c.bckmemch 2006-09-05 12:53:55.000000000 +0400
+++ ./fs/file.c 2006-09-05 12:58:17.000000000 +0400
@@ -44,9 +44,9 @@ struct file ** alloc_fd_array(int num)
int size = num * sizeof(struct file *);

Page 47 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

if (size <= PAGE_SIZE)

- new_fds = (struct file **) kmalloc(size, GFP_KERNEL);

+ new_fds = (struct file **) kmalloc(size, GFP_KERNEL_BC);
else

- new_fds = (struct file **) vmalloc(size);

+ new_fds = (struct file **) vmalloc_bc(size);
return new_fds;

}

@@ -213,9 +213,9 @@ fd_set * alloc_fdset(int num)
int size = num / 8;

if (size <= PAGE_SIZE)

- new_fdset = (fd_set *) kmalloc(size, GFP_KERNEL);

+ new_fdset = (fd_set *) kmalloc(size, GFP_KERNEL_BC);
else

- new_fdset = (fd_set *) vmalloc(size);

+ new_fdset = (fd_set *) vmalloc_bc(size);
return new_fdset;

}

--- .[fs/locks.c.bckmemch 2006-09-05 12:53:55.000000000 +0400
+++ ./fs/locks.c 2006-09-05 12:58:17.000000000 +0400
@@ -2228,7 +2228,7 @@ EXPORT_SYMBOL (lock_may_write);
static int __init filelock_init(void)
{
filelock_cache = kmem_cache_create("file_lock_cache",
- sizeof(struct file_lock), 0, SLAB_PANIC,
+ sizeof(struct file_lock), 0, SLAB_PANIC | SLAB_BC,
init_once, NULL);
return O;
}
--- ./[fs/Inamespace.c.bckmemch 2006-09-05 12:53:55.000000000 +0400
+++ ./fs/namespace.c 2006-09-05 12:58:17.000000000 +0400
@@ -1812,7 +1812,8 @@ void __init mnt_init(unsigned long mempa
init_rwsem(&namespace_sem);

mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
- 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL, NULL);
+ 0, SLAB_HWCACHE_ALIGN | SLAB_BC | SLAB_PANIC,
+ NULL, NULL);

mount_hashtable = (struct list_head *) get free_page(GFP_ATOMIC);

--- .[fs/select.c.bckmemch 2006-09-05 12:53:55.000000000 +0400
+++ ./fs/select.c 2006-09-05 12:58:17.000000000 +0400
@@ -103,7 +103,8 @@ static struct poll_table_entry *poll_get

if (‘table || POLL_TABLE_FULL(table)) {

Page 48 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

struct poll_table page *new_table;

- new_table = (struct poll_table _page *) __ get free_page(GFP_KERNEL);
+ new_table = (struct poll_table page *)
+ _ get free_page(GFP_KERNEL_BC);
if ('"new_table) {
p->error = -ENOMEM,;
__set_current_state(TASK_RUNNING);
@@ -339,7 +340,7 @@ static int core_sys_select(int n, fd_set
if (size > sizeof(stack _fds) / 6) {
/* Not enough space in on-stack array; must use kmalloc */
ret = -ENOMEM,;
- bits = kmalloc(6 * size, GFP_KERNEL);
+ bits = kmalloc(6 * size, GFP_KERNEL_BC);
if (Ibits)
goto out_nofds;
}
@@ -693,7 +694,7 @@ int do_sys_poll(struct pollfd __user *uf
if (Istack_pp)
stack_pp = pp = (struct poll_list *)stack_pps;
else {
- pp = kmalloc(size, GFP_KERNEL);
+ pp = kmalloc(size, GFP_KERNEL_BC);
if ('pp)
goto out_fds;
}
--- ./include/asm-i386/thread_info.h.bckmemch 2006-07-10 12:39:19.000000000 +0400
+++ ./include/asm-i386/thread_info.h 2006-09-05 12:58:17.000000000 +0400
@@ -99,13 +99,13 @@ static inline struct thread_info *curren
(O
struct thread_info *ret; \
\
- ret = kmalloc(THREAD_SIZE, GFP_KERNEL); \
+ ret = kmalloc(THREAD_SIZE, GFP_KERNEL_BC); \
if (ret) \
memset(ret, 0, THREAD_SIZE); \
ret; \
1)
#else
-#define alloc_thread_info(tsk) kmalloc(THREAD_SIZE, GFP_KERNEL)
+#define alloc_thread_info(tsk) kmalloc(THREAD_SIZE, GFP_KERNEL_BC)
#endif

#define free_thread_info(info) kfree(info)

--- ./include/asm-ia64/pgalloc.h.bckmemch 2006-07-10 12:39:19.000000000 +0400
+++ ./include/asm-ia64/pgalloc.h 2006-09-05 12:58:17.000000000 +0400

@@ -19,6 +19,8 @@

#include <linux/page-flags.h>

Page 49 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

#include <linux/threads.h>

+#include <bc/kmem.h>
+

#include <asm/mmu_context.h>

DECLARE_PER_CPU(unsigned long *, __pgtable_quicklist);
@@ -37,7 +39,7 @@ static inline long pgtable_quicklist_tot
return ql_size;

}

-static inline void *pgtable_quicklist_alloc(void)
+static inline void *pgtable_quicklist_alloc(int charge)

{
unsigned long *ret = NULL,;

@@ -45,13 +47,20 @@ static inline void *pgtable_quicklist_al

ret = pgtable_quicklist;
if (likely(ret = NULL)) {
+ if (charge && bc_page_charge(virt_to_page(ret),
+ 0, __GFP_BC_LIMIT)){
+ ret = NULL;
+ goto out;
+}
pgtable_quicklist = (unsigned long *)(*ret);
ret[0] = O;
--pgtable_quicklist_size;
+out:
preempt_enable();
} else {
preempt_enable();
- ret = (unsigned long *)__get_free_page(GFP_KERNEL | _ GFP_ZERO);
+ ret = (unsigned long *)__get_free_page(GFP_KERNEL |
+ _ GFP_ZERO|__GFP_BC|__GFP_BC_LIMIT);

}

return ret;
@@ -69,6 +78,7 @@ static inline void pgtable _quicklist_fre
#endif

preempt_disable();

+ bc_page_uncharge(virt_to_page(pgtable_entry), 0);
*(unsigned long *)pgtable_entry = (unsigned long)pgtable_quicklist;
pgtable_quicklist = (unsigned long *)pgtable_entry;
++pgtable_quicklist_size;

@@ -77,7 +87,7 @@ static inline void pgtable _quicklist_fre

Page 50 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

static inline pgd_t *pgd_alloc(struct mm_struct *mm)
{

- return pgtable_quicklist_alloc();

+ return pgtable_quicklist_alloc(1);

}

static inline void pgd_free(pgd_t * pgd)
@@ -94,7 +104,7 @@ pgd_populate(struct mm_struct *mm, pgd_t

static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr)
{

- return pgtable_quicklist_alloc();

+ return pgtable_quicklist_alloc(1);

}

static inline void pud_free(pud_t * pud)
@@ -112,7 +122,7 @@ pud_populate(struct mm_struct *mm, pud_t

static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr)
{

- return pgtable_quicklist_alloc();

+ return pgtable_quicklist_alloc(1);

}

static inline void pmd_free(pmd_t * pmd)

@@ -137,13 +147,13 @@ pmd_populate_kernel(struct mm_struct *mm

static inline struct page *pte_alloc_one(struct mm_struct *mm,
unsigned long addr)

{

- return virt_to_page(pgtable_quicklist_alloc());
+ return virt_to_page(pgtable_quicklist_alloc(1));

}

static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
unsigned long addr)
{

- return pgtable_quicklist_alloc();
+ return pgtable_quicklist_alloc(0);

}

static inline void pte_free(struct page *pte)

--- ./include/asm-x86_64/pgalloc.h.bckmemch 2006-04-21 11:59:36.000000000 +0400
+++ ./include/asm-x86_64/pgalloc.h 2006-09-05 12:58:17.000000000 +0400

@@ -31,12 +31,14 @@ static inline void pmd_free(pmd_t *pmd)

static inline pmd_t *pmd_alloc_one (struct mm_struct *mm, unsigned long addr)

{
- return (pmd_t *)get_zeroed_page(GFP_KERNEL|__GFP_REPEAT);

Page 51 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+ return (pmd_t *)get_zeroed _page(GFP_KERNEL| GFP_REPEAT]|
+ _ GFP_BC|__GFP_BC_LIMIT);
}

static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr)
{

- return (pud_t *)get_zeroed_page(GFP_KERNEL| __GFP_REPEAT);

+ return (pud_t *)get_zeroed_page(GFP_KERNEL|__GFP_REPEAT]|

+ _ GFP_BC|__GFP_BC_LIMIT);

}

static inline void pud_free (pud_t *pud)
@@ -74,7 +76,8 @@ static inline void pgd_list_del(pgd_t *p
static inline pgd_t *pgd_alloc(struct mm_struct *mm)
{
unsigned boundary;
- pgd_t*pgd = (pgd_t*)__get free_page(GFP_KERNEL|__GFP_REPEAT);
+ pgd_t *pgd = (pgd_t*) get free_page(GFP_KERNEL| GFP_REPEAT]|
+ _ GFP_BC|__GFP_BC_LIMIT);
if ('pgd)
return NULL;
pgd_list_add(pgd);
@@ -105,7 +108,8 @@ static inline pte_t *pte_alloc_one_kerne

static inline struct page *pte_alloc_one(struct mm_struct *mm, unsigned long address)
{
- void *p = (void *)get_zeroed_page(GFP_KERNEL|__GFP_REPEAT);,
+ void *p = (void *)get_zeroed_page(GFP_KERNEL|__GFP_REPEAT]|
+ _ GFP_BC|__GFP_BC_LIMIT);

if (p)

return NULL;

return virt_to_page(p);
--- ./include/asm-x86_64/thread_info.h.bckmemch 2006-09-05 12:53:55.000000000 +0400
+++ ./include/asm-x86_64/thread_info.h 2006-09-05 12:58:17.000000000 +0400
@@ -78,14 +78,15 @@ static inline struct thread_info *stack_

@
struct thread_info *ret; \
\

- ret = ((struct thread_info *) __get_free_pages(GFP_KERNEL,THREAD ORDER)); \
+ ret = ((struct thread_info *) _ get free_pages(GFP_KERNEL_BC,\
+ THREAD_ORDER)); \

if (ret) \

memset(ret, 0, THREAD_SIZE); \

ret; \

)

#else
#define alloc_thread_info(tsk) \
- ((struct thread_info *) __ get free_pages(GFP_KERNEL,THREAD_ ORDER))

Page 52 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+ ((struct thread_info *) _ get free_pages(GFP_KERNEL BC,THREAD_ ORDER))
#endif

#define free_thread_info(ti) free_pages((unsigned long) (ti), THREAD_ORDER)
--- ./ipc/msgutil.c.bckmemch 2006-04-21 11:59:36.000000000 +0400
+++ ./ipc/msgutil.c 2006-09-05 12:58:17.000000000 +0400
@@ -36,7 +36,7 @@ struct msg_msg *load_msg(const void __us
if (alen > DATALEN_MSG)
alen = DATALEN_MSG;

- msg = (struct msg_msg *)kmalloc(sizeof(*msg) + alen, GFP_KERNEL);

+ msg = (struct msg_msg *)kmalloc(sizeof(*msg) + alen, GFP_KERNEL_BC);
if (msg == NULL)
return ERR_PTR(-ENOMEM);

@@ -57,7 +57,7 @@ struct msg_msg *load_msg(const void __us
if (alen > DATALEN_SEG)
alen = DATALEN_SEG;
seg = (struct msg_msgseg *)kmalloc(sizeof(*seg) + alen,
- GFP_KERNEL);
+ GFP_KERNEL_BC);
if (seg == NULL) {
err = -ENOMEM,;
goto out_err;
--- ./ipc/sem.c.bckmemch 2006-09-05 12:53:59.000000000 +0400
+++ ./ipc/sem.c 2006-09-05 12:58:17.000000000 +0400
@@ -1006,7 +1006,7 @@ static inline int get_undo_list(struct s

undo_list = current->sysvsem.undo_list;
if (lundo_list) {
- undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
+ undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL_BC);
if (undo_list == NULL)
return -ENOMEM;
spin_lock_init(&undo_list->lock);
@@ -1069,7 +1069,8 @@ static struct sem_undo *find_undo(struct
ipc_rcu_getref(sma);
sem_unlock(sma);

- new = (struct sem_undo *) kmalloc(sizeof(struct sem_undo) + sizeof(short)*nsems,
GFP_KERNEL);
+ new = (struct sem_undo *) kmalloc(sizeof(struct sem_undo) +
+ sizeof(short)*nsems, GFP_KERNEL_BC);
if ('new) {
ipc_lock by ptr(&sma->sem_perm);
ipc_rcu_putref(sma);
@@ -1130,7 +1131,7 @@ asmlinkage long sys_semtimedop(int semid
if (nsops > ns->sc_semopm)

Page 53 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

return -E2BIG,;
if(nsops > SEMOPM_FAST) {
- sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
+ sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL_BC);
if(sops==NULL)
return -ENOMEM;
}
--- ./ipc/util.c.ockmemch 2006-09-05 12:53:59.000000000 +0400
+++ ./ipc/util.c 2006-09-05 12:58:17.000000000 +0400
@@ -406,9 +406,9 @@ void* ipc_alloc(int size)
{
void* out;
if(size > PAGE_SIZE)
- out = vmalloc(size);
+ out = vmalloc_bc(size);
else
- out = kmalloc(size, GFP_KERNEL);
+ out = kmalloc(size, GFP_KERNEL_BC);
return out;

}

@@ -491,14 +491,14 @@ void* ipc_rcu_alloc(int size)
* workqueue if necessary (for vmalloc).
*/
if (rcu_use_vmalloc(size)) {
- out = vmalloc(HDRLEN_VMALLOC + size);
+ out = vmalloc_bc(HDRLEN_VMALLOC + size);
if (out) {
out += HDRLEN_VMALLOC;
container_of(out, struct ipc_rcu_hdr, data)->is_vmalloc = 1,
container_of(out, struct ipc_rcu_hdr, data)->refcount = 1;
}
} else {
- out = kmalloc(HDRLEN_KMALLOC + size, GFP_KERNEL);
+ out = kmalloc(HDRLEN_KMALLOC + size, GFP_KERNEL_BC);
if (out) {
out += HDRLEN_KMALLOC;
container_of(out, struct ipc_rcu_hdr, data)->is_vmalloc = 0;
--- ./kernel/fork.c.bckmemch 2006-09-05 12:54:21.000000000 +0400
+++ ./kernel/fork.c 2006-09-05 12:58:17.000000000 +0400
@@ -137,7 +137,7 @@ void __init fork_init(unsigned long memp
[* create a slab on which task_structs can be allocated */
task_struct_cachep =
kmem_cache_create("task_struct”, sizeof(struct task_struct),
- ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
+ ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_BC, NULL, NULL);
#endif

Page 54 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

/*
@@ -1424,23 +1424,24 @@ void __init proc_caches_init(void)
{
sighand_cachep = kmem_cache_create("sighand_cache",
sizeof(struct sighand_struct), O,
- SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
+ SLAB_HWCACHE_ALIGN | SLAB_PANIC |\
+ SLAB_DESTROY_BY_RCU | SLAB_BC,
sighand_ctor, NULL);
signal_cachep = kmem_cache_create("signal_cache",
sizeof(struct signal_struct), O,
- SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
+ SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_BC, NULL, NULL);
files_cachep = kmem_cache_create("files_cache",
sizeof(struct files_struct), 0,
- SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
+ SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_BC, NULL, NULL);
fs_cachep = kmem_cache_create("fs_cache",
sizeof(struct fs_struct), O,
- SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
+ SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_BC, NULL, NULL);
vm_area_cachep = kmem_cache_create("vm_area_struct”,
sizeof(struct vm_area_struct), O,
- SLAB_PANIC, NULL, NULL);
+ SLAB_PANIC|SLAB_BC, NULL, NULL);
mm_cachep = kmem_cache_create("mm_struct",
sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
- SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
+ SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_BC, NULL, NULL);

}

--- ./kernel/posix-timers.c.bckmemch 2006-09-05 12:53:59.000000000 +0400

+++ ./kernel/posix-timers.c 2006-09-05 12:58:17.000000000 +0400

@@ -242,7 +242,8 @@ static __init int init_posix_timers(void
register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);

posix_timers_cache = kmem_cache_create("posix_timers_cache",
- sizeof (struct k_itimer), 0, 0, NULL, NULL);
+ sizeof (struct k_itimer), 0, SLAB_BC,
+ NULL, NULL);
idr_init(&posix_timers_id);
return O;
}
--- ./kernel/signal.c.bckmemch 2006-09-05 12:53:59.000000000 +0400
+++ ./kernel/signal.c 2006-09-05 12:58:17.000000000 +0400
@@ -2748,5 +2748,5 @@ void __init signals_init(void)
kmem_cache_create("sigqueue”,

Page 55 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

sizeof(struct sigqueue),
__alignof__ (struct sigqueue),
- SLAB_PANIC, NULL, NULL);
+ SLAB_PANIC | SLAB_BC, NULL, NULL);
}
--- ./kernel/user.c.bckmemch 2006-09-05 12:54:09.000000000 +0400
+++ ./kernel/user.c 2006-09-05 12:58:17.000000000 +0400
@@ -194,7 +194,7 @@ static int __init uid_cache_init(void)
int n;

uid_cachep = kmem_cache_create("uid_cache", sizeof(struct user_struct),
- 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
+ 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_BC, NULL, NULL);

for(n = 0; n < UIDHASH_SZ; ++n)
INIT_LIST_HEAD(uidhash_table + n);
--- ./mm/rmap.c.bckmemch 2006-09-05 12:53:59.000000000 +0400
+++ ./mm/rmap.c 2006-09-05 12:58:17.000000000 +0400
@@ -179,7 +179,8 @@ static void anon_vma_ctor(void *data, st
void __init anon_vma_init(void)
{
anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
- 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
+ 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC|SLAB_BC,
+ anon_vma_ctor, NULL);

}

/~k

--- ./mm/shmem.c.bckmemch 2006-09-05 12:53:59.000000000 +0400
+++ ./mm/shmem.c 2006-09-05 12:58:17.000000000 +0400

@@ -368,7 +368,8 @@ static swp_entry_t *shmem_swp_alloc(stru

}

spin_unlock(&info->lock);
- page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping) | _ GFP_ZERO);
+ page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping) | \
+ _ GFP_ZERO|__GFP_BC);

if (page)

set_page_private(page, 0);

spin_lock(&info->lock);

Subject: [PATCH 8/13] BC: locked pages (core)
Posted by dev on Tue, 05 Sep 2006 15:24:18 GMT

View Forum Message <> Reply to Message

Introduce new resource BC_LOCKEDPAGES which stands for accounting
of mlock-ed user pages.

Page 56 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=19
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=5930#msg_5930
https://new-forum.openvz.org/index.php?t=post&reply_to=5930
https://new-forum.openvz.org/index.php

Locked pages are important to be accounted separately
as they are unreclaimable.

Pages are charged to mm_struct BC.

Signed-Off-By: Pavel Emelianov <xemul@sw.ru>
Signed-Off-By: Kirill Korotaev <dev@sw.ru>

include/bc/beancounter.h | 3 -

include/bc/vmpages.h | 95 ++++++++++HHHH bbb
include/linux/sched.h | 3+

include/linux/shmem_fs.h| 5 ++

kernel/bc/Makefile | 1

kernel/bc/beancounter.c | 2

kernel/bc/ivmpages.c | 75 +++++++++H+ bbb

kernel/fork.c | 11 +++--

mm/shmem.c | 4+

9 files changed, 195 insertions(+), 4 deletions(-)

--- ./linclude/bc/beancounter.h.bclockcore 2006-09-05 12:54:40.000000000 +0400
+++ ./include/bc/beancounter.h 2006-09-05 12:59:27.000000000 +0400

@@ -13,8 +139 @@
*/

#define BC_KMEMSIZE O
+#define BC_LOCKEDPAGES 1

-#define BC_RESOURCES 1
+#define BC_RESOURCES 2

struct bc_resource_parm {
unsigned long barrier; /* A barrier over which resource allocations
--- /dev/null 2006-07-18 14:52:43.075228448 +0400
+++ ./include/bc/vmpages.h 2006-09-05 13:04:03.000000000 +0400
@@ -0,0+1,95 @@
+/*
+ * include/bc/vmpages.h
+ *
+* Copyright (C) 2006 OpenVZ. SWsoft Inc
+ *
+ */
+
+#ifndef _ BC_VMPAGES_H_
+#define __BC_VMPAGES_H_
+

Page 57 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+#include <bc/beancounter.h>

+#include <bc/task.h>

+

+struct mm_struct;

+struct file;

+struct shmem_inode_info;

+

+#ifdef CONFIG_BEANCOUNTERS

+int __must_check bc_memory_charge(struct mm_struct *mm, unsigned long size,
+ unsigned long vm_flags, struct file *vm_file, int strict);

+void bc_memory_uncharge(struct mm_struct *mm, unsigned long size,
+ unsigned long vm_flags, struct file *vm_file);

+

+int __must_check bc_locked_charge(struct mm_struct *mm, unsigned long size);
+void bc_locked_uncharge(struct mm_struct *mm, unsigned long size);
+

+int __must_check bc_locked_shm_charge(struct shmem_inode_info *info,
+ unsigned long size);

+void bc_locked_shm_uncharge(struct shmem_inode_info *info,

+ unsigned long size);

+

+/*

+ * mm's beancounter should be the same as the exec one

+ * of taks using this mm. thus we have two cases of its

+ * initialisation:

+* 1. new mm is done for fork-ed task

+* 2. new mm is done for exec-ing task

+ */

+#define mm_init_bc(mm, t)do { \

+ (mm)->mm_bc = get_beancounter((t)->task_bc.exec_bc); \

+ } while (0)

+#define mm_free_bc(mm) do{ \

+ put_beancounter((mm)->mm_bc); \

+ } while (0)

+

+#define shmi_init_bc(info) do { \

+ (info)->shm_bc = get_beancounter(get_exec_bc()); \

+ } while (0)

+#define shmi_free_bc(info) do{ \

+ put_beancounter((info)->shm_Dbc); \

+ } while (0)

+

+#else /* CONFIG_BEANCOUNTERS */

+

+static inline int __must_check bc_memory_charge(struct mm_struct *mm,
+ unsigned long size, unsigned long vm_flags,

+ struct file *vm_file, int strict)

H

Page 58 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+ return O;

+}

+

+static inline void bc_memory_uncharge(struct mm_struct *mm, unsigned long size,
+ unsigned long vm_flags, struct file *vm_file)

H

+}

+

+static inline int __must_check bc_locked_charge(struct mm_struct *mm,
+ unsigned long size)

gl

+ return O;

+}

+
+static inline void bc_locked_uncharge(struct mm_struct *mm, unsigned long size)
H

+}
+

+static inline int __must_check bc_locked_shm_charge(struct shmem_inode_info *i,
+ unsigned long size)

H

+ return O;

+}

+

+static inline void bc_locked_shm_uncharge(struct shmem_inode_info *i,

+ unsigned long size)

H

+}
+

+#define mm_init_bc(mm, t) do { } while (0)
+#define mm_free_bc(mm) do { } while (0)
+#define shmi_init_bc(info) do { } while (0)
+#define shmi_free_bc(info) do { } while (0)
+
+#endif /* CONFIG_BEANCOUNTERS */
+#endif
+
--- ./include/linux/sched.h.bclockcore 2006-09-05 12:54:21.000000000 +0400
+++ ./include/linux/sched.h 2006-09-05 12:59:27.000000000 +0400
@@ -358,6 +358,9 @@ struct mm_struct {
[* aio bits */
rwlock t ioctx_list_lock;
struct kioctx *ioctx_list;
+#ifdef CONFIG_BEANCOUNTERS
+ struct beancounter *mm_bc;
+#endif

h

Page 59 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

struct sighand_struct {
--- ./include/linux/shmem_fs.h.bclockcore 2006-04-21 11:59:36.000000000 +0400
+++ ./include/linux/shmem_fs.h 2006-09-05 12:59:27.000000000 +0400

@@ -816 +818 @@
#define SHMEM_NR_DIRECT 16

+struct beancounter,

+
struct shmem_inode_info {
spinlock_t lock;
unsigned long flags;

@@ -19,6 +21,9 @@ struct shmem_inode_info {
swp_entry_t i_direcfSHMEM_NR_DIRECT]; /* first blocks */
struct list_head swaplist; /* chain of maybes on swap */
struct inode vfs_inode;

+#ifdef CONFIG_BEANCOUNTERS

+ struct beancounter *shm_bc;

+#endif

|

struct shmem_sb_info {

--- ./kernel/bc/Makefile.bclockcore 2006-09-05 12:54:50.000000000 +0400
+++ ./kernel/bc/Makefile 2006-09-05 12:59:37.000000000 +0400

@@ -8,3 +8,4 @@ obj-y += beancounter.o

obj-y += misc.o

obj-y +=sys.o

obj-y += kmem.o

+0obj-y += vmpages.o

--- ./kernel/bc/beancounter.c.bclockcore 2006-09-05 12:55:13.000000000 +0400
+++ ./kernel/bc/beancounter.c 2006-09-05 12:59:45.000000000 +0400
@@ -21,6 +21,7 @@ struct beancounter init_bc;

const char *bc_rnames[] = {
"kmemsize", /* 0 */
+ "lockedpages”,

I3

#define BC_HASH_BITS 8
@@ -232,6 +233,7 @@ static void init_beancounter_syslimits(s
int k;

bc->bc_parms[BC_KMEMSIZE].limit = 32 * 1024 * 1024;
+ bc->bc_parms[BC_LOCKEDPAGES].limit = 8;

for (k = 0; k < BC_RESOURCES; k++)
bc->bc_parmsik].barrier = bc->bc_parms[k].limit;
--- /dev/null 2006-07-18 14:52:43.075228448 +0400

Page 60 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+++ ./kernel/bc/vmpages.c 2006-09-05 12:59:27.000000000 +0400
@@ _010 +1!75 @@

+/*

+ * kernel/bc/vmpages.c

+ *

+* Copyright (C) 2006 OpenVZ. SWsoft Inc

+ *

+ */

+

+#include <linux/sched.h>

+#include <linux/mm.h>

+#include <linux/shmem_fs.h>

+

+#include <bc/beancounter.h>

+#include <bc/vmpages.h>

+

+#include <asm/page.h>

+

+int bc_memory_charge(struct mm_struct *mm, unsigned long size,
+ unsigned long vm_flags, struct file *vm_file, int strict)
H

+ struct beancounter *bc;

+

+ bc = mm->mm_bc;

+ size >>= PAGE_SHIFT,;

+

+if (vm_flags & VM_LOCKED)

+ if (bc_charge(bc, BC_LOCKEDPAGES, size, strict))
+ return -ENOMEM;

+ return O;

+}

+

+void bc_memory_uncharge(struct mm_struct *mm, unsigned long size,
+ unsigned long vm_flags, struct file *vm_file)

gl

+ struct beancounter *bc;

+

+ bc = mm->mm_bc;

+ size >>= PAGE_SHIFT;

+

+if (vm_flags & VM_LOCKED)

+ bc_uncharge(bc, BC_LOCKEDPAGES, size);

+}

+

+static inline int locked_charge(struct beancounter *bc,
+ unsigned long size)

+H

+ size >>= PAGE_SHIFT;

Page 61 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+ return bc_charge(bc, BC_LOCKEDPAGES, size, BC_BARRIER);
+}

+

+static inline void locked_uncharge(struct beancounter *bc,

+ unsigned long size)

gl

+ size >>= PAGE_SHIFT,;

+ bc_uncharge(bc, BC_LOCKEDPAGES, size);

+}

+

+int bc_locked_charge(struct mm_struct *mm, unsigned long size)
+H

+ return locked_charge(mm->mm_bc, size);

+}

+

+void bc_locked_uncharge(struct mm_struct *mm, unsigned long size)
gl

+ locked_uncharge(mm->mm_bc, size);

+}

+

+int bc_locked_shm_charge(struct shmem_inode_info *info, unsigned long size)
+

+ return locked_charge(info->shm_bc, size);

+}

+

+void bc_locked_shm_uncharge(struct shmem_inode_info *info, unsigned long size)
+H

+ locked_uncharge(info->shm_bc, size);

+}

--- ./kernel/fork.c.bclockcore 2006-09-05 12:58:17.000000000 +0400
+++ ./kernel/fork.c 2006-09-05 12:59:59.000000000 +0400

@@ -49,6 +49,7 @@

#include <linux/taskstats _kern.h>

#include <bc/task.h>
+#include <bc/vmpages.h>

#include <asm/pgtable.h>
#include <asm/pgalloc.h>
@@ -322,7 +323,8 @@ static inline void mm_free_pgd(struct mm

#include <linux/init_task.h>

-static struct mm_struct * mm_init(struct mm_struct * mm)
+static struct mm_struct * mm_init(struct mm_struct * mm,
+ struct task_struct *tsk)

{

atomic_set(&mm->mm_users, 1);

Page 62 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

atomic_set(&mm->mm_count, 1);
@@ -339,6 +341,7 @@ static struct mm_struct * mm_init(struct
mm->cached_hole_size = ~0UL,;

if (likely(!mm_alloc_pgd(mm))) {
+ mm_init_bc(mm, tsk);
mm->def_flags = 0;
return mm,;
}
@@ -356,7 +359,7 @@ struct mm_struct * mm_alloc(void)
mm = allocate_mm();
if (mm) {
memset(mm, 0, sizeof(*mm));
- mm = mm_init(mm);
+ mm = mm_init(mm, current);
}
return mm;
}
@@ -371,6 +374,7 @@ void fastcall __mmdrop(struct mm_struct
BUG_ON(mm == &init_mm);
mm_free_pgd(mm);
destroy_context(mm);
+ mm_free_bc(mm);
free_mm(mm);

}

@@ -477,7 +481,7 @@ static struct mm_struct *dup_mm(struct t
memcpy(mm, oldmm, sizeof(*mm));

- if ('mm_init(mm))
+if (!mm_init(mm, tsk))
goto fail_nomem;

if (init_new_context(tsk, mm))
@@ -504,6 +508,7 @@ fail_nocontext:
* because it calls destroy_context()
*/
mm_free_pgd(mm);
+ mm_free_bc(mm);
free_mm(mm);
return NULL;
}
--- ./mm/shmem.c.bclockcore 2006-09-05 12:58:17.000000000 +0400
+++ ./mm/shmem.c 2006-09-05 12:59:27.000000000 +0400
@@ -47,6 +47,8 @@
#include <linux/migrate.h>
#include <linux/highmem.h>

Page 63 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+#include <bc/vmpages.h>

+

#include <asm/uaccess.h>

#include <asm/div64.h>

#include <asm/pgtable.h>

@@ -698,6 +700,7 @@ static void shmem_delete_inode(struct in
sbinfo->free_inodes++;
spin_unlock(&sbinfo->stat_lock);
}

+ shmi_free_bc(info);
clear_inode(inode);

}

@@ -1359,6 +1362,7 @@ shmem_get_inode(struct super_block *sb,
info = SHMEM _ [(inode);
memset(info, 0, (char *)inode - (char *)info);
spin_lock_init(&info->lock);

+ shmi_init_bc(info);
INIT_LIST_HEAD(&info->swaplist);

switch (mode & S_IFMT) {

Subject: [PATCH 9/13] BC: locked pages (charge hooks)
Posted by dev on Tue, 05 Sep 2006 15:25:53 GMT

View Forum Message <> Reply to Message

Introduce calls to BC core over the kernel to charge locked memory.

Normaly new locked piece of memory may appear in insert_vm_struct,
but there are places (do_mmap_pgoff, dup_mmap etc) when new vma
is not inserted by insert_vm_struct(), but either link_vma-ed or
merged with some other - these places call BC code explicitly.

Plus sys_mlock]all] itself has to be patched to charge/uncharge
needed amount of pages.

Signed-Off-By: Pavel Emelianov <xemul@sw.ru>
Signed-Off-By: Kirill Korotaev <dev@sw.ru>

fs/binfmt_elf.c | 5 ++-

include/asm-alpha/mman.h | 1
include/asm-generic/mman.h | 1
include/asm-mips/mman.h | 1

include/asm-parisc/mman.h | 1

Page 64 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=19
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=5931#msg_5931
https://new-forum.openvz.org/index.php?t=post&reply_to=5931
https://new-forum.openvz.org/index.php

include/linux/mm.h | 1

mm/mlock.c | 21 +4++ttttt bttt
mm/mmap.c | 59 ++++++++++++++Ht bbb bbb
mm/mremap.c | 18 ++++++++++++-

mm/shmem.c | 12 ++++++++-

10 files changed, 104 insertions(+), 16 deletions(-)

--- .[fs/binfmt_elf.c.bclockcharge 2006-09-05 12:53:54.000000000 +0400
+++ ./fs/binfmt_elf.c 2006-09-05 13:08:26.000000000 +0400
@@ -360,7 +360,7 @@ static unsigned long load_elf_interp(str
eppnt = elf_phdata;
for (i=0;i<interp_elf_ex->e_phnum; i++, eppnt++) {
if (eppnt->p_type == PT_LOAD) {
- intelf_type = MAP_PRIVATE | MAP_DENYWRITE;
+ int elf_type = MAP_PRIVATE|MAP_DENYWRITE|MAP_EXECPRIO;
int elf_prot = 0;
unsigned long vaddr = 0;
unsigned long k, map_addr;
@@ -846,7 +846,8 @@ static int load_elf_binary(struct linux_
if (elf_ppnt->p_flags & PF_X)
elf_prot |= PROT_EXEC;

- elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
+ elf_flags = MAP_PRIVATE | MAP_DENYWRITE |
+ MAP_EXECUTABLE | MAP_EXECPRIO;

vaddr = elf_ppnt->p_vaddr;

if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
--- ./include/asm-alpha/mman.h.mapfx 2006-04-21 11:59:35.000000000 +0400
+++ ./include/asm-alpha/mman.h 2006-09-05 18:13:12.000000000 +0400
@@ -28,6 +28,7 @@
#define MAP_NORESERVE 0x10000 /* don't check for reservations */
#define MAP_POPULATE 0x20000 /* populate (prefault) pagetables */
#define MAP_NONBLOCK 0x40000 /* do not block on 1O */
+#define MAP_EXECPRIO 0x80000 /* charge against BC limit */

#define MS_ASYNC 1 /* sync memory asynchronously */

#define MS_SYNC 2 /* synchronous memory sync */

--- ./linclude/asm-generic/mman.h.x 2006-04-21 11:59:35.000000000 +0400
+++ ./include/asm-generic/mman.h 2006-09-05 14:02:04.000000000 +0400
@@ -19,6 +19,7 @@

#define MAP_TYPE 0xOf /* Mask for type of mapping */

#define MAP_FIXED 0x10 /* Interpret addr exactly */

#define MAP_ANONYMOUS 0x20 /* don't use a file */

+#define MAP_EXECPRIO 0x20000 /* charge agains BC_LIMIT */

#define MS_ASYNC 1 /* sync memory asynchronously */
#define MS_INVALIDATE 2 /* invalidate the caches */

Page 65 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

--- ./include/asm-mips/mman.h.mapfx 2006-04-21 11:59:36.000000000 +0400
+++ ./include/asm-mips/mman.h 2006-09-05 18:13:34.000000000 +0400
@@ -46,6 +46,7 @@

#define MAP_LOCKED 0x8000 /* pages are locked */

#define MAP_POPULATE 0x10000 /* populate (prefault) pagetables */
#define MAP_NONBLOCK 0x20000 /* do not block on 1O */

+#define MAP_EXECPRIO 0x40000 /* charge against BC limit */

/~k

* Flags for msync
--- ./include/asm-parisc/mman.h.mapfx 2006-04-21 11:59:36.000000000 +0400
+++ ./include/asm-parisc/mman.h 2006-09-05 18:13:47.000000000 +0400
@@ -22,6 +22,7 @@

#define MAP_GROWSDOWN 0x8000 /* stack-like segment */

#define MAP_POPULATE 0x10000 /* populate (prefault) pagetables */
#define MAP_NONBLOCK 0x20000 /* do not block on 1O */
+#define MAP_EXECPRIO 0x40000 /* charge against BC limit */

#define MS_SYNC 1 /* synchronous memory sync */

#define MS_ASYNC 2 /* sync memory asynchronously */

--- ./include/linux/mm.h.bclockcharge 2006-09-05 12:55:28.000000000 +0400
+++ ./include/linux/mm.h 2006-09-05 13:06:37.000000000 +0400

@@ -1103,6 +1103,7 @@ out:

extern int do_munmap(struct mm_struct *, unsigned long, size t);

extern unsigned long do_brk(unsigned long, unsigned long);
+extern unsigned long __do_brk(unsigned long, unsigned long, int);

[* filemap.c */

extern unsigned long page_unuse(struct page *);

--- ./mm/mlock.c.bclockcharge 2006-04-21 11:59:36.000000000 +0400
+++ ./mm/mlock.c 2006-09-05 13:06:37.000000000 +0400

@@ -11,6 +11,7 @@

#include <linux/mempolicy.h>

#include <linux/syscalls.h>

+#include <bc/vmpages.h>

static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
unsigned long start, unsigned long end, unsigned int newflags)

@@ -25,6 +26,14 @@ static int mlock_fixup(struct vm_area_st
goto out;

}

+if (newflags & VM_LOCKED) {

+ ret = bc_locked_charge(mm, end - start);
+ if (ret < 0) {

+ *prev =vma,

Page 66 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+ goto out;
+)
+)
+
pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
vma->vm_file, pgoff, vma_policy(vma));
@@ -38,13 +47,13 @@ static int mlock_fixup(struct vm_area_st
if (start = vma->vm_start) {
ret = split_vma(mm, vma, start, 1);
if (ret)
- goto out;
+ goto out_uncharge;

}

if (end !'=vma->vm_end) {
ret = split_vma(mm, vma, end, 0);
if (ret)

- goto out;

+ goto out_uncharge;

}

success:
@@ -63,13 +72,19 @@ success:

pages = -pages;

if ({(newflags & VM_10))

ret = make_pages_present(start, end);
-}
+} else
+ bc_locked_uncharge(mm, end - start);

vma->vm_mm->locked_vm -= pages;
out:

if (ret == -ENOMEM)

ret = -EAGAIN;

return ret;
+
+out_uncharge:
+ if (newflags & VM_LOCKED)
+ bc_locked_uncharge(mm, end - start);
+ goto out;

}

static int do_mlock(unsigned long start, size_t len, int on)

--- ./mm/mmap.c.bclockcharge 2006-09-05 12:53:59.000000000 +0400
+++ ./mm/mmap.c 2006-09-05 13:07:13.000000000 +0400

@@ -26,6 +26,8 @@

#include <linux/mempolicy.h>

Page 67 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

#include <linux/rmap.h>

+#include <bc/vmpages.h>

+

#include <asm/uaccess.h>

#include <asm/cacheflush.h>

#include <asm/tlb.h>

@@ -220,6 +222,10 @@ static struct vm_area_struct *remove_vma
struct vm_area_struct *next = vma->vm_next;

might_sleep();
+
+ bc_memory_uncharge(vma->vm_mm, vma->vm_end - vma->vm_start,
+ vma->vm_flags, vma->vm_file);
+
if (vma->vm_ops && vma->vm_ops->close)
vma->vm_ops->close(vma);
if (vma->vm_file)
@@ -267,7 +273,7 @@ asmlinkage unsigned long sys_brk(unsigne
goto out;

[* Ok, looks good - let it rip. */
- if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
+if (__do_brk(oldbrk, newbrk-oldbrk, BC_BARRIER) != oldbrk)

goto out;
set_brk:
mm->brk = brk;
@@ -1047,6 +1053,11 @@ munmap_back:
}
}

+ error = bc_memory_charge(mm, len, vm_flags, file,
+ flags & MAP_EXECPRIO ? BC_LIMIT : BC_BARRIER);
+ if (error)
+ goto charge_fail,
+
/*
* Can we just expand an old private anonymous mapping?
* The VM_SHARED test is necessary because shmem_zero_setup
@@ -1160,6 +1171,8 @@ unmap_and_free_vma:
free_vma:
kmem_cache_free(vm_area_cachep, vma);
unacct_error:
+ bc_memory_uncharge(mm, len, vm_flags, file);
+charge_fail:
if (charged)
vm_unacct_memory(charged);
return error;

Page 68 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

@@ -1489,12 +1502,16 @@ static int acct_stack growth(struct vm_a
return -ENOMEM;

}

+ if (bc_memory_charge(mm, grow << PAGE_SHIFT,
+ vma->vm_flags, vma->vm_file, BC_LIMIT))
+ goto err_ch;
+
/-k
* Overcommit.. This must be the final test, as it will
* update security statistics.
*/
if (security_vm_enough_memory(grow))
- return -ENOMEM;
+ goto err_acct;

[* Ok, everything looks good - let it rip */
mm->total_vm += grow;
@@ -1502,6 +1519,11 @@ static int acct_stack growth(struct vm_a
mm->locked_vm += grow;
vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
return O;
+
+err_acct:
+ bc_memory_uncharge(mm, grow << PAGE_SHIFT, vma->vm_flags, vma->vm_file);
+err_ch:
+ return -ENOMEM,;

}

#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
@@ -1857,7 +1879,7 @@ static inline void verify_mm_writelocked

* anonymous maps. eventually we may be able to do some

* brk-specific accounting here.

*/
-unsigned long do_brk(unsigned long addr, unsigned long len)
+unsigned long __do_brk(unsigned long addr, unsigned long len, int bc_strict)
{

struct mm_struct * mm = current->mm;

struct vm_area_struct * vma, * prev;,
@@ -1914,6 +1936,9 @@ unsigned long do_brk(unsigned long addr,

flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;

+ if (bc_memory_charge(mm, len, flags, NULL, bc_strict))

+ goto out_unacct;

+
[* Can we just expand an old private anonymous mapping? */
if (vma_merge(mm, prev, addr, addr + len, flags,

Page 69 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

NULL, NULL, pgoff, NULL))
@@ -1923,10 +1948,8 @@ unsigned long do_brk(unsigned long addr,
* create a vma struct for an anonymous mapping

*
vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
-if ('vma) {

- vm_unacct_memory(len >> PAGE_SHIFT);
- return -ENOMEM,;

-}

+if ('vma)

+ goto out_uncharge;

vma->vm_mm = mm;
vma->vm_ start = addr;
@@ -1943,6 +1966,17 @@ out:
make_pages_present(addr, addr + len);
}
return addr;
+
+out_uncharge:
+ bc_memory_uncharge(mm, len, flags, NULL);
+out_unacct:
+ vm_unacct_memory(len >> PAGE_SHIFT);
+ return -ENOMEM,;
+}
+
+unsigned long do_brk(unsigned long addr, unsigned long len)
+H
+ return __do_brk(addr, len, BC_LIMIT);
}

EXPORT_SYMBOL(do_brk);
@@ -2005,9 +2039,18 @@ int insert_vm_struct(struct mm_struct *
return -ENOMEM;
if ((vma->vm_flags & VM_ACCOUNT) &&
security_vm_enough_memory(vma_pages(vma)))
- return -ENOMEM,;
+ goto err_acct;
+ if (bc_memory_charge(mm, vma->vm_end - vma->vm_start,
+ vma->vm_flags, vma->vm_file, BC_LIMIT))
+ goto err_charge;
vma_link(mm, vma, prev, rb_link, rb_parent);
return O;
+
+err_charge:
+if (vma->vm_flags & VM_ACCOUNT)
+ vm_unacct_memory(vma_pages(vma));
+err_acct:

Page 70 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+ return -ENOMEM;
}

/*

--- ./mm/mremap.c.bclockcharge 2006-09-05 12:53:59.000000000 +0400
+++ ./mm/mremap.c 2006-09-05 13:06:37.000000000 +0400

@@ -19,6 +19,8 @@

#include <linux/security.h>

#include <linux/syscalls.h>

+#include <bc/vmpages.h>

+

#include <asm/uaccess.h>

#include <asm/cacheflush.h>

#include <asm/tlbflush.h>

@@ -350,6 +352,13 @@ unsigned long do_mremap(unsigned long ad
goto out_nc;

}

+if (new_len > old_len) {
+ ret = bc_memory_charge(mm, new_len - old_len,
+ vma->vm_flags, vma->vm_file, BC_BARRIER);
+ if (ret)
+ goto out;
+}
+

/* old_len exactly to the end of the area..

* And we're not relocating the area.

*/
@@ -374,7 +383,7 @@ unsigned long do_mremap(unsigned long ad

addr + new_len);
}

ret = addr;
- goto out;
+ goto out_ch;
}
}

@@ -393,10 +402,15 @@ unsigned long do_mremap(unsigned long ad
vma->vm_pgoff, map_flags);
ret = new_addr,;
if (new_addr & ~PAGE_MASK)
- goto out;
+ goto out_ch;

}

ret = move_vma(vma, addr, old_len, new_len, new_addr);

}

+out_ch:

Page 71 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+ if (ret & ~PAGE_MASK)
+ if (new_len > old_len)
+ bc_memory_uncharge(mm, new_len - old_len,
+ vma->vm_flags, vma->vm_file);
out:
if (ret & ~PAGE_MASK)
vm_unacct_memory(charged);
--- ./mm/shmem.c.bclockcharge 2006-09-05 12:59:27.000000000 +0400
+++ ./mm/shmem.c 2006-09-05 13:06:37.000000000 +0400
@@ -1309,21 +1309,31 @@ int shmem_lock(struct file *file, int lo
struct inode *inode = file->f_dentry->d_inode;
struct shmem_inode_info *info = SHMEM _I(inode);
int retval = -ENOMEM;
+ unsigned long size;
+
+ size = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT,;

spin_lock(&info->lock);

if (lock && !(info->flags & VM_LOCKED)) {
- if (luser_shm_lock(inode->i_size, user))
+ if (bc_locked_shm_charge(info, size))

goto out_nomem;

+ if (luser_shm_lock(inode->i_size, user))
+ goto out_uncharge;

info->flags |= VM_LOCKED,;

}

if (lock && (info->flags & VM_LOCKED) && user) {

user_shm_unlock(inode->i_size, user);
+ bc_locked_shm_uncharge(info, size);

info->flags &= ~VM_LOCKED;

}
retval = O;
out_nomem:

spin_unlock(&info->lock);
return retval,
+
+out_uncharge:
+ bc_locked_shm_uncharge(info, size);
+ goto out_nomem;

}

int shmem_mmap(struct file *file, struct vm_area_struct *vma)

Subject: [PATCH 10/13] BC: privvm pages
Posted by dev on Tue, 05 Sep 2006 15:26:58 GMT

View Forum Message <> Reply to Message

Page 72 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=19
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=5932#msg_5932
https://new-forum.openvz.org/index.php?t=post&reply_to=5932
https://new-forum.openvz.org/index.php

This patch instroduces new resource - BC_PRIVVMPAGES.
It is an upper estimation of currently used physical memory.

There are different approaches to user pages control:
a) account all the mappings on mmap/brk and reject as
soon as the sum of VMA's lengths reaches the barrier.

This approach is very bad as applications always map
more than they really use, very often MUCH more.

b) account only the really used memory and reject as
soon as RSS reaches the limit.

This approach is not good either as user space pages are
allocated in page fault handler and the only way to reject
allocation is to kill the task.

Comparing to previous scenarion this is much worse as
application won't even be able to terminate gracefully.

c) account a part of memory on mmap/brk and reject there,
and account the rest of the memory in page fault handlers
without any rejects.

This type of accounting is used in UBC.

d) account physical memory and behave like a standalone
kernel - reclaim user memory when run out of it.

This type of memory control is to be introduced later
as an addition to c). UBC provides all the needed
statistics for this (physical memory, swap pages etc.)

Privwvmpages accounting is described in details in
http://wiki.openvz.org/User_pages_accounting

A note about sys_mprotect: as it can change mapping state from
BC_VM_PRIVATE to 'BC_VM_PRIVATE and vice-versa appropriate amount of
pages is (un)charged in mprotect_fixup.

Signed-Off-By: Pavel Emelianov <xemul@sw.ru>
Signed-Off-By: Kirill Korotaev <dev@sw.ru>

include/bc/beancounter.h | 3 +-

include/bc/vmpages.h | 44 +++++++++HHHb bbb
kernel/bc/beancounter.c | 2+
kernel/bc/vmpages.c | 53 ++++++++++++t+++ bbbttt -

Page 73 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

kernel/fork.c | 9 +++++++
mm/mprotect.c | 17 bbbttt
mm/shmem.c | 7 ++++++

7 files changed, 129 insertions(+), 6 deletions(-)

--- ./include/bc/beancounter.h.bcprivvm 2006-09-05 12:59:27.000000000 +0400
+++ ./include/bc/beancounter.h 2006-09-05 13:17:50.000000000 +0400

@@ -14,8 +14.9 @@

#define BC_KMEMSIZE O
#define BC_LOCKEDPAGES 1
+#define BC_PRIVVMPAGES 2

-#define BC_RESOURCES 2
+#define BC_RESOURCES 3

struct bc_resource_parm {
unsigned long barrier; /* A barrier over which resource allocations
--- ./include/bc/vmpages.h.bcprivvm 2006-09-05 13:04:03.000000000 +0400
+++ ./include/bc/vmpages.h 2006-09-05 13:38:07.000000000 +0400
@@ -8,6 +3,8 @@
#ifndef _ BC_VMPAGES H_
#define _ BC_VMPAGES _H_

+#include <linux/mm.h>

+

#include <bc/beancounter.h>
#include <bc/task.h>

@@ -15,12 +17,37 @@ struct mm_struct;
struct file;
struct shmem_inode _info;

+/*

+ * sys_mprotect() can change mapping state form private to

+ * shared and vice-versa. Thus rescharging is needed, but

+ * with the following rules:

+ * 1. No state change : nothing to be done at all;

+ * 2. shared -> private : need to charge before operation starts

+ * and roll back on error path;

+ * 3. private -> shared : need to uncharge after successfull state

+ * change. Uncharging first and charging back

+* on error path isn't good as charge will have

+* to be BC_FORCE and thus can potentially create
+ * an overcharged privwvmpages.

+ */

+#define BC_NOCHARGE 0
+#define BC_UNCHARGE 1 /* private -> shared */

Page 74 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+#define BC_CHARGE 2 /* shared -> private */

+

+#define BC_VM_PRIVATE(flags, file) (((flags) & VM_WRITE) ?\

+ ((file) == NULL || ((flags) & VM_SHARED)): 0)

+

#ifdef CONFIG_BEANCOUNTERS

int__must_check bc_memory_charge(struct mm_struct *mm, unsigned long size,
unsigned long vm_flags, struct file *vm_file, int strict);

void bc_memory_uncharge(struct mm_struct *mm, unsigned long size,
unsigned long vm_flags, struct file *vm_file);

+int __must_check bc_privwvm_recharge(unsigned long old_flags,

+ unsigned long new_flags, struct file *vm_file);

+int __must_check bc_privwvm_charge(struct mm_struct *mm, unsigned long size);
+void bc_privvm_uncharge(struct mm_struct *mm, unsigned long size);

+

int__must_check bc_locked_charge(struct mm_struct *mm, unsigned long size);
void bc_locked_uncharge(struct mm_struct *mm, unsigned long size);

@@ -64,6 +91,23 @@ static inline void bc_memory_uncharge(st

{
}

+static inline int __must_check bc_privwm_recharge(unsigned long old_flags,
+ unsigned long new_flags, struct file *vm_file)

+

+ return BC_NOCHARGE;

+}

+

+static inline int __must_check bc_privwvm_charge(struct mm_struct *mm,
+ unsigned long size)

+

+ return O;

+}

+

+static inline void bc_privvm_uncharge(struct mm_struct *mm,

+ unsigned long size)

H

+}
+

static inline int __must_check bc_locked_charge(struct mm_struct *mm,
unsigned long size)

{

--- ./kernel/bc/beancounter.c.bcprivvm 2006-09-05 12:59:45.000000000 +0400

+++ ./kernel/bc/beancounter.c 2006-09-05 13:17:50.000000000 +0400

@@ -22,6 +22,7 @@ struct beancounter init_bc;

const char *bc_rnames[] = {
"kmemsize", /* 0 */

Page 75 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

"lockedpages”,
+ "privvmpages",

I3

#define BC_HASH_BITS 8
@@ -234,6 +235,7 @@ static void init_beancounter_syslimits(s

bc->bc_parms[BC_KMEMSIZE].limit = 32 * 1024 * 1024;
bc->bc_parms[BC_LOCKEDPAGES].limit = 8;
+ be->bc_parms[BC_PRIVVMPAGES].limit = BC_MAXVALUE;

for (k = 0; k < BC_RESOURCES; k++)
bc->bc_parmsl[k].barrier = bc->bc_parmslk].limit;
--- ./kernel/bc/vmpages.c.bcprivwvm 2006-09-05 12:59:27.000000000 +0400
+++ ./kernel/bc/vmpages.c 2006-09-05 13:28:16.000000000 +0400
@@ -18,26 +18,73 @@ int bc_memory_charge(struct mm_struct *m
unsigned long vm_flags, struct file *vm_file, int strict)
{
struct beancounter *bc;
+ unsigned long flags;

bc = mm->mm_bc;
size >>= PAGE_SHIFT;

+ spin_lock_irgsave(&bc->bc_lock, flags);
if (vm_flags & VM_LOCKED)
- if (bc_charge(bc, BC_LOCKEDPAGES, size, strict))
- return -ENOMEM;
+ if (bc_charge_locked(bc, BC_LOCKEDPAGES, size, strict))
+ goto err_locked;
+if (BC_VM_PRIVATE(vm_flags, vm_file))
+ if (bc_charge_locked(bc, BC_PRIVVMPAGES, size, strict))
+ goto err_privvm;
+ spin_unlock_irgrestore(&bc->bc_lock, flags);
return O;
+
+err_privvm:
+ bc_uncharge_locked(bc, BC_LOCKEDPAGES, size);
+err_locked:
+ spin_unlock_irgrestore(&bc->bc_lock, flags);
+ return -ENOMEM,;
}

void bc_memory_uncharge(struct mm_struct *mm, unsigned long size,
unsigned long vm_flags, struct file *vm_file)

{
struct beancounter *bc;

+ unsigned long flags;

Page 76 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

bc = mm->mm_bc;
size >>= PAGE_SHIFT;

+ spin_lock_irgsave(&bc->bc_lock, flags);
if (vm_flags & VM_LOCKED)
- bc_uncharge(bc, BC_LOCKEDPAGES, size);
+ bc_uncharge locked(bc, BC_LOCKEDPAGES, size);
+if (BC_VM_PRIVATE(vm_flags, vm_file))
+ bc_uncharge_locked(bc, BC_PRIVVMPAGES, size);
+ spin_unlock_irgrestore(&bc->bc_lock, flags);
+}
+
+int bc_privwvm_recharge(unsigned long vm_flags_old, unsigned long vm_flags_new,
+ struct file *vm_file)
gl
+ int priv_old, priv_new;
+
+ priv_old = (BC_VM_PRIVATE(vm_flags_old, vm_file) ? 1 : 0);
+ priv_new = (BC_VM_PRIVATE(vm_flags_new, vm_file) ? 1 : 0);
+
+ if (priv_old == priv_new)
+ return BC_NOCHARGE;
+
+ return priv_new ? BC_CHARGE : BC_UNCHARGE;
+}
+
+int bc_privwm_charge(struct mm_struct *mm, unsigned long size)
+H
+ struct beancounter *bc;
+
+ bc = mm->mm_bc;
+ bc_charge(bc, BC_PRIVVMPAGES, size >> PAGE_SHIFT);
+}
+
+void bc_privvm_uncharge(struct mm_struct *mm, unsigned long size)
gl
+ struct beancounter *bc;
+
+ bc = mm->mm_bc;
+ bc_uncharge(bc, BC_PRIVVMPAGES, size >> PAGE_SHIFT);
}

static inline int locked_charge(struct beancounter *bc,

--- ./kernel/fork.c.bcprivvm 2006-09-05 13:17:15.000000000 +0400

+++ ./kernel/fork.c 2006-09-05 13:23:27.000000000 +0400

@@ -236,9 +236,13 @@ static inline int dup_mmap(struct mm_str
goto fail_nomem;

Page 77 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

charge = len;
}
+ if (bc_memory_charge(mm, mpnt->vm_end - mpnt->vm_start,
+ mpnt->vm_flags & ~VM_LOCKED,
+ mpnt->vm_file, BC_LIMIT) <0)
+ goto fail_nomem,;
tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
if ('tmp)
- goto fail_nomem;
+ goto fail_alloc;
*tmp = *mpnt;
pol = mpol_copy(vma_policy(mpnt));
retval = PTR_ERR(pol);
@@ -292,6 +296,9 @@ out:
return retval,
fail_nomem_policy:
kmem_cache_free(vm_area_cachep, tmp);
+fail_alloc:
+ bc_memory_uncharge(mm, mpnt->vm_end - mpnt->vm_start,
+ mpnt->vm_flags & ~VM_LOCKED, mpnt->vm_file);
fail_nomem:
retval = -ENOMEM;
vm_unacct_memory(charge);
--- ./mm/mprotect.c.bcprivvm 2006-09-05 12:53:59.000000000 +0400
+++ ./mm/mprotect.c 2006-09-05 13:27:40.000000000 +0400
@@ -21,6 +21,7 @@
#include <linux/syscalls.h>
#include <linux/swap.h>
#include <linux/swapops.h>
+#include <bc/vmpages.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/cacheflush.h>
@@ -139,12 +140,19 @@ mprotect_fixup(struct vm_area_struct *vm
pgoff_t pgoff;
int error;
int dirty_accountable = 0;
+ int recharge;

if (newflags == oldflags) {
*pprev = vma,;
return O;

}

+ recharge = bc_privwvm_recharge(oldflags, newflags, vma->vm_file);
+ if (recharge == BC_CHARGE) {

+ if (bc_privvm_charge(mm, end - start))

+ return -ENOMEM;

Page 78 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+)
+
/*
* If we make a private mapping writable we increase our commit;
* put (without finer accounting) cannot reduce our commit if we
@@ -157,8 +165,9 @@ mprotect_fixup(struct vm_area_struct *vm
if (newflags & VM_WRITE) {
if (!(oldflags & (VM_ACCOUNT|VM_WRITE|VM_SHARED))) {
charged = nrpages;
+ error = -ENOMEM;
if (security_vm_enough_memory(charged))
- return -ENOMEM;
+ goto fail_acct;
newflags |= VM_ACCOUNT,;
}

}
@@ -205,12 +213,18 @@ success:

hugetlb_change_protection(vma, start, end, vma->vm_page_prot);
else
change_protection(vma, start, end, vma->vm_page_prot, dirty accountable);
+
+ if (recharge == BC_UNCHARGE)
+ bc_privwm_uncharge(mm, end - start);
vm_stat_account(mm, oldflags, vma->vm_file, -nrpages);
vm_stat_account(mm, newflags, vma->vm_file, nrpages);
return O;

fail:
vm_unacct_memory(charged);
+fail_acct:
+ if (recharge == BC_CHARGE)
+ bc_privwm_uncharge(mm, end - start);
return error;

}

--- ./mm/shmem.c.bcprivvm 2006-09-05 13:06:37.000000000 +0400
+++ ./mm/shmem.c 2006-09-05 13:39:26.000000000 +0400
@@ -2363,6 +2363,13 @@ int shmem_zero_setup(struct vm_area_stru

if (vma->vm_file)
fput(vma->vm_file);
+ else if (vma->vm_flags & VM_WRITE)
/*
* this means that mapping was considered to be private
*in do_mmayp_pgoff, but now it becomes non-private, as
* file is attached to the vma.
*/
bc_privwm_uncharge(vma->vm_mm, size);

+ + + + + +

Page 79 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

vma->vm_file = file;
vma->vm_ops = &shmem_vm_ops;
return O;

Subject: [PATCH 11/13] BC: vmrss (preparations)
Posted by dev on Tue, 05 Sep 2006 15:28:05 GMT

View Forum Message <> Reply to Message

This patch does simple things:

- intruduces an bc_magic field on beancunter to make sure
union on struct page is correctly used in next patches

- adds nr_beancounters

- adds unused_privvmpages variable (counter of privvm pages
which are not mapped into VM address space and thus potentially
can be allocated later)

This is needed by vmrss accounting and is done to make patch reviewing
simpler.

Signed-Off-By: Pavel Emelianov <xemul@sw.ru>
Signed-Off-By: Kirill Korotaev <dev@sw.ru>

include/bc/beancounter.h | 13 +++++++++++++

include/bc/vmpages.h | 2 ++

kernel/bc/beancounter.c | 5 +++++

kernel/bc/kmem.c | 1+

kernel/bc/vmpages.c | 44 ++++++++++++++HH+H bbb -

5 files changed, 61 insertions(+), 4 deletions(-)

--- ./include/bc/beancounter.h.bcvmrssprep 2006-09-05 13:17:50.000000000 +0400
+++ ./include/bc/beancounter.h 2006-09-05 13:44:33.000000000 +0400

@@ -45,6 +45,13 @@ struct bc_resource_parm {

#define BC_MAXVALUE LONG_MAX

/~k
+ * This magic is used to distinuish user beancounter and pages beancounter
+ *in struct page. page_ub and page_bc are placed in union and MAGIC
+ * ensures us that we don't use pbc as ubc in bc_page_uncharge().
+ */
+#define BC_MAGIC 0x62756275UL
+
+/*
* Resource management structures
* Serialization issues:
* beancounter list management is protected via bc_hash_lock

Page 80 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=19
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=5933#msg_5933
https://new-forum.openvz.org/index.php?t=post&reply_to=5933
https://new-forum.openvz.org/index.php

@@ -54,11 +61,13 @@ struct bc_resource_parm {
*/

struct beancounter {

+ unsigned long bc_magic;
atomic_t bc_refcount;
spinlock_t bc_lock;
bcid_t bc_id,;
struct hlist_node hash,;

+ unsigned long unused_privvmpages;
/[* resources statistics and settings */
struct bc_resource_parm bc_parms[BC_RESOURCES];
I3
@@ -74,6 +83,8 @@ enum bc_severity { BC_BARRIER, BC_LIMIT,

#ifdef CONFIG_BEANCOUNTERS

+extern unsigned int nr_beancounters = 1,

+

/*
* These functions tune minheld and maxheld values for a given
* resource when held value changes

@@ -137,6 +137,8 @@ extern const char *bc_rnames|];

#else /* CONFIG_BEANCOUNTERS */

+#define nr_beancounters 0

+

#define beancounter_findcreate(id, f) (NULL)

#define get_beancounter(bc) (NULL)

#define put_beancounter(bc) do {} while (0)

--- ./include/bc/ivmpages.h.bcvmrssprep 2006-09-05 13:38:07.000000000 +0400

+++ ./include/bc/vmpages.h 2006-09-05 13:40:21.000000000 +0400

@@ -77,6 +77,8 @@ void bc_locked_shm_uncharge(struct shmem
put_beancounter((info)->shm_bc); \

} while (0)

+void bc_update_privvmpages(struct beancounter *bc);
+

#else /* CONFIG_BEANCOUNTERS */

static inline int __must_check bc_memory_charge(struct mm_struct *mm,

--- ./kernel/bc/beancounter.c.bcvmrssprep 2006-09-05 13:17:50.000000000 +0400
+++ ./kernel/bc/beancounter.c 2006-09-05 13:44:53.000000000 +0400

@@ -19,6 +19,8 @@ static void init_beancounter_struct(stru

struct beancounter init_bc;

Page 81 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+unsigned int nr_beancounters;

+

const char *bc_rnames[] ={
"kmemsize", /* 0 */
"lockedpages”,

@@ -88,6 +90,7 @@ retry:

out_install:
hlist_add_head(&new_bc->hash, slot);
+ nr_beancounters++;
spin_unlock_irgrestore(&bc_hash_lock, flags);
out:
return new_bc;
@@ -110,6 +113,7 @@ void put_beancounter(struct beancounter
bc->bc_parmsJi].held, bc_rnamesi]);

hlist_del(&bc->hash);
+ nr_beancounters--;
spin_unlock_irgrestore(&bc_hash_lock, flags);

kmem_cache_free(bc_cachep, bc);
@@ -214,6 +218,7 @@ EXPORT_SYMBOL_GPL(bc_uncharge);

static void init_beancounter_struct(struct beancounter *bc, bcid_t id)
{
+ bc->bc_magic = BC_MAGIC;

atomic_set(&bc->bc_refcount, 1);

spin_lock_init(&bc->bc_lock);

bc->bc_id =id;
--- ./kernel/bc/kmem.c.bcvmrssprep 2006-09-05 12:54:40.000000000 +0400
+++ ./kernel/bc/kmem.c 2006-09-05 13:40:21.000000000 +0400
@@ -79,6 +79,7 @@ void bc_page_uncharge(struct page *page,

if (bc == NULL)

return;

+ BUG_ON(bc->bc_magic '= BC_MAGIC);
bc_uncharge(bc, BC_KMEMSIZE, PAGE_SIZE << order);
put_beancounter(bc);
page_ bc(page) = NULL;
--- ./kernel/bc/vmpages.c.bcvmrssprep 2006-09-05 13:28:16.000000000 +0400
+++ ./kernel/bc/vmpages.c 2006-09-05 13:45:34.000000000 +0400

@@ -14,6 +14,34 @@
#include <asm/page.h>

+void bc_update_privvmpages(struct beancounter *bc)

H

Page 82 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+ be->bc_parms[BC_PRIVVMPAGES].held = bc->unused_privwvmpages;
+ bc_adjust_minheld(bc, BC_PRIVVMPAGES);
+ bc_adjust_maxheld(bc, BC_PRIVVMPAGES);,
+}
+
+static inline int privvm_charge(struct beancounter *bc, unsigned long sz,
+ int strict)
+
+if (bc_charge_locked(bc, BC_PRIVVMPAGES, sz, strict))
+ return -ENOMEM,;
+
+ bc->unused_privvmpages += sz;
+return O;
+}
+
+static inline void privvm_uncharge(struct beancounter *bc, unsigned long sz)
gl
+ if (unlikely(bc->unused_privvmpages < sz)) {
+ printk("BC: overuncharging %d unused pages: val %lu held %lu\n”,
+ bc->bc_id, sz, bc->unused_privvmpages);
+ sz = bc->unused_privvmpages;
+}
+ bc->unused_privvmpages -= sz;
+ bc_update_privvmpages(bc);
+}
+
int bc_memory_charge(struct mm_struct *mm, unsigned long size,
unsigned long vm_flags, struct file *vm_file, int strict)
{
@@ -28,7 +56,7 @@ int bc_memory_charge(struct mm_struct *m
if (bc_charge_locked(bc, BC_LOCKEDPAGES, size, strict))
goto err_locked;
if (BC_VM_PRIVATE(vm_flags, vm_file))
- if (bc_charge_locked(bc, BC_PRIVVMPAGES, size, strict))
+ if (privvm_charge(bc, size, strict))
goto err_privvm,;
spin_unlock_irgrestore(&bc->bc_lock, flags);
return O;
@@ -53,7 +81,7 @@ void bc_memory_uncharge(struct mm_struct
if (vm_flags & VM_LOCKED)
bc_uncharge locked(bc, BC_LOCKEDPAGES, size);
if (BC_VM_PRIVATE(vm_flags, vm_file))
- bc_uncharge_locked(bc, BC_PRIVVMPAGES, size);
+ privwvm_uncharge(bc, size);
spin_unlock_irgrestore(&bc->bc_lock, flags);

}

@@ -73,18 +101,26 @@ int bc_privwvm_recharge(unsigned long vm_

Page 83 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

int bc_privwvm_charge(struct mm_struct *mm, unsigned long size)
{ .
+ Int ret;
struct beancounter *bc;
+ unsigned long flags;

bc = mm->mm_bc;
- bc_charge(bc, BC_PRIVVMPAGES, size >> PAGE_SHIFT);
+ spin_lock_irgsave(&bc->bc_lock, flags);
+ ret = privwm_charge(bc, size >> PAGE_SHIFT, BC_BARRIER);
+ spin_unlock_irgrestore(&bc->bc_lock, flags);
+ return ret;

}

void bc_privvm_uncharge(struct mm_struct *mm, unsigned long size)
{

struct beancounter *bc;
+ unsigned long flags;

bc = mm->mm_bc;
- bc_uncharge(bc, BC_PRIVVMPAGES, size >> PAGE_SHIFT);
+ spin_lock_irgsave(&bc->bc_lock, flags);
+ privwvm_uncharge(bc, size >> PAGE_SHIFT);
+ spin_unlock_irgrestore(&bc->bc_lock, flags);

}

static inline int locked_charge(struct beancounter *bc,

Subject: [PATCH 12/13] BC: vmrss (core)
Posted by dev on Tue, 05 Sep 2006 15:28:58 GMT

View Forum Message <> Reply to Message

This is the core of vmrss accounting.

The main introduced object is page_beancounter.

It ties together page and BCs which use the page.

This allows correctly account fractions of memory shared
between BCs (http://wiki.openvz.org/RSS_fractions_accounting)

Accounting API:
1. bc_alloc_rss_counter() allocates a tie between page and BC
2. bc_free rss_counter frees it.

(1) and (2) must be done each time a page is about
to be added to someone's rss.

Page 84 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=19
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=5934#msg_5934
https://new-forum.openvz.org/index.php?t=post&reply_to=5934
https://new-forum.openvz.org/index.php

3. When page is touched by BC (i.e. by any task which mm belongs to BC)
page is bc_vmrss_page add()-ed to that BC. Touching page leads
to subtracting it from unused_prvvmpages and adding to held_pages.

4. When page is unmapped from BC it is bc_vmrss_page_del()-ed from it.

5. When task forks all it's mapped pages must be bc_vmrss_page dup()-ed.
I.e. page beancounter reference counter must be increased.

6. Some pages (former PGReserved) must be added to rss, but without
having a reference on it. These pages are bc_vmrss_page_add_noref()-ed.

Signed-Off-By: Pavel Emelianov <xemul@sw.ru>
Signed-Off-By: Kirill Korotaev <dev@sw.ru>

include/bc/beancounter.h | 3
include/bc/vmpages.h | 4
include/bc/vmrss.h | 72 ++++++
include/linux/mm.h | 6
include/linux/shmem_fs.h| 2
init/main.c | 2
kernel/bc/Kconfig | 9
kernel/bc/Makefile | 1
kernel/bc/beancounter.c | 9

kernel/bc/vmpages.c | 7
kernel/bc/vmrss.c | 508 ++++++++++++++++++++++tt bttt bbb
mm/shmem.c | 6

12 files changed, 627 insertions(+), 2 deletions(-)

--- ./include/bc/beancounter.h.bcrsscore 2006-09-05 13:44:33.000000000 +0400
+++ ./include/bc/beancounter.h 2006-09-05 13:50:29.000000000 +0400
@@ -68,6 +68,9 @@ struct beancounter {

struct hlist_node hash,;

unsigned long unused_privvmpages;
+#ifdef CONFIG_BEANCOUNTERS_RSS
+ unsigned long long rss_pages;
+#endif
/[* resources statistics and settings */
struct bc_resource_parm bc_parms[BC_RESOURCES];
3
--- ./include/bc/vmpages.h.bcrsscore 2006-09-05 13:40:21.000000000 +0400
+++ ./include/bc/vmpages.h 2006-09-05 13:46:35.000000000 +0400
@@ -77,6 +77,8 @@ void bc_locked_shm_uncharge(struct shmem
put_beancounter((info)->shm_bc); \
} while (0)

Page 85 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+#define mm_same_bc(mml, mm2) ((mm1)->mm_bc == (mm2)->mm_bc)
+

void bc_update_privvmpages(struct beancounter *bc);

#else /* CONFIG_BEANCOUNTERS */

@@ -136,6 +138,8 @@ static inline void bc_locked_shm_uncharg
#define shmi_init_bc(info) do { } while (0)

#define shmi_free_bc(info) do { } while (0)

+#define mm_same_bc(mm1, mm2) (1)
+

#endif /* CONFIG_BEANCOUNTERS */
#endif

--- /dev/null 2006-07-18 14:52:43.075228448 +0400

+++ ./include/bc/vmrss.h 2006-09-05 13:50:25.000000000 +0400
@@ -0,0+1,72 @@

+/*

+ * include/ub/vmrss.h

+ * Copyright (C) 2006 OpenVZ. SWsoft Inc

+ */

+

+#ifndef _ BC_VMRSS_H_

+#define _ BC_VMRSS_H_

+

+struct page_beancounter;

+

+struct page;

+struct mm_struct;

+struct vm_area_struct;

+

+/* values that represens page's 'weight' in bc rss accounting */
+#define PB_PAGE_WEIGHT_SHIFT 24

+#define PB_PAGE_WEIGHT (1 << PB_PAGE_WEIGHT_SHIFT)
+/* page obtains one more reference within beancounter */
+#define PB_COPY_SAME ((struct page_beancounter *)-1)

+

+#ifdef CONFIG_BEANCOUNTERS_RSS

+

+struct page_beancounter * __must_check bc_alloc_rss_counter(void);
+struct page_beancounter * __must_check bc_alloc_rss_counter_list(long num,
+ struct page_beancounter *list);

+

+void bc_free_rss_counter(struct page_beancounter *rc);

+

+void bc_vmrss_page_add(struct page *pg, struct mm_struct *mm,

Page 86 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+ struct vm_area_struct *vma, struct page_beancounter **ppb);

+void bc_vmrss_page_del(struct page *pg, struct mm_struct *mm,

+ struct vm_area_struct *vma);

+void bc_vmrss_page_dup(struct page *pg, struct mm_struct *mm,

+ struct vm_area_struct *vma, struct page_beancounter **ppb);

+void bc_vmrss_page add_noref(struct page *pg, struct mm_struct *mm,
+ struct vm_area_struct *vma);

+

+unsigned long mm_rss_pages(struct mm_struct *mm, unsigned long start,
+ unsigned long end);

+

+void bc_init_rss(void);

+

+#else /* CONFIG_BEANCOUNTERS_RSS */

+

+static inline struct page_beancounter * __must_check bc_alloc_rss_counter(void)
+

+return NULL;

+}

+

+static inline struct page_beancounter * __must_check bc_alloc_rss_counter_list(
+ long num, struct page_beancounter *list)

+

+return NULL;

+}

+

+static inline void bc_free_rss_counter(struct page_beancounter *rc)

+H

+}
+

+#define bc_vmrss_page_add(pg, mm, vma, pb) do { } while (0)
+#define bc_vmrss_page_del(pg, mm, vma) do { } while (0)
+#define bc_vmrss_page dup(pg, mm, vma, pb) do { } while (0)
+#define bc_vmrss_page add_noref(pg, mm, vma) do { } while (0)
+#define mm_rss_pages(mm, start, end) (0)
+
+#define bc_init_rss() do { } while (0)
+
+#endif /* CONFIG_BEANCOUNTERS_RSS */
+
+#endif
--- ./include/linux/mm.h.bcrsscore 2006-09-05 13:06:37.000000000 +0400
+++ ./include/linux/mm.h 2006-09-05 13:47:12.000000000 +0400
@@ -275,11 +275,15 @@ struct page {

unsigned long trace[8];

#endif

#ifdef CONFIG_BEANCOUNTERS
- struct beancounter *page_bc;

Page 87 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+ union {

+ struct beancounter *page_bc;

+ struct page_beancounter *page_pb;
+}

#endif

3

#define page_bc(page) ((page)->page_bc)

+#define page_pb(page) ((page)->page_pb)

#define page_private(page) ((page)->private)

#define set_page_private(page, v) ((page)->private = (v))

--- ./include/linux/shmem_fs.h.bcrsscore 2006-09-05 12:59:27.000000000 +0400
+++ ./include/linux/shmem_fs.h 2006-09-05 13:50:19.000000000 +0400
@@ -41,4 +41,6 @@ static inline struct shmem_inode_info *S

return container_of(inode, struct shmem_inode_info, vfs_inode);

}

+int is_shmem_mapping(struct address_space *mapping);

+

#endif

--- /init/main.c.bcrsscore 2006-09-05 12:54:17.000000000 +0400
+++ ./init/main.c 2006-09-05 13:46:35.000000000 +0400

@@ -51,6 +51,7 @@

#include <linux/lockdep.h>

#include <bc/beancounter.h>
+#include <bc/vmrss.h>

#include <asm/io.h>

#include <asm/bugs.h>

@@ -608,6 +609,7 @@ asmlinkage void __init start_kernel(void
check_bugs();

acpi_early_init(); /* before LAPIC and SMP init */
+ bc_init_rss();

/* Do the rest non-__init'ed, we're now alive */
rest_init();
--- ./kernel/bc/Kconfig.bcrsscore 2006-09-05 12:54:14.000000000 +0400
+++ ./kernel/bc/Kconfig 2006-09-05 13:50:35.000000000 +0400
@@ -22,4 +22,13 @@ config BEANCOUNTERS
per-process basis. Per-process accounting doesn't prevent malicious
users from spawning a lot of resource-consuming processes.

+config BEANCOUNTERS_RSS
+ bool "Account physical memory usage"
+ default y

Page 88 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+ depends on BEANCOUNTERS

+ help

+ This allows to estimate per beancounter physical memory usage.

+ Implemented alghorithm accounts shared pages of memory as well,

+ dividing them by number of beancounter which use the page.

+

endmenu

--- ./kernel/bc/Makefile.bcrsscore 2006-09-05 12:59:37.000000000 +0400
+++ ./kernel/bc/Makefile 2006-09-05 13:50:48.000000000 +0400

@@ -9,3 +9,4 @@ obj-y += misc.o

obj-y +=sys.o

obj-y += kmem.o

obj-y += vmpages.o

+0bj-$(CONFIG_BEANCOUNTERS_RSS) += vmrss.o

--- ./kernel/bc/beancounter.c.bcrsscore 2006-09-05 13:44:53.000000000 +0400
+++ ./kernel/bc/beancounter.c 2006-09-05 13:49:38.000000000 +0400
@@ -11,6 +11,7 @@

#include <linux/hash.h>

#include <bc/beancounter.h>
+#include <bc/vmrss.h>

static kmem_cache_t *bc_cachep;

static struct beancounter default_beancounter;

@@ -112,6 +113,14 @@ void put_beancounter(struct beancounter
printk("BC: %d has %lu of %s held on put", bc->bc_id,
bc->bc_parmsJi].held, bc_rnamesi));

+ if (bc->unused_privvmpages != 0)
+ printk("BC: %d has %lu of unused pages held on put”, bc->bc _id,
+ bc->unused_privvmpages);
+#ifdef CONFIG_BEANCOUNTERS_RSS
+ if (bc->rss_pages = 0)
+ printk("BC: %d hash %llu of rss pages held on put”, bc->bc_id,
+ bc->rss_pages);
+#endif
hlist_del(&bc->hash);
nr_beancounters--;
spin_unlock_irgrestore(&bc_hash_lock, flags);
--- ./kernel/bc/vmpages.c.bcrsscore 2006-09-05 13:45:34.000000000 +0400
+++ ./kernel/bc/vmpages.c 2006-09-05 13:48:50.000000000 +0400

Q@ -11,12 +11,17 @@
#include <bc/beancounter.h>
#include <bc/vmpages.h>
+#include <bc/vmrss.h>

#include <asm/page.h>

Page 89 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

void bc_update_privvmpages(struct beancounter *bc)

{

- bc->bc_parms[BC_PRIVVMPAGES].held = bc->unused_privvmpages;

+ bc->bc_parms[BC_PRIVVMPAGES].held = bc->unused_privvmpages

+#ifdef CONFIG_BEANCOUNTERS_RSS

+ + (bc->rss_pages >> PB_PAGE_WEIGHT_SHIFT)

+#endif

+
bc_adjust_minheld(bc, BC_PRIVVMPAGEYS);
bc_adjust_maxheld(bc, BC_PRIVVMPAGEYS);

}

--- /dev/null 2006-07-18 14:52:43.075228448 +0400

+++ ./kernel/bc/vmrss.c 2006-09-05 13:51:21.000000000 +0400

@@ -0,0 +1,508 @@

+/*

+* kernel/bc/vmrss.c

+ *

+* Copyright (C) 2006 OpenVZ. SWsoft Inc

+ *

+ %/

+

+#include <linux/sched.h>

+#include <linux/mm.h>

+#include <linux/list.h>

+#include <linux/slab.h>

+#include <linux/vmalloc.h>

+#include <linux/shmem_fs.h>

+#include <linux/highmem.h>

+

+#include <bc/beancounter.h>

+#include <bc/vmpages.h>

+#include <bc/vmrss.h>

+

+#include <asm/pgtable.h>

+

+/*

+ * Core object of accounting.

+ * page_beancounter (or rss_counter) ties together page an bc.

+ * Page has associated circular list of such pbs. When page is

+ * shared between bcs then it's size is splitted between all of

+ * them in 2”*n-s parts.

+ *

+ * E.g. three bcs will share page like 1/2:1/4:1/4

+ * adding one more reference would produce such a change:

+* 1/2(bcl) : 1/4(bc2) : 1/4(bc3) ->

+ * (1/4(bcl) + 1/4(bcl)) : 1/4(bc2) : 1/4(bc3) ->

+ * 1/4(bc2) : 1/4(bc3) : 1/4(bc4) : 1/4(bcl)

Page 90 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+*/

+

+#define PB_MAGIC 0x62700001UL

+

+struct page_beancounter {

+ unsigned long magic;

+ struct page *page;

+ struct beancounter *bc;

+ struct page_beancounter *next_hash;

+ unsigned refcount;

+ struct list_head page_list;

+};

+

+#define PB_REFC_BITS 24

+

+#define pb_shift(p) ((p)->refcount >> PB_REFC_BITS)

+#define pb_shift_inc(p) do { ((p)->refcount += (1 << PB_REFC_BITS)); } while (0)
+#define pb_shift_dec(p) do { ((p)->refcount -= (1 << PB_REFC_BITS)); } while (0)
+

+#define pb_count(p) ((p)->refcount & ((1 << PB_REFC_BITS) - 1))
+#define pb_get(p) do { ((p)->refcount++); } while (0)

+#define pb_put(p) do { ((p)->refcount--); } while (0)

+

+#define pb_refcount_init(p, shift) do{ \

+ (p)->refcount = ((shift) << PB_REFC_BITS) + (1);\

+ } while (0)

+

+static spinlock_t pb_lock = SPIN_LOCK_UNLOCKED;

+static struct page_beancounter **pb_hash_table;

+static unsigned int pb_hash_mask;

+

+static inline int pb_hash(struct beancounter *bc, struct page *page)
+

+ return (page_to_pfn(page) + (bc->bc_id << 10)) & pb_hash_mask;
+

+}

+static kmem_cache_t *pb_cachep;

+#define alloc_pb() kmem_cache_alloc(pb_cachep, GFP_KERNEL)
+#define free_pb(p) kmem_cache_free(pb_cachep, p)

+

+#define next_page_pb(p) list_entry(p->page_list.next, \

+ struct page_beancounter, page_list);

+#define prev_page_pb(p) list_entry(p->page_list.prev, \

+ struct page_beancounter, page_list);

+

+/*

+ * Allocates a new page_beancounter struct and

+ * initialises requred fields.

Page 91 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+ * pb->next_hash is set to NULL as this field is used

+ * in two ways:

+* 1. When pb is in hash - it points to the next one in

+ * the current hash chain;

+ * 2. When pb is not in hash yet - it points to the next pb

+* in list just allocated.

+ */

+struct page_beancounter *bc_alloc_rss_counter(void)

H

+ struct page_beancounter *pb;

+

+ pb = alloc_pb();

+if (pb == NULL)

+ return ERR_PTR(-ENOMEM);

+

+ pb->magic = PB_MAGIC,;

+ pb->next_hash = NULL,;

+ return pb;

+}

+

+/*

+ * This function ensures that @list has at least @num elements.
+ * Otherwise needed elements are allocated and new list is

+ * returned. On error old list is freed.

+ *

+ *num == BC_ALLOC_ALL means that lis must contain as many
+ * elements as there are BCCs in hash now.

+ */

+struct page_beancounter *bc_alloc_rss_counter_list(long num,
+ struct page_beancounter *list)

H

+ struct page_beancounter *pb;

+

+ for (pb = list; pb = NULL && num != 0; pb = pb->next_hash, num--);
+

+ /* need to allocate num more elements */

+ while (num > 0) {

+ pb = alloc_pb();

+ if (pb == NULL)

+ goto err;

+

+ pb->magic = PB_MAGIC;
+ pb->next_hash = list;
+ list = pb;

+ num--;

+}

+

+ return list,

Page 92 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+

+err:

+ bc_free_rss_counter(list);

+ return ERR_PTR(-ENOMEM);

+)

+

+/*

+ * Free the list of page_beancounter-s

+ */

+void bc_free_rss_counter(struct page_beancounter *pb)

gl

+ struct page_beancounter *tmp;

+

+ while (pb) {

+ tmp = pb->next_hash;

+ free_pb(pb);

+ pb =tmp;

+}

+}

+

+/*

+ * Helpers to update rss_pages and unused_privvmpages on BC

+ */

+static void mod_rss_pages(struct beancounter *bc, int val,

+ struct vm_area_struct *vma, int unused)

+

+ unsigned long flags;

+

+ spin_lock_irgsave(&bc->bc_lock, flags);

+if (vma && BC_VM_PRIVATE(vma->vm_flags, vma->vm_file)) {

+ if (unused < 0 && unlikely(bc->unused_privwvmpages < -unused)) {
+ printk("BC: overuncharging %d unused pages: "

+ "val %i, held %lu\n",

+ bc->bc_id, unused,

+ bc->unused_privvmpages);

+ unused = -bc->unused_privvmpages;

+}

+ bc->unused_privvmpages += unused,;

+}

+ bc->rss_pages +=val;

+ bc_update_privwvmpages(bc);

+ spin_unlock_irgrestore(&bc->bc_lock, flags);

+)

+

+#define __inc_rss_pages(bc, val) mod_rss_pages(bc, val, NULL, 0)
+#define __dec_rss_pages(bc, val) mod_rss_pages(bc, -(val), NULL, 0)
+#define inc_rss_pages(bc, val, vma) mod_rss_pages(bc, val, vma, -1)
+#define dec_rss_pages(bc, val, vma) mod_rss_pages(bc, -(val), vma, 1)

Page 93 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+
+/*
+ * Routines to manipulate page-to-bc references (page_beancounter)

+ * Reference may be added, removed or duplicated (see descriptions below)
+ */

+

+static int __pb_dup_ref(struct page *pg, struct beancounter *bc, int hash)
H

+ struct page_beancounter *p;

+

+ for (p = pb_hash_table[hash];

+ p!= NULL && (p->page != pg || p->bc = bc);
+ p = p->next_hash);

+if (p == NULL)

+ return -1;

+

+ pb_get(p);

+ return O;

+}

+

+static int __pb_add_ref(struct page *pg, struct beancounter *bc,
+ int hash, struct page_beancounter **ppb)

gl

+ struct page_beancounter *head, *p;

+ int shift, ret;

+

+p = *ppb;

+ *ppb = p->next_hash;
+

+ p->page = pg;

+ p->bc = get_beancounter(bc);

+ p->next_hash = pb_hash_table[hash];

+ pb_hash_table[hash] = p;

+

+head = page_pb(pg);

+if (head != NULL) {

+ BUG_ON(head->magic !'= PB_MAGIC);

+ [*

* Move the first element to the end of the list.

* List head (pb_head) is set to the next entry.

* Note that this code works even if head is the only element
* on the list (because it's cyclic).

*/

page_pb(pg) = next_page_pb(head);

pb_shift_inc(head);

shift = pb_shift(head);

/~k

* Update user beancounter, the share of head has been changed.

+ 4+ + + + 4+ +++ o+

Page 94 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+ * Note that the shift counter is taken after increment.
+ */

+ _ dec_rss_pages(head->bc, PB_PAGE_WEIGHT >> shift);
+ /*

+ * Add the new page beancounter to the end of the list.
+ ¥/

+ list_add_tail(&p->page_list, &page_pb(pg)->page_list);
+}else {

+ page_pb(pg) = p;

+ shift = 0;

+ INIT_LIST_HEAD(&p->page_list);

+}

+

+ pb_refcount_init(p, shift);

+ret = PB_PAGE_WEIGHT >> shift;

+ return ret;

+}

+

+static int __pb_remove_ref(struct page *page, struct beancounter *bc)
H

+ int hash, ret;

+ struct page_beancounter *p, **q;

+ int shift, shiftt;

+

+ret=0;

+

+ hash = pb_hash(bc, page);

+

+ BUG_ON(page_pb(page) '= NULL && page_pb(page)->magic '= PB_MAGIC);
+ for (q = pb_hash_table + hash, p = *q;

+ p!= NULL && (p->page != page || p->bc != bc);
+ (g = &p->next_hash, p = *q);

+if (p == NULL)

+ goto out;

+

+ pb_put(p);

+ if (pb_count(p) > 0)

+ goto out;

+

+ /* remove from the hash list */
+ *q = p->next_hash;

+

+ shift = pb_shift(p);

+ret = PB_PAGE_WEIGHT >> shift;
+

+if (page_pb(page) == p) {

+ if (list_empty(&p->page_list)) {
+ page_pb(page) = NULL,;

Page 95 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+ put_beancounter(bc);

+ free_pb(p);

+ goto out;

+}

+ page_pb(page) = next_page_pb(p);

+}

+

+ list_del(&p->page_list);

+ put_beancounter(bc);

+ free_pb(p);

+

+ [*

+ * Now balance the list.

+ * Move the tail and adjust its shift counter.

+ */

+p = prev_page_pb(page_pb(page));

+ shiftt = pb_shift(p);

+ pb_shift_dec(p);

+ page_pb(page) = p;

+ __inc_rss_pages(p->bc, PB_PAGE_WEIGHT >> shiftt);

+

+ [*

+ * If the shift counter of the moved beancounter is different from the
+ *removed one's, repeat the procedure for one more tail beancounter
+ */

+ if (shiftt > shift) {

+ p = prev_page_pb(page_pb(page));

+ pb_shift_dec(p);

+ page_pb(page) = p;

+ __inc_rss_pages(p->bc, PB_PAGE_WEIGHT >> shiftt);

+}

+out:

+ return ret;

+}

+

+/*

+ * bc_vmrss_page_add: Called when page is added to resident set
+* of any mm. In this case page is substracted from unused_privwvmpages
+* (ifitis BC_VM_PRIVATE one) and a reference to BC must be set
+ * with page_beancounter.

+ *

+ * bc_vmrss_page_del: The reverse operation - page is removed from
+* resident set and must become unused.

+ *

+ * bc_vmrss_page_dup: This is called on dup_mmap() when all pages
+* become shared between two mm structs. This case has one feature:
+* some pages (see below) may lack a reference to BC, so setting
+* new reference is not needed, but update of unused_privvmpages

Page 96 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+* s required.

+ *

+ * bc_vmrss_page_add_noref: This is called for (former) reserved pages
+ * like ZERO_PAGE() or some pages set up with insert_page(). These
+ * pages must not have reference to any BC, but must be accounted in
+* rss.

+ */

+

+void bc_vmrss_page_add(struct page *pg, struct mm_struct *mm,
+ struct vm_area_struct *vma, struct page_beancounter **ppb)

gl

+ struct beancounter *bc;

+ int hash, ret;

+

+ if ('PageAnon(pg) && is_shmem_mapping(pg->mapping))

+ return;

+

+ bc = mm->mm_bc;

+ hash = pb_hash(bc, pg);

+

+ret=0;

+ spin_lock(&pb_lock);

+if (__pb_dup_ref(pg, bc, hash))

+ ret=__ pb_add_ref(pg, bc, hash, ppb);

+ spin_unlock(&pb_lock);

+

+inc_rss_pages(bc, ret, vma);

+}

+

+void bc_vmrss_page_del(struct page *pg, struct mm_struct *mm,
+ struct vm_area_struct *vma)

H

+ struct beancounter *bc;

+int ret;

+

+ if ('PageAnon(pg) && is_shmem_mapping(pg->mapping))

+ return;

+

+ bc = mm->mm_bc;

+

+ spin_lock(&pb _lock);

+ret=__ pb_remove_ref(pg, bc);
+ spin_unlock(&pb_lock);

+

+ dec_rss_pages(bc, ret, vma);
+}

+

+void bc_vmrss_page_dup(struct page *pg, struct mm_struct *mm,

Page 97 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+ struct vm_area_struct *vma, struct page_beancounter **ppb)
+

+ struct beancounter *bc;

+int hash, ret;

+

+ if ('PageAnon(pg) && is_shmem_mapping(pg->mapping))

+ return;

+

+ bc = mm->mm_bc;

+ hash = pb_hash(bc, pg);

+

+ret=0;

+ spin_lock(&pb_lock);

+ if (page_pb(pg) == NULL)

+ [*

+ * pages like ZERO_PAGE must not be accounted in pbc
+ *so0 on fork we just skip them

+ */

+ goto out_unlock;

+
+if (*ppb == PB_COPY_SAME) {

+ if (__pb_dup_ref(pg, bc, hash))

+ WARN_ON(1);

+ } else

+ ret=__ pb_add_ref(pg, bc, hash, ppb);
+out_unlock:

+ spin_unlock(&pb_lock);

+

+inc_rss_pages(bc, ret, vma);

+}

+

+void bc_vmrss_page_add_noref(struct page *pg, struct mm_struct *mm,
+ struct vm_area_struct *vma)

gl

+inc_rss_pages(mm->mm_bc, 0, vma);

+}

+

+/*

+ * Calculate the number of currently resident pages for

+ * given mm_struct in a given range (addr - end).

+ * This is needed for mprotect_fixup() as by the time

+ * it is called some pages can be resident and thus

+ * not accounted in bc->unused_privvmpages. Such pages

+ * must num be uncharged (as they already are).

+ */

+

+static unsigned long pages_in_pte_range(struct mm_struct *mm, pmd_t *pmd,
+ unsigned long addr, unsigned long end,

Page 98 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+ unsigned long *pages)

gl

+ pte_t *pte;

+ spinlock_t *ptl;

+

+ pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
+do {

+ pte_t ptent = *pte;

+ if (Ipte_none(ptent) && pte_present(ptent))

+ (*pages)++;

+ } while (pte++, addr += PAGE_SIZE, addr != end);
+ pte_unmap_unlock(pte - 1, ptl);

+ return addr;

+}

+

+static inline unsigned long pages_in_pmd_range(struct mm_struct *mm, pud_t *pud,
+ unsigned long addr, unsigned long end,

+ unsigned long *pages)

+

+ pmd_t *pmd;

+ unsigned long next;

+

+ pmd = pmd_offset(pud, addr);
+do {

+ next = pmd_addr_end(addr, end);
+ if (pmd_none_or_clear_bad(pmd))
+ continue;
+

+ next = pages_in_pte_range(mm, pmd, addr, next, pages);

+ } while (pmd++, addr = next, addr != end);

+ return addr;

+}

+

+static inline unsigned long pages_in_pud_range(struct mm_struct *mm, pgd_t *pgd,
+ unsigned long addr, unsigned long end,

+ unsigned long *pages)

gl

+ pud_t *pud;

+ unsigned long next;

+

+ pud = pud_offset(pgd, addr);
+do {

+ next = pud_addr_end(addr, end);
if (pud_none_or_clear_bad(pud))
continue;

next = pages_in_pmd_range(mm, pud, addr, next, pages);

+
+
+
+
+ } while (pud++, addr = next, addr != end);

Page 99 of 250 ---- Generated from QpenVZ Forum

https://new-forum.openvz.org/index.php

+ return addr;

+}

+

+unsigned long mm_rss_pages(struct mm_struct *mm,
+ unsigned long addr, unsigned long end)

gl

+ pgd_t *pgd;

+ unsigned long next;

+ unsigned long pages;

+

+ BUG_ON(addr >= end);

+

+ pages = 0;

+ pgd = pgd_offset(mm, addr);
+do{

+ next = pgd_addr_end(addr, end);
+ if (pgd_none_or_clear_bad(pgd))
+ continue;
+

+ next = pages_in_pud_range(mm, pgd, addr, next, &pages);

+ } while (pgd++, addr = next, addr !'= end);

+ return pages;

+}

+

+void __init bc_init_rss(void)

+

+ unsigned long hash_size;

+

+ pb_cachep = kmem_cache_create("page_beancounter”,

+ sizeof(struct page_beancounter), O,

+ SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL, NULL);

+

+ hash_size = num_physpages >> 2;

+ for (pb_hash_mask = 1,

+ (hash_size & pb_hash_mask) != hash_size;

+ pb_hash_mask = (pb_hash_mask << 1) + 1);

+

+ hash_size = pb_hash_mask + 1,

+ printk(KERN_INFO "BC: Page beancounter hash is %lu entries.\n",
+ hash_size);

+ pb_hash_table = vmalloc(hash_size * sizeof(struct page_beancounter *));
+ memset(pb_hash_table, 0, hash_size * sizeof(struct page_beancounter *));
+}

--- ./mm/shmem.c.bcrsscore 2006-09-05 13:39:26.000000000 +0400
+++ ./mm/shmem.c 2006-09-05 13:46:35.000000000 +0400

@@ -2236,6 +2236,12 @@ static struct vm_operations_struct shmem
#endif

8

Page 100 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+#ifdef CONFIG_BEANCOUNTERS_RSS

+int is_shmem_mapping(struct address_space *mapping)

H

+ return (mapping '= NULL && mapping->a_ops == &shmem_aops);
+}

+#endif

static int shmem_get_sb(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data, struct vfsmount *mnt)

Subject: [PATCH 13/13] BC: vmrss (charges)
Posted by dev on Tue, 05 Sep 2006 15:29:59 GMT

View Forum Message <> Reply to Message

Introduce calls to BC code over the kernel to add
accounting of physical pages/privvmpages.

Signed-Off-By: Pavel Emelianov <xemul@sw.ru>
Signed-Off-By: Kirill Korotaev <dev@sw.ru>

fs/exec.c | 11 ++++

include/linux/mm.h | 3 -

kernelffork.c | 2

mm/filemap_xip.c | 2

mm/fremap.c | 11 ++++

mm/memory.c | 141 +++++++++++++++++HtH bbb oo
mm/migrate.c | 3+

mm/mprotect.c | 12 +++-

mm/rmap.c | 4+

mm/swapfile.c | 47 ++++++++++++-----

10 files changed, 186 insertions(+), 50 deletions(-)

--- .Ifslexec.c.bcrssch 2006-09-05 12:53:55.000000000 +0400
+++ ./fs/exec.c 2006-09-05 13:51:55.000000000 +0400

@@ -50,6 +50,8 @@

#include <linux/cn_proc.h>

#include <linux/audit.h>

+#include <bc/vmrss.h>
+

#include <asm/uaccess.h>
#include <asm/mmu_context.h>

@@ -308,6 +310,11 @@ void install_arg_page(struct vm_area_str

Page 101 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=19
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=5935#msg_5935
https://new-forum.openvz.org/index.php?t=post&reply_to=5935
https://new-forum.openvz.org/index.php

struct mm_struct *mm = vma->vm_mm);
pte_t* pte;
spinlock_t *ptl;

+ struct page_beancounter *pb;

+

+ pb = bc_alloc_rss_counter();

+if (IS_ERR(pb))

+ goto out_nopb;

if (unlikely(anon_vma_prepare(vma)))
goto out;

@@ -325,11 +332,15 @@ void install_arg_page(struct vm_area_str
set_pte_at(mm, address, pte, pte_mkdirty(pte_mkwrite(mk_pte(

page, vma->vm_page_prot))));

page_add_new_anon_rmap(page, vma, address);

+ bc_vmrss_page_add(page, mm, vma, &pb);
pte_unmap_unlock(pte, ptl);

/* no need for flush_tlb */
+ bc_free_rss_counter(pb);
return;
out:
+ bc_free_rss_counter(pb);
+out_nopb:
__free_page(page);
force_sig(SIGKILL, current);
}
--- ./include/linux/mm.h.bcrssch 2006-09-05 13:47:12.000000000 +0400
+++ ./include/linux/mm.h 2006-09-05 13:51:55.000000000 +0400
@@ -753,7 +753,8 @@ void free_pgd_range(struct mmu_gather **
void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
unsigned long floor, unsigned long ceiling);
int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
- struct vm_area_struct *vma);
+ struct vm_area_struct *vma,
+ struct vm_area_struct *dst_vma);
int zeromap_page_range(struct vm_area_struct *vma, unsigned long from,
unsigned long size, pgprot_t prot);
void unmap_mapping_range(struct address_space *mapping,
--- ./kernel/fork.c.bcrssch 2006-09-05 13:23:27.000000000 +0400
+++ ./kernel/fork.c 2006-09-05 13:51:55.000000000 +0400
@@ -280,7 +280,7 @@ static inline int dup_mmap(struct mm_str
rb_parent = &tmp->vm_rb;

mm->map_count++;
- retval = copy_page_range(mm, oldmm, mpnt);
+ retval = copy_page_range(mm, oldmm, mpnt, tmp);

Page 102 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

if (tmp->vm_ops && tmp->vm_ops->open)
tmp->vm_ops->open(tmp);
--- /mml/filemap_xip.c.bcrssch 2006-07-10 12:39:20.000000000 +0400
+++ ./mml/filemap_xip.c 2006-09-05 13:51:55.000000000 +0400
@@ -13,6 +13,7 @@
#include <linux/module.h>
#include <linux/uio.h>
#include <linux/rmap.h>
+#include <bc/vmrss.h>
#include <asm/tibflush.h>
#include "filemap.h"

@@ -189,6 +190,7 @@ __ xip_unmap (struct address_space * mapp
/* Nuke the page table entry. */
flush_cache_page(vma, address, pte_pfn(*pte));
pteval = ptep_clear_flush(vma, address, pte);
+ bc_vmrss_page_del(page, mm, vma);
page_remove_rmap(page);
dec_mm_counter(mm, file_rss);
BUG_ON(pte_dirty(pteval));
--- ./mm/fremap.c.bcrssch 2006-09-05 12:53:59.000000000 +0400
+++ ./mm/fremap.c 2006-09-05 13:51:55.000000000 +0400
@@ -16,6 +16,8 @@
#include <linux/module.h>
#include <linux/syscalls.h>

+#include <bc/vmrss.h>

+

#include <asm/mmu_context.h>

#include <asm/cacheflush.h>

#include <asm/tlbflush.h>

@@ -33,6 +35,7 @@ static int zap_pte(struct mm_struct *mm,
if (page) {
if (pte_dirty(pte))
set_page_dirty(page);

+ bc_vmrss_page_del(page, mm, vma);
page_remove_rmap(page);
page_cache_release(page);

}
@@ -57,6 +60,11 @@ int install_page(struct mm_struct *mm, s
pte_t *pte;
pte t pte_val;
spinlock_t *ptl;

+ struct page_beancounter *pb;

+

+ pb = bc_alloc_rss_counter();

+if (IS_ERR(pb))

+ goto out_nopb;

Page 103 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

pte = get_locked_pte(mm, addr, &ptl);
if (pte)
@@ -82,12 +90,15 @@ int install_page(struct mm_struct *mm, s
pte_val = mk_pte(page, prot);
set_pte_at(mm, addr, pte, pte_val);
page_add_file_rmap(page);
+ bc_vmrss_page_add(page, mm, vma, &pb);
update_mmu_cache(vma, addr, pte_val);
lazy _mmu_prot_update(pte_val);
err=0;
unlock:
pte_unmap_unlock(pte, ptl);
out:
+ bc_free_rss_counter(pb);
+out_nopb:
return err;
}
EXPORT_SYMBOL(install_page);
--- ./mm/memory.c.bcrssch 2006-09-05 12:53:59.000000000 +0400
+++ ./mm/memory.c 2006-09-05 13:51:55.000000000 +0400
@@ -51,6 +51,9 @@
#include <linux/init.h>
#include <linux/writeback.h>

+#include <bc/vmpages.h>

+#include <bc/vmrss.h>

+

#include <asm/pgalloc.h>

#include <asm/uaccess.h>

#include <asm/tlb.h>

@@ -427,7 +430,9 @@ struct page *vm_normal_page(struct vm_ar

static inline void

copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
pte t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,

- unsigned long addr, int *rss)

+ unsigned long addr, int *rss,

+ struct vm_area_struct *dst_vma,

+ struct page_beancounter **ppb)

{
unsigned long vm_flags = vma->vm_flags;
pte t pte = *src_pte;

@@ -481,6 +486,7 @@ copy_one_pte(struct mm_struct *dst._ mm, s
page = vm_normal_page(vma, addr, pte);
if (page) {
get_page(page);

+ bc_vmrss_page_dup(page, dst._ mm, dst_vma, ppb);
page_dup_rmap(page);

Page 104 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

rss[!!PageAnon(page)]++;
}
@@ -489,20 +495,32 @@ out_set_pte:
set_pte_at(dst._mm, addr, dst_pte, pte);
}

+#define pte_ptrs(a) (PTRS_PER_PTE - ((a >> PAGE_SHIFT)&PTRS_PER_PTE - 1)))
+
static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
- unsigned long addr, unsigned long end)
+ unsigned long addr, unsigned long end,
+ struct vm_area_struct *dst_vma)
{
pte_t *src_pte, *dst_pte;
spinlock_t *src_ptl, *dst_ptl;
int progress = 0;
- int rss[2];
+int rss[2], err;
+ struct page_beancounter *pb;

+ err = -ENOMEM,;
+ pb = (mm_same_bc(dst._mm, src_mm) ? PB_COPY_SAME : NULL);
again:
+if (pb = PB_COPY_SAME) {
+ pb =Dbc_alloc_rss_counter_list(pte_ptrs(addr), pb);
+ if (IS_ERR(pb))
+ goto out;
+)
+

rss[1] = rss[0] = O;

dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
if (dst_pte)
- return -ENOMEM,;
+ goto out;

src_pte = pte_offset_map_nested(src_pmd, addr);

src_ptl = pte_lockptr(src_mm, src_pmd);

spin_lock nested(src_ptl, SINGLE_DEPTH_NESTING);
@@ -524,7 +542,8 @@ again:

progress++;

continue;

}
- copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
+ copy_one_pte(dst._mm, src_mm, dst_pte, src_pte, vma, addr, rss,
+ dst_vma, &pb);

progress += 8;

} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);

Page 105 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

@@ -536,12 +555,18 @@ again:
cond_resched();
if (addr != end)
goto again;
- return O;
+
+err=0;
+out:
+if (pb !'= PB_COPY_SAME)
+ bc_free_rss_counter(pb);
+ return err;

}

static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
- unsigned long addr, unsigned long end)
+ unsigned long addr, unsigned long end,
+ struct vm_area_struct *dst_vma)
{
pmd_t *src_pmd, *dst_pmd;
unsigned long next;
@@ -555,7 +580,7 @@ static inline int copy_pmd_range(struct
if (pmd_none_or_clear_bad(src_pmd))
continue;
if (copy_pte _range(dst_mm, src_mm, dst_pmd, src_pmd,
- vma, addr, next))
+ vma, addr, next, dst_vma))
return -ENOMEM;
} while (dst_pmd++, src_pmd++, addr = next, addr != end);
return O;
@@ -563,7 +588,8 @@ static inline int copy_pmd_range(struct

static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
- unsigned long addr, unsigned long end)
+ unsigned long addr, unsigned long end,
+ struct vm_area_struct *dst_vma)
{
pud_t *src_pud, *dst_pud;
unsigned long next;
@@ -577,14 +603,14 @@ static inline int copy_pud_range(struct
if (pud_none_or_clear_bad(src_pud))
continue;
if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
- vma, addr, next))
+ vma, addr, next, dst_vma))
return -ENOMEM;
} while (dst_pud++, src_pud++, addr = next, addr != end);

Page 106 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

return O;

}

int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
- struct vm_area_struct *vma)
+ struct vm_area_struct *vma, struct vm_area_struct *dst_vma)
{
pgd_t *src_pgd, *dst_pgd;
unsigned long next;
@@ -612,7 +638,7 @@ int copy_page_range(struct mm_struct *ds
if (pgd_none_or_clear_bad(src_pgd))
continue;
if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
- vma, addr, next))
+ vma, addr, next, dst_vma))
return -ENOMEM;
} while (dst_pgd++, src_pgd++, addr = next, addr != end);
return O;
@@ -681,6 +707,7 @@ static unsigned long zap_pte_range(struc
mark_page_accessed(page);
file_rss--;
}
+ bc_vmrss_page del(page, mm, vma);
page_remove_rmap(page);
tlb_remove_page(tlb, page);
continue;
@@ -1104,8 +1131,9 @@ int get_user_pages(struct task_struct *t

}
EXPORT_SYMBOL(get_user_pages);

-static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,

- unsigned long addr, unsigned long end, pgprot_t prot)

+static int zeromap_pte_range(struct mm_struct *mm,

+ struct vm_area_struct *vma, pmd_t *pmd,

+ unsigned long addr, unsigned long end, pgprot_t prot)

{
pte_t *pte;

spinlock_t *ptl;

@@ -1118,6 +1146,7 @@ static int zeromap_pte_range(struct mm_s
struct page *page = ZERO_PAGE(addr);
pte t zero pte = pte_wrprotect(mk_pte(page, prot));
page_cache_get(page);

+ bc_vmrss_page add_noref(page, mm, vma);
page_add_file_rmap(page);
inc_mm_counter(mm, file_rss);
BUG_ON(!pte_none(*pte));

@@ -1128,8 +1157,9 @@ static int zeromap_pte_range(struct mm_s
return O;

Page 107 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

}

-static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
- unsigned long addr, unsigned long end, pgprot_t prot)
+static inline int zeromap_pmd_range(struct mm_struct *mm,
+ struct vm_area_struct *vma, pud_t *pud,
+ unsigned long addr, unsigned long end, pgprot_t prot)
{
pmd_t *pmd;
unsigned long next;
@@ -1139,14 +1169,15 @@ static inline int zeromap_pmd_range(stru
return -ENOMEM;
do{
next = pmd_addr_end(addr, end);
- if (zeromap_pte_range(mm, pmd, addr, next, prot))
+ if (zeromap_pte_range(mm, vma, pmd, addr, next, prot))
return -ENOMEM;
} while (pmd++, addr = next, addr != end);
return O;

}

-static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
- unsigned long addr, unsigned long end, pgprot_t prot)
+static inline int zeromap_pud_range(struct mm_struct *mm,
+ struct vm_area_struct *vma, pgd_t *pgd,
+ unsigned long addr, unsigned long end, pgprot_t prot)
{
pud_t *pud;
unsigned long next;
@@ -1156,7 +1187,7 @@ static inline int zeromap_pud_range(stru
return -ENOMEM;
do {
next = pud_addr_end(addr, end);
- if (zeromap_pmd_range(mm, pud, addr, next, prot))
+ if (zeromap_pmd_range(mm, vma, pud, addr, next, prot))
return -ENOMEM,;
} while (pud++, addr = next, addr != end);
return O;
@@ -1176,7 +1207,7 @@ int zeromap_page_range(struct vm_area_st
flush_cache_range(vma, addr, end);
do{
next = pgd_addr_end(addr, end);
- err = zeromap_pud_range(mm, pgd, addr, next, prot);
+ err = zeromap_pud_range(mm, vma, pgd, addr, next, prot);
if (err)
break;
} while (pgd++, addr = next, addr != end);
@@ -1202,12 +1233,15 @@ pte_t * fastcall get_locked_pte(struct m

Page 108 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

* old drivers should use this, and they needed to mark their

* pages reserved for the old functions anyway.

*/
-static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t
prot)
+static int insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page,
pgprot_t prot)

{

+ struct mm_struct *mm,;
int retval;
pte_t *pte;
spinlock_t *ptl;

+ mm = vma->vm_mm;

+
retval = -EINVAL;
if (PageAnon(page))
goto out;

@@ -1223,6 +1257,7 @@ static int insert_page(struct mm_struct
[* Ok, finally just insert the thing.. */
get_page(page);
iInc_mm_counter(mm, file_rss);

+ bc_vmrss_page_add_noref(page, mm, vma);
page_add_file_rmap(page);
set_pte_at(mm, addr, pte, mk_pte(page, prot));

@@ -1262,7 +1297,7 @@ int vm_insert_page(struct vm_area_struct
if ('page_count(page))
return -EINVAL,
vma->vm_flags |= VM_INSERTPAGE;
- return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
+ return insert_page(vma, addr, page, vma->vm_page_prot);

}
EXPORT_SYMBOL(vm_insert_page);

@@ -1483,6 +1518,7 @@ static int do_wp_page(struct mm_struct *
pte_t entry;
int reuse =0, ret = VM_FAULT_MINOR;
struct page *dirty_page = NULL;

+ struct page_beancounter *pb;

old_page = vm_normal_page(vma, address, orig_pte);

if (lold_page)
@@ -1555,6 +1591,10 @@ static int do_wp_page(struct mm_struct *
gotten:

pte_unmap_unlock(page_table, ptl);

+ pb = bc_alloc_rss_counter();

Page 109 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+if (IS_ERR(pb))

+ goto oom_nopb;

+
if (unlikely(anon_vma_prepare(vmay)))
goto oom;
if (old_page == ZERO_PAGE(address)) {

@@ -1574,6 +1614,7 @@ gotten:
page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
if (likely(pte_same(*page_table, orig_pte))) {
if (old_page) {

+ bc_vmrss_page_del(old_page, mm, vma);
page_remove_rmap(old_page);
if ('PageAnon(old_page)) {

dec_mm_counter(mm, file_rss);

@@ -1589,6 +1630,7 @@ gotten:
update_mmu_cache(vma, address, entry);
Iru_cache_add_active(new_page);
page_add_new_anon_rmap(new_page, vma, address);

+ bc_vmrss_page_add(new_page, mm, vma, &pb);

[* Free the old page.. */
new_page = old_page;

@@ -1598,6 +1640,7 @@ gotten:
page_cache release(new_page);
if (old_page)
page_cache_release(old_page);

+ bc_free_rss_counter(pb);

unlock:
pte_unmap_unlock(page_table, ptl);
if (dirty_page) {

@@ -1606,6 +1649,8 @@ unlock:
}
return ret;

oom:

+ bc_free_rss_counter(pb);

+oom_nopb:
if (old_page)
page_cache_release(old_page);
return VM_FAULT_OOM,;

@@ -1970,9 +2015,14 @@ static int do_swap_page(struct mm_struct
swp_entry_t entry;
pte_t pte;
int ret = VM_FAULT_MINOR,;

+ struct page_beancounter *pb;

if ('pte_unmap_same(mm, pmd, page_table, orig_pte))
- goto out;
+ goto out_nopb;

Page 110 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+

+ pb = bc_alloc_rss_counter();
+if (IS_ERR(pb))

+ goto out_nopb;

entry = pte_to_swp_entry(orig_pte);
if (is_migration_entry(entry)) {

@@ -2030,6 +2080,7 @@ static int do_swap_page(struct mm_struct
flush_icache_page(vma, page);
set_pte_at(mm, address, page_table, pte);
page_add_anon_rmap(page, vma, address);

+ bc_vmrss_page_add(page, mm, vma, &pb);

swap_free(entry);
if (vm_swap_full())

@@ -2049,11 +2100,14 @@ static int do_swap_page(struct mm_struct
unlock:
pte_unmap_unlock(page_table, ptl);
out:

+ bc_free_rss_counter(pb);

+out_nopb:
return ret;

out_nomap:
pte_unmap_unlock(page_table, ptl);
unlock_page(page);
page_cache_release(page);

+ bc_free_rss_counter(pb);
return ret;

}

@@ -2069,11 +2123,16 @@ static int do_anonymous_page(struct mm_s
struct page *page;
spinlock_t *ptl;
pte_t entry;

+ struct page_beancounter *pb;

if (write_access) {
/* Allocate our own private page. */
pte_unmap(page_table);

+ pb =Dbc_alloc_rss_counter();
+ if (IS_ERR(pb))
+ goto oom_nopb;
+
if (unlikely(anon_vma_prepare(vmay)))
goto oom;
page = alloc_zeroed_user_highpage(vma, address);
@@ -2089,7 +2148,9 @@ static int do_anonymous_page(struct mm_s

Page 111 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

inc_mm_counter(mm, anon_rss);
Iru_cache_add_active(page);
page_add_new_anon_rmap(page, vma, address);

+ bc_vmrss_page add(page, mm, vma, &pb);
} else {

+ pb = NULL;
[* Map the ZERO_PAGE - vm_page_prot is readonly */
page = ZERO_PAGE(address);
page_cache_get(page);

@@ -2101,6 +2162,7 @@ static int do_anonymous_page(struct mm_s
goto release;
inc_mm_counter(mm, file_rss);
page_add_file_rmap(page);

+ bc_vmrss_page_add_noref(page, mm, vma);

}

set_pte_at(mm, address, page_table, entry);
@@ -2110,11 +2172,14 @@ static int do_anonymous_page(struct mm_s
lazy _mmu_prot_update(entry);
unlock:
pte_unmap_unlock(page_table, ptl);
+ bc_free_rss_counter(pb);
return VM_FAULT_MINOR;
release:
page_cache_release(page);
goto unlock;
oom;
+ bc_free_rss_counter(pb);
+oom_nopb:
return VM_FAULT_OOM;
}

@@ -2143,6 +2208,7 @@ static int do_no_page(struct mm_struct *
int ret = VM_FAULT_MINOR,;
int anon = 0;
struct page *dirty_page = NULL;

+ struct page_beancounter *pb;

pte_unmap(page_table);
BUG_ON(vma->vm_flags & VM_PFNMAP);
@@ -2152,6 +2218,10 @@ static int do_no_page(struct mm_struct *
sequence = mapping->truncate_count;
smp_rmb(); /* serializes i_size against truncate_count */

}

+

+ pb = bc_alloc_rss_counter();
+if (IS_ERR(pb))

+ goto oom_nopb;

Page 112 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

retry:

new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
/*

@@ -2164,9 +2234,9 @@ retry:

[* no page was available -- either SIGBUS or OOM */
if (new_page == NOPAGE_SIGBUS)

- return VM_FAULT_SIGBUS;

+ goto bus_nopg;
if (new_page == NOPAGE_OOM)

- return VM_FAULT_OOM,;

+ goto oom_nopg;

/*
* Should we do an early C-O-W break?
@@ -2190,11 +2260,8 @@ retry:
* address space wants to know that the page is about
* to become writable */
if (vma->vm_ops->page_mkwrite &&
- vma->vm_ops->page_mkwrite(vma, new_page) <0
- A
page cache release(new_page);
- return VM_FAULT_SIGBUS;
-}
+ vma->vm_ops->page_mkwrite(vma, new_page) < 0)
+ goto bus;
}
}

@@ -2242,6 +2309,8 @@ retry:
get_page(dirty_page);
}
}

+

+ bc_vmrss_page_add(new_page, mm, vma, &pb);
} else {

/* One of our sibling threads was faster, back out. */
page_cache_release(new_page);

@@ -2257,10 +2326,20 @@ unlock:
set_page_dirty_balance(dirty_page);
put_page(dirty_page);

}

+ bc_free_rss_counter(pb);
return ret;

oom;
page_cache_release(new_page);

+00m_nopg:

+ bc_free_rss_counter(pb);

Page 113 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+oom_nopb:
return VM_FAULT_OOM,;
+
+bus:
+ page_cache_release(new_page);
+bus_nopg:
+ bc_free_rss_counter(pb);
+ return VM_FAULT_SIGBUS;

}

/*

--- ./mm/migrate.c.bcrssch 2006-09-05 12:53:59.000000000 +0400
+++ ./mm/migrate.c 2006-09-05 13:51:55.000000000 +0400

@@ -29,6 +29,8 @@

#include <linux/vmalloc.h>

#include <linux/security.h>

+#include <bc/vmrss.h>
+

#include "internal.h"

#define Iru_to_page(_head) (list_entry((_head)->prev, struct page, Iru))
@@ -179,6 +181,7 @@ static void remove_migration_pte(struct

else

page_add_file_rmap(new);

+ bc_vmrss_page_del(new, mm, vma);
/* No need to invalidate - it was non-present before */
update_mmu_cache(vma, addr, pte);
lazy _mmu_prot_update(pte);
--- ./mm/mprotect.c.bcrssch 2006-09-05 13:27:40.000000000 +0400
+++ ./mm/mprotect.c 2006-09-05 13:54:20.000000000 +0400
@@ -22,6 +22,7 @@
#include <linux/swap.h>
#include <linux/swapops.h>
#include <bc/vmpages.h>
+#include <bc/vmrss.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/cacheflush.h>
@@ -141,6 +142,7 @@ mprotect_fixup(struct vm_area_struct *vm
int error;
int dirty_accountable = O;
int recharge;
+ unsigned long rss;

if (newflags == oldflags) {
*pprev = vma,

Page 114 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

@@ -148,8 +150,10 @@ mprotect_fixup(struct vm_area_struct *vm
}

recharge = bc_privwm_recharge(oldflags, newflags, vma->vm_file);
- if (recharge == BC_CHARGE) {
- if (bc_privwvm_charge(mm, end - start))
+ if (recharge = BC_NOCHARGE) {
+ rss = mm_rss_pages(mm, start, end) << PAGE_SHIFT,
+ if (recharge == BC_CHARGE && bc_privwvm_charge(mm,
+ end - start - rss) < 0)

return -ENOMEM;

}

@@ -215,7 +219,7 @@ success:
change_protection(vma, start, end, vma->vm_page_prot, dirty_accountable);

if (recharge == BC_UNCHARGE)

- bc_privwvm_uncharge(mm, end - start);

+ bc_privwm_uncharge(mm, end - start - rss);
vm_stat_account(mm, oldflags, vma->vm_file, -nrpages);
vm_stat_account(mm, newflags, vma->vm_file, nrpages);
return O;

@@ -224,7 +228,7 @ @ fail:
vm_unacct_memory(charged);
fail_acct:
if (recharge == BC_CHARGE)

- bc_privwvm_uncharge(mm, end - start);

+ bc_privwvm_uncharge(mm, end - start - rss);
return error;

}

--- ./mm/rmap.c.bcrssch 2006-09-05 12:58:17.000000000 +0400
+++ ./mm/rmap.c 2006-09-05 13:51:55.000000000 +0400

@@ -54,6 +54.8 @@

#include <linux/rcupdate.h>

#include <linux/module.h>

+#include <bc/vmrss.h>
+

#include <asm/tlbflush.h>

struct kmem_cache *anon_vma_cachep;
@@ -687,6 +689,7 @@ static int try_to_unmap_one(struct page
dec_mm_counter(mm, file_rss);

+ bc_vmrss_page_del(page, mm, vma);
page_remove_rmap(page);

Page 115 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

page_cache_release(page);

@@ -777,6 +780,7 @@ static void try_to_unmap_cluster(unsigne
if (pte_dirty(pteval))
set_page_dirty(page);

+ bc_vmrss_page_del(page, mm, vma);
page_remove_rmap(page);
page_cache_release(page);
dec_mm_counter(mm, file_rss);
--- ./mm/swapfile.c.bcrssch 2006-09-05 12:53:59.000000000 +0400
+++ ./mm/swapfile.c 2006-09-05 13:54:59.000000000 +0400
@@ -28,6 +28,9 @@
#include <linux/capability.h>
#include <linux/syscalls.h>

+#include <bc/beancounter.h>

+#include <bc/vmrss.h>

+

#include <asm/pgtable.h>

#include <asm/tlbflush.h>

#include <linux/swapops.h>

@@ -487,13 +490,15 @@ unsigned int count_swap_pages(int type,
* force COW, vm_page_prot omits write permission from any private vma.
*/

static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,

- unsigned long addr, swp_entry_t entry, struct page *page)

+ unsigned long addr, swp_entry_t entry, struct page *page,

+ struct page_beancounter **ppb)

{
inc_mm_counter(vma->vm_mm, anon_rss);
get_page(page);
set_pte_at(vma->vm_mm, addr, pte,

pte_mkold(mk_pte(page, vma->vm_page_prot)));

page_add_anon_rmap(page, vma, addr);

+ bc_vmrss_page_add(page, vma->vm_mm, vma, ppb);
swap_free(entry);

/*
* Move the page to the active list so it is not

@@ -504,7 +509,8 @@ static void unuse_pte(struct vm_area_str

static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
unsigned long addr, unsigned long end,

- sSwp_entry_t entry, struct page *page)

+ sSwp_entry_t entry, struct page *page,

+ struct page_beancounter **ppb)

{
pte_t swp_pte = swp_entry_to_pte(entry);

Page 116 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

pte_t *pte;
@@ -518,7 +524,7 @@ static int unuse_pte_range(struct vm_are
* Test inline before going to call unuse_pte.
*/
if (unlikely(pte_same(*pte, swp_pte))) {
- unuse_pte(vma, pte++, addr, entry, page);
+ unuse_pte(vma, pte++, addr, entry, page, ppb);
found = 1;
break;

}
@@ -529,7 +535,8 @@ static int unuse_pte_range(struct vm_are

static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
unsigned long addr, unsigned long end,
- Swp_entry_t entry, struct page *page)
+ swp_entry_t entry, struct page *page,
+ struct page_beancounter **ppb)
{
pmd_t *pmd;
unsigned long next;
@@ -539,7 +546,7 @@ static inline int unuse_pmd_range(struct
next = pmd_addr_end(addr, end);
if (pmd_none_or_clear_bad(pmd))
continue;
- if (unuse_pte_range(vma, pmd, addr, next, entry, page))
+ if (unuse_pte_range(vma, pmd, addr, next, entry, page, ppb))
return 1;
} while (pmd++, addr = next, addr != end);
return O;
@@ -547,7 +554,8 @@ static inline int unuse_pmd_range(struct

static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
unsigned long addr, unsigned long end,
- sSwp_entry_t entry, struct page *page)
+ swp_entry_t entry, struct page *page,
+ struct page_beancounter **ppb)
{
pud_t *pud;
unsigned long next;
@@ -557,14 +565,15 @@ static inline int unuse_pud_range(struct
next = pud_addr_end(addr, end);
if (pud_none_or_clear_bad(pud))
continue;
- if (unuse_pmd_range(vma, pud, addr, next, entry, page))
+ if (unuse_pmd_range(vma, pud, addr, next, entry, page, ppb))
return 1;
} while (pud++, addr = next, addr != end);
return O;

Page 117 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

}

static int unuse_vma(struct vm_area_struct *vma,
- swp_entry_t entry, struct page *page)
+ swp_entry t entry, struct page *page,
+ struct page_beancounter **ppb)
{
pgd_t *pgd;
unsigned long addr, end, next;
@@ -585,14 +594,15 @@ static int unuse_vma(struct vm_area_stru
next = pgd_addr_end(addr, end);
if (pgd_none_or_clear_bad(pgd))
continue;
- if (unuse_pud_range(vma, pgd, addr, next, entry, page))
+ if (unuse_pud_range(vma, pgd, addr, next, entry, page, ppb))
return 1;
} while (pgd++, addr = next, addr != end);
return O;

}

static int unuse_mm(struct mm_struct *mm,
- swp_entry_t entry, struct page *page)

+ swp_entry_t entry, struct page *page,

+ struct page_beancounter **ppb)

{

struct vm_area_struct *vma;

@@ -607,7 +617,7 @@ static int unuse_mm(struct mm_struct *mm
lock_page(page);
}
for (vma = mm->mmap; vma; vma = vma->vm_next) {
- if (vma->anon_vma && unuse_vma(vma, entry, page))
+ if (vma->anon_vma && unuse_vma(vma, entry, page, ppb))
break;
}
up_read(&mm->mmap_sem);
@@ -673,6 +683,7 @@ static int try_to_unuse(unsigned int typ
int retval = 0;
int reset_overflow = 0;
int shmem;
+ struct page_beancounter *pb;

/*

* When searching mms for an entry, a good strategy is to
@@ -692,6 +703,7 @@ static int try_to_unuse(unsigned int typ

start._mm = &init_mm;

atomic_inc(&init_mm.mm_users);

Page 118 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ pb = NULL;
/*
* Keep on scanning until all entries have gone. Usually,
* one pass through swap_map is enough, but not necessarily:
@@ -703,6 +715,12 @@ static int try_to_unuse(unsigned int typ
break;

}

pb = bc_alloc_rss_counter_list(nr_beancounters, pb);
if IS_ERR(pb)) {

retval = PTR_ERR(pb);

break;

}

/*
* Get a page for the entry, using the existing swap
* cache page if there is one. Otherwise, get a clean
@@ -757,7 +775,7 @@ static int try_to_unuse(unsigned int typ
if (start_mm == &init_mm)
shmem = shmem_unuse(entry, page);
else
- retval = unuse_mm(start_mm, entry, page);
+ retval = unuse_mm(start_mm, entry, page, &pb);
}
if (*swap_map > 1) {
int set_start_mm = (*swap_map >= swcount);
@@ -787,7 +805,7 @@ static int try_to_unuse(unsigned int typ
set_start mm =1;
shmem = shmem_unuse(entry, page);
} else
- retval = unuse_mm(mm, entry, page);
+ retval = unuse_mm(mm, entry, page, &pb);
if (set_start._mm && *swap_map < swcount) {
mmput(new_start_mm);
atomic_inc(&mm->mm_users);
@@ -878,6 +896,9 @@ static int try_to_unuse(unsigned int typ
cond_resched();

}

+if (IS_ERR(pb))
+ bc_free_rss_counter(pb);
+
mmput(start_mm);
if (reset_overflow) {
printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");

+ 4+ + + + 4+

Page 119 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Subject: Re: [ckrm-tech] [PATCH 5/13] BC: user interface (syscalls)
Posted by Balbir Singh on Tue, 05 Sep 2006 16:04:52 GMT

View Forum Message <> Reply to Message

>+
> +asmlinkage long sys_set_bcid(bcid_t id)
> +{

> + int error;

> + struct beancounter *bc;

> + struct task_beancounter *task _bc;

>+

> + task_bc = ¤t->task_bc;

| was playing around with the bc patches and found that to make
use of bc's, | had to actually call set_bcid() and then exec() a
task/shell so that the id would stick around. Would you consider
changing sys_set_bcid to sys_set_task bcid() or adding a new
system call sys_set_task bcid()? We could pass the pid that we
intend to associate with the new id. This also means we'll need
locking around to protect task->task_bc.

Balbir Singh,
Linux Technology Center,
IBM Software Labs

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Balbir Singh on Tue, 05 Sep 2006 16:53:21 GMT

View Forum Message <> Reply to Message

Kirill Korotaev wrote:

> Core Resource Beancounters (BC) + kernel/user memory control.
>

> BC allows to account and control consumption

> of kernel resources used by group of processes.

>

> Draft UBC description on OpenVZ wiki can be found at
> http://wiki.openvz.org/UBC_parameters

>

> The full BC patch set allows to control:

> - kernel memory. All the kernel objects allocatable

> on user demand should be accounted and limited

> for DoS protection.

> E.g. page tables, task structs, vmas etc.

Page 120 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=675
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=5940#msg_5940
https://new-forum.openvz.org/index.php?t=post&reply_to=5940
https://new-forum.openvz.org/index.php?t=usrinfo&id=675
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=5942#msg_5942
https://new-forum.openvz.org/index.php?t=post&reply_to=5942
https://new-forum.openvz.org/index.php

One of the key requirements of resource management for us is to be able to
migrate tasks across resource groups. Since bean counters do not associate
a list of tasks associated with them, | do not see how this can be done

with the existing bean counters.

Balbir Singh,
Linux Technology Center,
IBM Software Labs

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Dave Hansen on Tue, 05 Sep 2006 17:46:32 GMT

View Forum Message <> Reply to Message

On Tue, 2006-09-05 at 19:02 +0400, Kirill Korotaev wrote:

> Core Resource Beancounters (BC) + kernel/user memory control.
>

> BC allows to account and control consumption

> of kernel resources used by group of processes.

Hi Kirill,

I've honestly lost track of these discussions along the way, so | hope
you don't mind summarizing a bit.

Do these patches help with accounting for anything other than memory?
Will we need new user/kernel interfaces for cpu, i/o bandwidth, etc...?

Have you given any thought to the possibility that a task might need to
move between accounting contexts? That has certainly been a
"requirement” pushed on to CKRM for a long time, and the need goes
something like this:

1. A system runs a web server, which services several virtual domains

2. that web server receives a request for foo.com

3. the web server switches into foo.com's accounting context

4. the web server reads things from disk, allocates some memory, and
makes a database request.

5. the database receives the request, and switches into foo.com's
accounting context, and charges foo.com for its resource use

etc...

So, the goal is to run _one_ copy of an application on a system, but
account for its resources in a much more fine-grained way than at the

Page 121 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=90
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=5945#msg_5945
https://new-forum.openvz.org/index.php?t=post&reply_to=5945
https://new-forum.openvz.org/index.php

application level.

| think we can probably use beancounters for this, if we do not worry
about migrating _existing_ charges when we change accounting context.
Does that make sense?

-- Dave

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Balbir Singh on Tue, 05 Sep 2006 18:28:49 GMT

View Forum Message <> Reply to Message

Dave Hansen wrote:

> On Tue, 2006-09-05 at 19:02 +0400, Kirill Korotaev wrote:

>> Core Resource Beancounters (BC) + kernel/user memory control.
>>

>> BC allows to account and control consumption

>> of kernel resources used by group of processes.

>

> Hi Kirill,

>

> |'ve honestly lost track of these discussions along the way, so | hope
> you don't mind summarizing a bit.

>

> Do these patches help with accounting for anything other than memory?
> Will we need new user/kernel interfaces for cpu, i/o bandwidth, etc...?
>

> Have you given any thought to the possibility that a task might need to
> move between accounting contexts? That has certainly been a

> "requirement” pushed on to CKRM for a long time, and the need goes
> something like this:

>

> 1. A system runs a web server, which services several virtual domains
> 2. that web server receives a request for foo.com

> 3. the web server switches into foo.com's accounting context

> 4. the web server reads things from disk, allocates some memory, and
> makes a database request.

> 5. the database receives the request, and switches into foo.com's

> accounting context, and charges foo.com for its resource use

> etc...

>

> So, the goal is to run _one_ copy of an application on a system, but

> account for its resources in a much more fine-grained way than at the
> application level.

>

> | think we can probably use beancounters for this, if we do not worry

Page 122 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=675
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=5946#msg_5946
https://new-forum.openvz.org/index.php?t=post&reply_to=5946
https://new-forum.openvz.org/index.php

> about migrating _existing_ charges when we change accounting context.
> Does that make sense?
>

> -- Dave

This is much better stated than | did. Thanks!

Balbir Singh,
Linux Technology Center,
IBM Software Labs

Subject: Re: [PATCH 11/13] BC: vmrss (preparations)
Posted by Cedric Le Goater on Tue, 05 Sep 2006 22:09:41 GMT

View Forum Message <> Reply to Message

Kirill Korotaev wrote:
<snip>

> --- /include/bc/beancounter.h.bcvmrssprep 2006-09-05

> 13:17:50.000000000 +0400

> +++ ./include/bc/beancounter.h 2006-09-05 13:44:33.000000000 +0400
> @@ -45,6 +45,13 @@ struct bc_resource_parm {

> #define BC_MAXVALUE LONG_MAX

>

> [*

> + * This magic is used to distinuish user beancounter and pages beancounter
> + * in struct page. page_ub and page_bc are placed in union and MAGIC
> + * ensures us that we don't use pbc as ubc in bc_page_uncharge().

>+ %/

> +#define BC_MAGIC 0x62756275UL

>+

> +[*

> * Resource management structures

> * Serialization issues:

> * peancounter list management is protected via bc_hash_lock

> @@ -54,11 +61,13 @@ struct bc_resource_parm {

> *f

>

> struct beancounter {

>+ unsigned long bc_magic;

> atomic_t bc_refcount;

> spinlock_t bc_lock;

> bcid_t bc_id;

> struct hlist_node hash;

Page 123 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=205
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=5952#msg_5952
https://new-forum.openvz.org/index.php?t=post&reply_to=5952
https://new-forum.openvz.org/index.php

>
>+ unsigned long unused_privvmpages;

> [*resources statistics and settings */

> struct bc_resource_parm bc_parms[BC_RESOURCES];

>

>@@ -74,6 +83,8 @@ enum bc_severity { BC_BARRIER, BC_LIMIT,
>

> #ifdef CONFIG_BEANCOUNTERS

>

> +extern unsigned int nr_beancounters = 1;
>+

my gcc doesn't like this one ...
regards,
C.

Signed-off-by: Cedric Le Goater <clg@fr.ibom.com>

include/bc/beancounter.h | 2 +-
kernel/bc/beancounter.c | 2 +-
2 files changed, 2 insertions(+), 2 deletions(-)

Index: 2.6.18-rc5-mml/include/bc/beancounter.h

--- 2.6.18-rc5-mm1.orig/include/bc/beancounter.h
+++ 2.6.18-rc5-mm1l/include/bc/beancounter.h
@@ -86,7 +86,7 @@ enum bc_severity { BC_BARRIER, BC_LIMIT,

#ifdef CONFIG_BEANCOUNTERS

-extern unsigned int nr_beancounters = 1;
+extern unsigned int nr_beancounters;

/*
* These functions tune minheld and maxheld values for a given
Index: 2.6.18-rc5-mm1l/kernel/bc/beancounter.c

--- 2.6.18-rc5-mm1.orig/kernel/bc/beancounter.c
+++ 2.6.18-rc5-mm1l/kernel/bc/beancounter.c
@@ -20,7 +20,7 @@ static void init_beancounter_struct(stru

struct beancounter init_bc;

-unsigned int nr_beancounters;
+unsigned int nr_beancounters = 1;

Page 124 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

const char *bc_rnames[] = {
"kmemsize", /* 0 */

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user

memory)
Posted by Rohit Seth on Wed, 06 Sep 2006 00:17:58 GMT

View Forum Message <> Reply to Message

On Tue, 2006-09-05 at 10:46 -0700, Dave Hansen wrote:

> On Tue, 2006-09-05 at 19:02 +0400, Kirill Korotaev wrote:

> > Core Resource Beancounters (BC) + kernel/user memory control.

> >

> > BC allows to account and control consumption

> > of kernel resources used by group of processes.

>

> Hi Kirill,

>

> |'ve honestly lost track of these discussions along the way, so | hope
> you don't mind summarizing a bit.

>

> Do these patches help with accounting for anything other than memory?
> Will we need new user/kernel interfaces for cpu, i/o bandwidth, etc...?
>

> Have you given any thought to the possibility that a task might need to
> move between accounting contexts? That has certainly been a

> "requirement” pushed on to CKRM for a long time, and the need goes
> something like this:

>

> 1. A system runs a web server, which services several virtual domains
> 2. that web server receives a request for foo.com

> 3. the web server switches into foo.com's accounting context

> 4. the web server reads things from disk, allocates some memory, and
> makes a database request.

> 5. the database receives the request, and switches into foo.com's

> accounting context, and charges foo.com for its resource use

> etc...
>

I'm wondering why not have different processes to serve different
domains on the same physical server...particularly when they have
different database to work on. Is the amount of memory that you save by
having a single copy that much useful that you are even okay to

serialize the whole operation (What would happen, while the request for
foo.com is getting worked on, there is another request for
foo_bar.com...does it need to wait for foo.com request to get done

before it can be served).

Page 125 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=664
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=5954#msg_5954
https://new-forum.openvz.org/index.php?t=post&reply_to=5954
https://new-forum.openvz.org/index.php

> So, the goal is to run _one_ copy of an application on a system, but
> account for its resources in a much more fine-grained way than at the
> application level.

>

What is that fine grained way. If not process based then can it be
associated with file system location?

-rohit

Subject: Re: [PATCH 9/13] BC: locked pages (charge hooks)
Posted by Nick Piggin on Wed, 06 Sep 2006 03:43:35 GMT

View Forum Message <> Reply to Message

Kirill Korotaev wrote:

> Introduce calls to BC core over the kernel to charge locked memory.

>

> Normaly new locked piece of memory may appear in insert_vm_struct,
> but there are places (do_mmap_pgoff, dup_mmap etc) when new vma
> is not inserted by insert_vm_struct(), but either link_vma-ed or

> merged with some other - these places call BC code explicitly.

>

> Plus sys_mlock[all] itself has to be patched to charge/uncharge

> needed amount of pages.

| still haven't heard your good reasons why such a complex scheme is
required when my really simple proposal of unconditionally charging
the page to the container it was allocated by.

That has the benefit of not being full of user explotable holes and

also not putting such a huge burden on mm/ and the wider kernel in
general.

Send instant messages to your online friends http://au.messenger.yahoo.com

Subject: Re: [ckrm-tech] [PATCH 5/13] BC: user interface (syscalls)
Posted by Pavel Emelianov on Wed, 06 Sep 2006 08:29:35 GMT

View Forum Message <> Reply to Message

Balbir Singh wrote:

Page 126 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=312
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=5956#msg_5956
https://new-forum.openvz.org/index.php?t=post&reply_to=5956
https://new-forum.openvz.org/index.php?t=usrinfo&id=725
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=5971#msg_5971
https://new-forum.openvz.org/index.php?t=post&reply_to=5971
https://new-forum.openvz.org/index.php

>> +
>> +asmlinkage long sys_set bcid(bcid_t id)

>> +{

>>+ interror,

>>+ struct beancounter *bc;

>>+ struct task_beancounter *task _bc;

>> +

>>+ task _bc = ¤t->task_bc;

>

> | was playing around with the bc patches and found that to make

> use of bc's, | had to actually call set_bcid() and then exec() a

> task/shell so that the id would stick around. Would you consider
That sounds very strange as sys_set_bcid() actually changes current's
exec_bc.

One note is about mm's bc - mm obtains new bc only after fork or exec -
that's

true. But kmemsize starts charging right after the sys_set_bcid.

> changing sys_set_bcid to sys_set_task bcid() or adding a new

> system call sys_set_task bcid()? We could pass the pid that we

> intend to associate with the new id. This also means we'll need

> locking around to protect task->task_bc.

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Pavel Emelianov on Wed, 06 Sep 2006 08:34:33 GMT

View Forum Message <> Reply to Message

Balbir Singh wrote:

> Kirill Korotaev wrote:

>> Core Resource Beancounters (BC) + kernel/user memory control.
>>

>> BC allows to account and control consumption

>> of kernel resources used by group of processes.

>>

>> Draft UBC description on OpenVZ wiki can be found at

>> http://wiki.openvz.org/UBC_parameters

>>

>> The full BC patch set allows to control:

>> - kernel memory. All the kernel objects allocatable

>> on user demand should be accounted and limited

>> for DoS protection.

>> E.g. page tables, task structs, vmas etc.

>

> One of the key requirements of resource management for us is to be
> able to

> migrate tasks across resource groups. Since bean counters do not
> associate

Page 127 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=725
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=5973#msg_5973
https://new-forum.openvz.org/index.php?t=post&reply_to=5973
https://new-forum.openvz.org/index.php

Then could you tell me please what to do with all the resources allocated
by the task you are moving to another group?

> a list of tasks associated with them, | do not see how this can be done
> with the existing bean counters.

>

Associating a list of tasks with beancounter is not so hard actually.

The question is wether this is usefull (regarding my previous comment).

Subject: Re: [PATCH 9/13] BC: locked pages (charge hooks)
Posted by Pavel Emelianov on Wed, 06 Sep 2006 08:45:01 GMT

View Forum Message <> Reply to Message

Nick Piggin wrote:

> Kirill Korotaev wrote:

>

>> |ntroduce calls to BC core over the kernel to charge locked memory.
>>

>> Normaly new locked piece of memory may appear in insert_vm_struct,
>> put there are places (do_mmap_pgoff, dup_mmap etc) when new vma
>> js not inserted by insert_vm_struct(), but either link_vma-ed or

>> merged with some other - these places call BC code explicitly.

>>

>> Plus sys_mlock[all] itself has to be patched to charge/uncharge

>> needed amount of pages.
>

>

> | still haven't heard your good reasons why such a complex scheme is
> required when my really simple proposal of unconditionally charging

> the page to the container it was allocated by.

Charging the page to the container it was allocated in is a possible and
correct way, we agree, but how does this comment refer to locked pages
accounting?

>

> That has the benefit of not being full of user explotable holes and

> also not putting such a huge burden on mm/ and the wider kernel in

> general.

Subject: Re: [ckrm-tech] [PATCH 5/13] BC: user interface (syscalls)
Posted by Balbir Singh on Wed, 06 Sep 2006 08:57:38 GMT

View Forum Message <> Reply to Message

Pavel Emelianov wrote:
> Balbir Singh wrote:
>>> +

>>> +asmlinkage long sys_set_bcid(bcid_t id)

Page 128 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=725
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=5976#msg_5976
https://new-forum.openvz.org/index.php?t=post&reply_to=5976
https://new-forum.openvz.org/index.php?t=usrinfo&id=675
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=5984#msg_5984
https://new-forum.openvz.org/index.php?t=post&reply_to=5984
https://new-forum.openvz.org/index.php

>>> +{

>>>+ int error;

>>>+ struct beancounter *bc;

>>>+ struct task_beancounter *task_bc;

>>> +

>>>+ task_bc = ¤t->task_bc;

>> | was playing around with the bc patches and found that to make

>> use of bc's, | had to actually call set_bcid() and then exec() a

>> task/shell so that the id would stick around. Would you consider

> That sounds very strange as sys_set_bcid() actually changes current's
> exec_bc.

> One note is about mm's bc - mm obtains new bc only after fork or exec -
> that's

> true. But kmemsize starts charging right after the sys_set_bcid.

| was playing around only with kmemsize. | think the reason for my observation
is this

bash --> (my utility) --> set_bcid()

Since bash spawns my utility in a separate process, it creates and assigns
a bean counter to it and then my utility exits. Unless it spawns/exec()'s a
new shell, the beancounter is freed when the task exits (my utility).

>> changing sys_set _bcid to sys_set_task bcid() or adding a new
>> system call sys_set_task_bcid()? We could pass the pid that we
>> intend to associate with the new id. This also means we'll need
>> |ocking around to protect task->task_bc.

>

Balbir Singh,
Linux Technology Center,
IBM Software Labs

Subject: Re: [PATCH 9/13] BC: locked pages (charge hooks)
Posted by Nick Piggin on Wed, 06 Sep 2006 09:41:05 GMT

View Forum Message <> Reply to Message

Pavel Emelianov wrote:

>Nick Piggin wrote:

>

>>Kirill Korotaev wrote:
>>

Page 129 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=312
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=5981#msg_5981
https://new-forum.openvz.org/index.php?t=post&reply_to=5981
https://new-forum.openvz.org/index.php

>>
>>>|ntroduce calls to BC core over the kernel to charge locked memory.
>>>

>>>Normaly new locked piece of memory may appear in insert_vm_struct,
>>>put there are places (do_mmap_pgoff, dup_mmap etc) when new vma
>>>is not inserted by insert_vm_struct(), but either link_vma-ed or
>>>merged with some other - these places call BC code explicitly.

>>>

>>>Plus sys_mlock]all] itself has to be patched to charge/uncharge
>>>needed amount of pages.

>>>

>>

>>| still haven't heard your good reasons why such a complex scheme is
>>required when my really simple proposal of unconditionally charging
>>the page to the container it was allocated by.

>>

>Charging the page to the container it was allocated in is a possible and

>correct way, we agree, but how does this comment refer to locked pages
>

If it is a possible and correct way, I'd must rather see *that* way
get tried first, and then made more complex or discarded if it is
found to be insufficient.

>accounting?
>

That's where I'd looked at enough mm/ stuff to decide that it wasn't
just my usual unjustified whining. Complexity of this approach is
quite... high.

Sorry if that wasn't clear.

Send instant messages to your online friends http://au.messenger.yahoo.com

Subject: Re: [ckrm-tech] [PATCH 5/13] BC: user interface (syscalls)
Posted by Pavel Emelianov on Wed, 06 Sep 2006 10:42:48 GMT

View Forum Message <> Reply to Message

Balbir Singh wrote:

> Pavel Emelianov wrote:

>> Balbir Singh wrote:

>>>> +

>>>> +asmlinkage long sys_set_bcid(bcid_t id)
>>>> +{

Page 130 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=725
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=5985#msg_5985
https://new-forum.openvz.org/index.php?t=post&reply_to=5985
https://new-forum.openvz.org/index.php

>>>>+ int error;

>>>>+ struct beancounter *bc;

>>>>+ struct task_beancounter *task_bc;

>>>> +

>>>>+ task bc = ¤t->task _bc;

>>> | was playing around with the bc patches and found that to make
>>> use of bc's, | had to actually call set_bcid() and then exec() a
>>> task/shell so that the id would stick around. Would you consider
>> That sounds very strange as sys_set_bcid() actually changes current's
>> exec_bc.

>> One note is about mm's bc - mm obtains new bc only after fork or exec -
>> that's

>> true. But kmemsize starts charging right after the sys_set_bcid.

>

> | was playing around only with kmemsize. | think the reason for my
> observation

> is this

>

> bash --> (my utility) --> set_bcid()

>

> Since bash spawns my utility in a separate process, it creates and
> assigns

> a bean counter to it and then my utility exits. Unless it

> spawns/exec()'s a

> new shell, the beancounter is freed when the task exits (my utility).
Well, beancounter is not "inherited" by parent task :)

After setting bcid you need to spawn/exec a new shell.

But seeting limits and getting stats is possible from the old shell

as well as from the new one.

>

>>> changing sys_set_bcid to sys_set_task_bcid() or adding a new
>>> system call sys_set_task bcid()? We could pass the pid that we
>>> intend to associate with the new id. This also means we'll need
>>> |ocking around to protect task->task_bc.

>>

>

>

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by dev on Wed, 06 Sep 2006 13:04:20 GMT

View Forum Message <> Reply to Message

Balbir Singh wrote:
> Kirill Korotaev wrote:
>

>> Core Resource Beancounters (BC) + kernel/user memory control.

Page 131 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=19
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=5992#msg_5992
https://new-forum.openvz.org/index.php?t=post&reply_to=5992
https://new-forum.openvz.org/index.php

>>
>> BC allows to account and control consumption

>> of kernel resources used by group of processes.

>>

>> Draft UBC description on OpenVZ wiki can be found at

>> http://wiki.openvz.org/UBC_parameters

>>

>> The full BC patch set allows to control:

>> - kernel memory. All the kernel objects allocatable

>> on user demand should be accounted and limited

>> for DoS protection.

>> E.g. page tables, task structs, vmas etc.

>

>

> One of the key requirements of resource management for us is to be able to
> migrate tasks across resource groups. Since bean counters do not associate
> a list of tasks associated with them, | do not see how this can be done

> with the existing bean counters.

It was discussed multiple times already.

The key problem here is the objects which do not _belong_ to tasks.

e.g. IPC objects. They exist in global namespace and can't be reaccounted.
At least no one proposed the policy to reaccount.

And please note, IPCs are not the only such objects.

But | guess your comment mostly concerns user pages, yeah?

In this case reaccounting can be easily done using page beancounters
which are introduced in this patch set.

So if it is a requirement, then lets cooperate and create such functionality.

So for now | see 2 main requirements from people:
- memory reclamation
- tasks moving across beancounters

| agree with these requirements and lets move into this direction.
But moving so far can't be done without accepting:

1. core functionality

2. accounting

Thanks,
Kirill

Subject: Re: [ckrm-tech] [PATCH 5/13] BC: user interface (syscalls)
Posted by Balbir Singh on Wed, 06 Sep 2006 13:23:27 GMT

View Forum Message <> Reply to Message

Pavel Emelianov wrote:
> Balbir Singh wrote:

Page 132 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=675
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6002#msg_6002
https://new-forum.openvz.org/index.php?t=post&reply_to=6002
https://new-forum.openvz.org/index.php

>> Pavel Emelianov wrote:

>>> Balbir Singh wrote:

>>>>> +

>>>>> +asmlinkage long sys_set_bcid(bcid_t id)

>>>>> +{

>>>>>+ int error;

>>>>> + struct beancounter *bc;

>>>>>+ struct task_beancounter *task_bc;

>>>5>> +

>>>>>+ task_bc = ¤t->task_bc;

>>>> | was playing around with the bc patches and found that to make
>>>> use of bc's, | had to actually call set_bcid() and then exec() a
>>>> task/shell so that the id would stick around. Would you consider
>>> That sounds very strange as sys_set_bcid() actually changes current's
>>> exec_bc.

>>> One note is about mm's bc - mm obtains new bc only after fork or exec -
>>> that's

>>> true. But kmemsize starts charging right after the sys_set_bcid.
>> | was playing around only with kmemsize. | think the reason for my
>> observation

>> is this

>>

>> bash --> (my utility) --> set_bcid()

>>

>> Since bash spawns my utility in a separate process, it creates and
>> assigns

>> a bean counter to it and then my utility exits. Unless it

>> spawns/exec()'s a

>> new shell, the beancounter is freed when the task exits (my utility).
> Well, beancounter is not "inherited" by parent task :)

> After setting bcid you need to spawn/exec a new shell.

> But seeting limits and getting stats is possible from the old shell

> as well as from the new one.

That's what | suspected. | suggest changing the system call to allow adding any
task to a particular id (not necessarily only the current one). It would help us
group tasks to a particular id. It would also solve my problem of spawning a
shell each time | decide to use a task with a beancounter and limits.

>>>> changing sys_set_bcid to sys_set task bcid() or adding a new
>>>> system call sys_set_task bcid()? We could pass the pid that we
>>>> intend to associate with the new id. This also means we'll need
>>>> |ocking around to protect task->task_bc.

>>

Balbir Singh,

Page 133 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Linux Technology Center,
IBM Software Labs

Subject: Re: [ckrm-tech] [PATCH 5/13] BC: user interface (syscalls)
Posted by Balbir Singh on Wed, 06 Sep 2006 13:45:44 GMT

View Forum Message <> Reply to Message

Kirill Korotaev wrote:

> Add the following system calls for BC management:

> 1.sys _get bcid - getcurrent BCid

> 2.sys_set bcid - change exec_ and fork_ BCs on current

> 3.sys_set_bclimit - set limits for resources consumtions

> 4.sys _get bcstat - return br_resource_parm on resource

>

> Signed-off-by: Pavel Emelianov <xemul@sw.ru>

> Signed-off-by: Kirill Korotaev <dev@sw.ru>

>

> --- /include/asm-powerpc/systbl.h.bcsys 2006-07-10 12:39:19.000000000 +0400
> +++ ./include/asm-powerpc/systbl.h 2006-09-05 12:47:21.000000000 +0400
> @@ -304,3 +304,7 @@ SYSCALL_SPU(fchmodat)

> SYSCALL_SPU(faccessat)

> COMPAT_SYS_SPU(get_robust_list)

> COMPAT_SYS_SPU(set_robust_list)

> +SYSCALL(sys_get_bcid)

> +SYSCALL(sys_set_bcid)

> +SYSCALL(sys_set_bclimit)

> +SYSCALL(sys_get bcstat)

Fix a build error for powerpc boxes. While compiling on powerpc, Vaidyanathan
Srinivasan caught this error. System calls on powerpc do not need sys__ prefix.

Signed-off-by: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Vaidyanathan Srinivasan <svaidy@in.ibm.com>

include/asm-powerpc/systbl.h | 8 ++++----
1 files changed, 4 insertions(+), 4 deletions(-)

diff -puN include/asm-powerpc/systbl.h~fix-powerpc-build
include/asm-powerpc/systbl.h
--- linux-2.6.18-rc5/include/asm-powerpc/systbl.h~fix-powerpc-bu ild 2006-09-06
19:03:18.000000000 +0530
+++ linux-2.6.18-rc5-balbir/include/asm-powerpc/systbl.h 2006-09-06
19:03:38.000000000 +0530
@@ -304,7 +304,7 @@ SYSCALL_SPU(fchmodat)

SYSCALL_SPU(faccessat)

Page 134 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=675
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=5996#msg_5996
https://new-forum.openvz.org/index.php?t=post&reply_to=5996
https://new-forum.openvz.org/index.php

COMPAT_SYS_SPU(get_robust_list)

COMPAT_SYS_SPU(set_robust_list)
-SYSCALL(sys_get _bcid)
-SYSCALL(sys_set bcid)
-SYSCALL(sys_set_bclimit)
-SYSCALL(sys_get_bcstat)
+SYSCALL(get_bcid)
+SYSCALL(set_bcid)
+SYSCALL(set_bclimit)
+SYSCALL(get_bcstat)

Balbir Singh,
Linux Technology Center,
IBM Software Labs

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by dev on Wed, 06 Sep 2006 13:54:13 GMT

View Forum Message <> Reply to Message

> On Tue, 2006-09-05 at 19:02 +0400, Kirill Korotaev wrote:
>

>>Core Resource Beancounters (BC) + kernel/user memory control.
>>
>>BC allows to account and control consumption

>>0f kernel resources used by group of processes.
>

>

> Hi Kirill,

>

> |'ve honestly lost track of these discussions along the way, so | hope
> you don't mind summarizing a bit.

| think we need to create wiki to summarize it once and forever.
http://wiki.openvz.org/UBC_discussion

> Do these patches help with accounting for anything other than memory?
this patch set - no, but the complete one - does:

* numfile

* numptys

* numsocks (TCP, other, etc.)

* numtasks

* numflocks

this list of resources was chosen to make sure that no DoS from the container

Page 135 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=19
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=5997#msg_5997
https://new-forum.openvz.org/index.php?t=post&reply_to=5997
https://new-forum.openvz.org/index.php

is possible.
This list is extensible easily and if resource is out of interest than
its limits can be set to unlimited.

> Will we need new user/kernel interfaces for cpu, i/o bandwidth, etc...?
no. no new interfaces are required.

BUT: | remind you the talks at OKS/OLS and in previous UBC discussions.
It was noted that having a separate interfaces for CPU, I/O bandwidth

and memory maybe worthwhile. BTW, 1/0 bandwidth already has a separate
interface :/

> Have you given any thought to the possibility that a task might need to
> move between accounting contexts? That has certainly been a

> "requirement” pushed on to CKRM for a long time, and the need goes
> something like this:

Yes we thought about this and this is no more problematic for BC

than for CKRM. See my explanation below.

> 1. A system runs a web server, which services several virtual domains
> 2. that web server receives a request for foo.com

> 3. the web server switches into foo.com's accounting context

> 4. the web server reads things from disk, allocates some memory, and
> makes a database request.

> 5. the database receives the request, and switches into foo.com's

> accounting context, and charges foo.com for its resource use

> etc...

The question is - whether web server is multithreaded or not...

If it is not - then no problem here, you can change current

context and new resources will be charged accordingly.

And current BC code is _able_ to handle it with _minor_ changes.
(One just need to save bc not on mm struct, but rather on vma struct
and change mm->bc on set_bc_id()).

However, no one (can some one from CKRM team please?) explained so far
what to do with threads. Consider the following example.

1. Threaded web server spawns a child to serve a client.

2. child thread touches some pages and they are charged to child BC
(which differs from parent's one)

3. child exits, but since its mm is shared with parent, these pages
stay mapped and charged to child BC.

So the question is: what to do with these pages?
- should we recharge them to another BC?
- leave them charged?

Page 136 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> So, the goal is to run _one_ copy of an application on a system, but
> account for its resources in a much more fine-grained way than at the
> application level.

Yes.

> | think we can probably use beancounters for this, if we do not worry

> about migrating _existing_ charges when we change accounting context.
> Does that make sense?

exactly. thats what I'm saying. we can use beancounters for this

if charges are kept for creator.

Thanks,
Kirill

Subject: Re: [PATCH 11/13] BC: vmrss (preparations)
Posted by dev on Wed, 06 Sep 2006 13:56:03 GMT

View Forum Message <> Reply to Message

Thanks a lot!!!

> Kirill Korotaev wrote:

>

> <snip>

>

>>--- [include/bc/beancounter.h.bcvmrssprep 2006-09-05
>>13:17:50.000000000 +0400

>>+++ ./include/bc/beancounter.h 2006-09-05 13:44:33.000000000 +0400
>>@@ -45,6 +45,13 @@ struct bc_resource_parm {

>>#define BC_MAXVALUE LONG_MAX

>>

>>[*

>>+ * This magic is used to distinuish user beancounter and pages beancounter
>>+ * |n struct page. page_ub and page_bc are placed in union and MAGIC
>>+ * ensures us that we don't use pbc as ubc in bc_page_uncharge().

>>+ %/

>>+#define BC_MAGIC 0x62756275UL

>>+

>>4[*

>>* Resource management structures

>> * Serialization issues:

>>* peancounter list management is protected via bc_hash_lock

>>@@ -54,11 +61,13 @@ struct bc_resource_parm {

>> *f

>>

>>struct beancounter {

>>+ unsigned long bc_magic;
>> atomic_t bc_refcount;

Page 137 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=19
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=5998#msg_5998
https://new-forum.openvz.org/index.php?t=post&reply_to=5998
https://new-forum.openvz.org/index.php

>> gpinlock t bc_lock;

>> pcid_t bc_id;

>> struct hlist_ node hash;

>>

>>+ unsigned long unused_privvmpages;

>> [* resources statistics and settings */

>> struct bc_resource_parm bc_parms[BC_RESOURCES];
>>1;

>>@@ -74,6 +83,8 @@ enum bc_severity { BC_BARRIER, BC_LIMIT,
>>

>>#ifdef CONFIG_BEANCOUNTERS

>>

>>+extern unsigned int nr_beancounters = 1;

>>+

>

>

> my gcc doesn't like this one ...

>

> regards,

>

> C.

>

> Signed-off-by: Cedric Le Goater <clg@fr.ibom.com>
>

-

> include/bc/beancounter.h | 2 +-
kernel/bc/beancounter.c | 2 +-

> 2 files changed, 2 insertions(+), 2 deletions(-)

>

> Index: 2.6.18-rc5-mm1l/include/bc/beancounter.h

\

> --- 2.6.18-rc5-mm1.orig/include/bc/beancounter.h

> +++ 2.6.18-rc5-mml/include/bc/beancounter.h

> @@ -86,7 +86,7 @@ enum bc_severity { BC_BARRIER, BC_LIMIT,
>

> #ifdef CONFIG_BEANCOUNTERS

>

> -extern unsigned int nr_beancounters = 1;

> +extern unsigned int nr_beancounters;

>

> [*

> * These functions tune minheld and maxheld values for a given
> Index: 2.6.18-rc5-mm1l/kernel/bc/beancounter.c

> --- 2.6.18-rc5-mm1l.orig/kernel/bc/beancounter.c
> +++ 2.6.18-rc5-mm1l/kernel/bc/beancounter.c

> @@ -20,7 +20,7 @@ static void init_beancounter_struct(stru
>

Page 138 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> struct beancounter init_bc;

>

> -unsigned int nr_beancounters;

> +unsigned int nr_beancounters = 1;
>

> const char *bc_rnames][] = {

> "kmemsize", /[* 0 */

>

Subject: Re: [ckrm-tech] [PATCH 9/13] BC: locked pages (charge hooks)
Posted by dev on Wed, 06 Sep 2006 14:16:42 GMT

View Forum Message <> Reply to Message

Nick,

> Kirill Korotaev wrote:

>

>

>>Introduce calls to BC core over the kernel to charge locked memory.
>>

>>Normaly new locked piece of memory may appear in insert_vm_struct,
>>put there are places (do_mmap_pgoff, dup_mmap etc) when new vma
>>is not inserted by insert_vm_struct(), but either link_vma-ed or
>>merged with some other - these places call BC code explicitly.

>>

>>Plus sys_mlock[all] itself has to be patched to charge/uncharge

>>needed amount of pages.
>

>
>

> | still haven't heard your good reasons why such a complex scheme is
> required when my really simple proposal of unconditionally charging

> the page to the container it was allocated by.

Nick can you elaborate what your proposal is?

Probably | missed it somewhere...

> That has the benefit of not being full of user explotable holes and

> also not putting such a huge burden on mm/ and the wider kernel in
> general.

| guess you will have to account locked pages still and

thus complexity won't be reduced much in this regard...

Thanks,
Kirill

Page 139 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=19
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6000#msg_6000
https://new-forum.openvz.org/index.php?t=post&reply_to=6000
https://new-forum.openvz.org/index.php

Subject: Re: [PATCH 7/13] BC: kernel memory (marks)
Posted by Cedric Le Goater on Wed, 06 Sep 2006 14:19:15 GMT

View Forum Message <> Reply to Message

Minor issue bellow in arch/ia64/mm/init.c. I'm not sure what the charge
argument should be. Please check.

Regards,
C.

Signed-off-by: Cedric Le Goater <clg@fr.ibom.com>

arch/ia64/mm/init.c| 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)

Index: 2.6.18-rc5-mml/arch/ia64/mm/init.c

--- 2.6.18-rc5-mm1.orig/arch/ia64/mm/init.c
+++ 2.6.18-rc5-mm2l/arch/ia64/mm/init.c
@@ -95,7 +95,7 @@ check_pgt_cache(void)
preempt_disable();
while (unlikely((pages_to_free = min_pages_to_free()) > 0)) {
while (pages_to_free--) {
- free_page((unsigned long)pgtable_quicklist_alloc());
+ free_page((unsigned long)pgtable_quicklist_alloc(0));
}
preempt_enable();
preempt_disable();

Subject: Re: [ckrm-tech] [PATCH 5/13] BC: user interface (syscalls)
Posted by dev on Wed, 06 Sep 2006 14:20:34 GMT

View Forum Message <> Reply to Message

thanks a lot!

> Kirill Korotaev wrote:

>

>>Add the following system calls for BC management:
>>1.sys get bcid - getcurrent BCid

>>2.sys set bcid - change exec_and fork_ BCs on current
>> 3. sys_set _bclimit - set limits for resources consumtions

>> 4. sys _get_bcstat - return br_resource_parm on resource
>>

>>Signed-off-by: Pavel Emelianov <xemul@sw.ru>
>>Signed-off-by: Kirill Korotaev <dev@sw.ru>

Page 140 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=205
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6001#msg_6001
https://new-forum.openvz.org/index.php?t=post&reply_to=6001
https://new-forum.openvz.org/index.php?t=usrinfo&id=19
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=5999#msg_5999
https://new-forum.openvz.org/index.php?t=post&reply_to=5999
https://new-forum.openvz.org/index.php

>>
>>--- [/include/asm-powerpc/systbl.h.bcsys 2006-07-10 12:39:19.000000000 +0400
>>+++ /include/asm-powerpc/systbl.h 2006-09-05 12:47:21.000000000 +0400
>>@@ -304,3 +304,7 @@ SYSCALL_SPU(fchmodat)

>> SYSCALL_SPU(faccessat)

>> COMPAT_SYS_SPU(get_robust_list)

>> COMPAT_SYS_SPU(set_robust_list)

>>+SYSCALL(sys_get_bcid)

>>+SYSCALL(sys_set_bcid)

>>+SYSCALL(sys_set_bclimit)

>>+SYSCALL(sys_get_bcstat)

>

>

>

> Fix a build error for powerpc boxes. While compiling on powerpc, Vaidyanathan
> Srinivasan caught this error. System calls on powerpc do not need sys__ prefix.
>

> Signed-off-by: Balbir Singh <balbir@in.ibm.com>

> Signed-off-by: Vaidyanathan Srinivasan <svaidy@in.ibm.com>

- Je—

>

> include/asm-powerpc/systbl.h | 8 ++++----

> 1 files changed, 4 insertions(+), 4 deletions(-)

>

> diff -puN include/asm-powerpc/systbl.h~fix-powerpc-build

> include/asm-powerpc/systbl.h

> --- linux-2.6.18-rc5/include/asm-powerpc/systbl.h~fix-powerpc-bu ild 2006-09-06
> 19:03:18.000000000 +0530

> +++ linux-2.6.18-rc5-balbir/include/asm-powerpc/systbl.h 2006-09-06
> 19:03:38.000000000 +0530

> @@ -304,7 +304,7 @@ SYSCALL_SPU(fchmodat)

> SYSCALL_SPU(faccessat)

> COMPAT_SYS_SPU(get_robust_list)

> COMPAT_SYS_SPU(set_robust_list)

> -SYSCALL(sys_get_bcid)

> -SYSCALL(sys_set_bcid)

> -SYSCALL(sys_set_bclimit)

> -SYSCALL(sys_get bcstat)

> +SYSCALL(get_bcid)

> +SYSCALL(set_bcid)

> +SYSCALL(set_bclimit)

> +SYSCALL(get_bcstat)

>

>

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user

Page 141 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

memory)
Posted by Balbir Singh on Wed, 06 Sep 2006 19:17:56 GMT

View Forum Message <> Reply to Message

Kirill Korotaev wrote:

> Balbir Singh wrote:

>> Kirill Korotaev wrote:

>>

>>> Core Resource Beancounters (BC) + kernel/user memory control.

>>>

>>> BC allows to account and control consumption

>>> of kernel resources used by group of processes.

>>>

>>> Draft UBC description on OpenVZ wiki can be found at

>>> http://wiki.openvz.org/UBC_parameters

>>>

>>> The full BC patch set allows to control:

>>> - kernel memory. All the kernel objects allocatable

>>> on user demand should be accounted and limited

>>> for DoS protection.

>>> E.g. page tables, task structs, vmas etc.

>>

>> One of the key requirements of resource management for us is to be able to
>> migrate tasks across resource groups. Since bean counters do not associate
>> a list of tasks associated with them, | do not see how this can be done

>> with the existing bean counters.

> |t was discussed multiple times already.

> The key problem here is the objects which do not _belong_ to tasks.

> e.g. IPC objects. They exist in global namespace and can't be reaccounted.
> At least no one proposed the policy to reaccount.

> And please note, IPCs are not the only such objects.

>

> But | guess your comment mostly concerns user pages, yeah?

Yes.

> In this case reaccounting can be easily done using page beancounters

> which are introduced in this patch set.

> So if it is a requirement, then lets cooperate and create such functionality.
>

Sure, let's cooperate and talk.
> So for now | see 2 main requirements from people:
> - memory reclamation

> - tasks moving across beancounters
>

Some not quite so urgent ones - like support for guarantees. | think this can

Page 142 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=675
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6014#msg_6014
https://new-forum.openvz.org/index.php?t=post&reply_to=6014
https://new-forum.openvz.org/index.php

be worked out as we make progress.

> | agree with these requirements and lets move into this direction.
> But moving so far can't be done without accepting:

> 1. core functionality

> 2. accounting

>

Some of the core functionality might be a limiting factor for the requirements.
Lets agree on the requirements, | think its a great step forward and then
build the core functionality with these requirements in mind.

> Thanks,
> Kirill
>

Balbir Singh,
Linux Technology Center,
IBM Software Labs

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Chandra Seetharaman on Wed, 06 Sep 2006 21:47:34 GMT

View Forum Message <> Reply to Message

On Wed, 2006-09-06 at 17:06 +0400, Kirill Korotaev wrote:
> Balbir Singh wrote:

> > Kirill Korotaev wrote:

> >

> >> Core Resource Beancounters (BC) + kernel/luser memory control.
> >>

> >> BC allows to account and control consumption

> >> of kernel resources used by group of processes.

> >>

> >> Draft UBC description on OpenVZ wiki can be found at
> >> http://wiki.openvz.org/lUBC_parameters

> >>

> >> The full BC patch set allows to control:

> >> - kernel memory. All the kernel objects allocatable

> >> on user demand should be accounted and limited

> >> for DoS protection.

> >> E.g. page tables, task structs, vmas etc.
> >

> >
> > One of the key requirements of resource management for us is to be able to
> > migrate tasks across resource groups. Since bean counters do not associate

Page 143 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=665
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6023#msg_6023
https://new-forum.openvz.org/index.php?t=post&reply_to=6023
https://new-forum.openvz.org/index.php

> > a list of tasks associated with them, | do not see how this can be done

> > with the existing bean counters.

> |t was discussed multiple times already.

> The key problem here is the objects which do not _belong_ to tasks.

> e.g. IPC objects. They exist in global namespace and can't be reaccounted.
> At least no one proposed the policy to reaccount.

> And please note, IPCs are not the only such objects.

>From implementation point of view | do not see it to be any different
than how it can be done under UBC.

AFAICS, beancounters are associated with tasks not those "objects".
Those "objects"” get their bc through some association with a task. The
same can be done in the other case also.

If my understanding is wrong, please tell me how one can associate such
"object" to a bc.

>

> But | guess your comment mostly concerns user pages, yeah?

> |n this case reaccounting can be easily done using page beancounters

> which are introduced in this patch set.

> So if it is a requirement, then lets cooperate and create such functionality.

hmm... that is what | thought | was doing when | was replying on these
threads. May be | should have waited for this "call for co-operation”
before jumping on it :)

>

> So for now | see 2 main requirements from people:
> - memory reclamation

> - tasks moving across beancounters

Please consider the requirements | listed before
http://marc.theaimsgroup.com/?l=ckrm-tech&m=115593001810 616&w=2

>

> | agree with these requirements and lets move into this direction.
> But moving so far can't be done without accepting:

> 1. core functionality

> 2. accounting

| agree that discussion need to happen on the core functionality and
interface.

>

> Thanks,

> Kirill

>

Page 144 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> Using Tomcat but need to do more? Need to support web services, security?

> Get stuff done quickly with pre-integrated technology to make your job easier

> Download IBM WebSphere Application Server v.1.0.1 based on Apache Geronimo
> http://sel.as-us.falkag.net/sel?cmd=Ink&kid=120709&b id=263057&dat=121642

>

> ckrm-tech mailing list

> https://lists.sourceforge.net/lists/listinfo/ckrm-tech

Chandra Seetharaman | Be careful what you choose....
- sekharan@us.ibm.com | you may get it.

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Chandra Seetharaman on Wed, 06 Sep 2006 21:54:.01 GMT

View Forum Message <> Reply to Message

On Wed, 2006-09-06 at 17:57 +0400, Kirill Korotaev wrote:

> > On Tue, 2006-09-05 at 19:02 +0400, Kirill Korotaev wrote:

> >

> >>Core Resource Beancounters (BC) + kernel/user memory control.
> >>

> >>BC allows to account and control consumption

> >>0f kernel resources used by group of processes.

> >

> >

> > Hi Kirill,

> >

> > |'ve honestly lost track of these discussions along the way, so | hope
> > you don't mind summarizing a bit.

> | think we need to create wiki to summarize it once and forever.

> http://wiki.openvz.org/UBC_discussion

>

> > Do these patches help with accounting for anything other than memory?
> this patch set - no, but the complete one - does:

> * numfile

> * numptys

> * numsocks (TCP, other, etc.)

> * numtasks

> * numflocks

> ..

> this list of resources was chosen to make sure that no DoS from the container
> is possible.

Page 145 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=665
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6024#msg_6024
https://new-forum.openvz.org/index.php?t=post&reply_to=6024
https://new-forum.openvz.org/index.php

> This list is extensible easily and if resource is out of interest than

> its limits can be set to unlimited.

>

> > Will we need new user/kernel interfaces for cpu, i/o bandwidth, etc...?
> no. no new interfaces are required.

Good to know that.
Your CPU controller supports guarantee ?
Do you have a i/o controller ?

>
> BUT: | remind you the talks at OKS/OLS and in previous UBC discussions.
> |t was noted that having a separate interfaces for CPU, I/O bandwidth

But, it will be lot simpler for the user to configure/use if they are
together. We should discuss this also.

> and memory maybe worthwhile. BTW, I/O bandwidth already has a separate
> interface :/

>

> > Have you given any thought to the possibility that a task might need to
> > move between accounting contexts? That has certainly been a

> > "requirement"” pushed on to CKRM for a long time, and the need goes
> > something like this:

> Yes we thought about this and this is no more problematic for BC

> than for CKRM. See my explanation below.

>

> > 1. A system runs a web server, which services several virtual domains
> > 2. that web server receives a request for foo.com

> > 3. the web server switches into foo.com's accounting context

> > 4, the web server reads things from disk, allocates some memory, and
>> makes a database request.

> > 5. the database receives the request, and switches into foo.com's

>> accounting context, and charges foo.com for its resource use

> > etc...

> The question is - whether web server is multithreaded or not...

> If it is not - then no problem here, you can change current

> context and new resources will be charged accordingly.

>

> And current BC code is _able_to handle it with _minor_ changes.

> (One just need to save bc not on mm struct, but rather on vma struct

> and change mm->bc on set_bc_id()).

>

> However, no one (can some one from CKRM team please?) explained so far
> what to do with threads. Consider the following example.

>

Page 146 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> 1. Threaded web server spawns a child to serve a client.

> 2. child thread touches some pages and they are charged to child BC
> (which differs from parent's one)

> 3. child exits, but since its mm is shared with parent, these pages

> stay mapped and charged to child BC.

>

> So the question is: what to do with these pages?

> - should we recharge them to another BC?

> - leave them charged?

Leave them charged. It will be charged to the appropriate UBC when they
touch it again.

>

> > S0, the goal is to run _one_ copy of an application on a system, but
> > account for its resources in a much more fine-grained way than at the
> > application level.

> Yes.

>

> > | think we can probably use beancounters for this, if we do not worry
> > about migrating _existing_ charges when we change accounting context.
> > Does that make sense?

> exactly. thats what I'm saying. we can use beancounters for this

> if charges are kept for creator.

>

> Thanks,

> Kirill

> Using Tomcat but need to do more? Need to support web services, security?

> Get stuff done quickly with pre-integrated technology to make your job easier

> Download IBM WebSphere Application Server v.1.0.1 based on Apache Geronimo
> http://sel.as-us.falkag.net/sel?cmd=Ink&kid=120709&b id=263057&dat=121642

>

> ckrm-tech mailing list

> https://lists.sourceforge.net/lists/listinfo/ckrm-tech

Chandra Seetharaman | Be careful what you choose....
- sekharan@us.ibm.com | you may get it.

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Chandra Seetharaman on Wed, 06 Sep 2006 22:06:11 GMT

Page 147 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=665
https://new-forum.openvz.org/index.php

View Forum Message <> Reply to Message

On Thu, 2006-09-07 at 00:47 +0530, Balbir Singh wrote:

<snip>
>
> Some not quite so urgent ones - like support for guarantees. | think this can

IMO, guarantee support should be considered to be part of the
infrastructure. Controller functionalities/implementation will be
different with/without guarantee support. In other words, adding
guarantee feature later will cause re-implementations.

> be worked out as we make progress.

>

> > | agree with these requirements and lets move into this direction.

> > But moving so far can't be done without accepting:

> > 1. core functionality

> > 2. accounting

> >

>

> Some of the core functionality might be a limiting factor for the requirements.
> Lets agree on the requirements, | think its a great step forward and then
> build the core functionality with these requirements in mind.

>

> > Thanks,

> > Kirill

> >

Chandra Seetharaman | Be careful what you choose....
- sekharan@us.ibm.com | ... you may get it.

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Balbir Singh on Thu, 07 Sep 2006 03:08:48 GMT

View Forum Message <> Reply to Message

Chandra Seetharaman wrote:

> On Thu, 2006-09-07 at 00:47 +0530, Balbir Singh wrote:

>

> <snip>

>> Some not quite so urgent ones - like support for guarantees. | think this can
>

> IMO, guarantee support should be considered to be part of the

Page 148 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6025#msg_6025
https://new-forum.openvz.org/index.php?t=post&reply_to=6025
https://new-forum.openvz.org/index.php?t=usrinfo&id=675
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6031#msg_6031
https://new-forum.openvz.org/index.php?t=post&reply_to=6031
https://new-forum.openvz.org/index.php

> infrastructure. Controller functionalities/implementation will be
> different with/without guarantee support. In other words, adding
> guarantee feature later will cause re-implementations.

Thanks for pointing this out. Thats what | implied in the comment below.

>

>> pe worked out as we make progress.

>>

>>> | agree with these requirements and lets move into this direction.

>>> But moving so far can't be done without accepting:

>>> 1. core functionality

>>> 2. accounting

>>>

>> Some of the core functionality might be a limiting factor for the requirements.
>> Lets agree on the requirements, | think its a great step forward and then
>> puild the core functionality with these requirements in mind.

>>

>>> Thanks,

>>> Kirill

>>>

Balbir Singh,
Linux Technology Center,
IBM Software Labs

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Pavel Emelianov on Thu, 07 Sep 2006 07:29:17 GMT

View Forum Message <> Reply to Message

Chandra Seetharaman wrote:

[snip]

>>> Will we need new user/kernel interfaces for cpu, i/o bandwidth, etc...?
>>>

>> no. no new interfaces are required.

>>

>

> Good to know that.

>

> Your CPU controller supports guarantee ?

>

It does, but CPU controller is not so simple as memory one.

Page 149 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=725
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6043#msg_6043
https://new-forum.openvz.org/index.php?t=post&reply_to=6043
https://new-forum.openvz.org/index.php

> Do you have a i/o controller ?

>

>

>> BUT: | remind you the talks at OKS/OLS and in previous UBC discussions.
>> |t was noted that having a separate interfaces for CPU, 1/0 bandwidth
>>

>

> But, it will be lot simpler for the user to configure/use if they are

> together. We should discuss this also.

>

IMHO such unification may only imply that one syscall is used to pass
configuration info into kernel.

Each controller has specific configurating parameters different from the
other ones. E.g. CPU controller must assign a "weight" to each group to
share CPU time accordingly, but what is a "weight" for memory controller?
IO may operate on "bandwidth" and it's not clear what is a "bandwidth"” in
Kb/sec for CPU controller and so on.

[snip]
>> The question is - whether web server is multithreaded or not...

>> |f it is not - then no problem here, you can change current

>> context and new resources will be charged accordingly.

>>

>> And current BC code is _able_ to handle it with _minor_ changes.

>> (One just need to save bc not on mm struct, but rather on vma struct

>> and change mm->bc on set_bc_id()).

>>

>> However, no one (can some one from CKRM team please?) explained so far
>> what to do with threads. Consider the following example.

>>

>> 1. Threaded web server spawns a child to serve a client.

>> 2. child thread touches some pages and they are charged to child BC
>> (which differs from parent's one)

>> 3. child exits, but since its mm is shared with parent, these pages

>> stay mapped and charged to child BC.

>>

>> So the question is: what to do with these pages?

>> - should we recharge them to another BC?

>> - leave them charged?

>>

>

> Leave them charged. It will be charged to the appropriate UBC when they
> touch it again.

>

Do you mean that page must be re-charged each time someone touches it?

Page 150 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Subject: Re: [ckrm-tech] [PATCH 11/13] BC: vmrss (preparations)
Posted by Balbir Singh on Thu, 07 Sep 2006 16:28:45 GMT

View Forum Message <> Reply to Message

Kirill Korotaev wrote:

> This patch does simple things:

> - intruduces an bc_magic field on beancunter to make sure

> union on struct page is correctly used in next patches

> - adds nr_beancounters

> - adds unused_privvmpages variable (counter of privvm pages

> which are not mapped into VM address space and thus potentially
> can be allocated later)

>

> +static inline void privwvm_uncharge(struct beancounter *bc, unsigned long sz)
> +{

> + if (unlikely(bc->unused_privwvmpages < sz)) {

>+ printk("BC: overuncharging %d unused pages: val %lu held %lu\n",
>+ bc->bc_id, sz, bc->unused_privvmpages);

| hit this path, when | do not enable CONFIG_BEANCOUNTERS_RSS. | suspect it has
something to do with the code in mod_rss_pages(). | suspect the that
CONFIG_BEANCOUNTERS_RSS needs to be enabled to get the accounting right.

In addition, Could you please make this a warning with KERN_WARNING.

>+ sz = bc->unused_privvmpages;
>+}

> + bc->unused_privvmpages -= sz;
> + bc_update_privvmpages(bc);

> +}

>+

Balbir Singh,
Linux Technology Center,
IBM Software Labs

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Chandra Seetharaman on Thu, 07 Sep 2006 19:16:56 GMT

View Forum Message <> Reply to Message

On Thu, 2006-09-07 at 11:29 +0400, Pavel Emelianov wrote:

> Chandra Seetharaman wrote:

>

> [snip]

> >>> Will we need new user/kernel interfaces for cpu, i/o bandwidth, etc...?

Page 151 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=675
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6078#msg_6078
https://new-forum.openvz.org/index.php?t=post&reply_to=6078
https://new-forum.openvz.org/index.php?t=usrinfo&id=665
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6083#msg_6083
https://new-forum.openvz.org/index.php?t=post&reply_to=6083
https://new-forum.openvz.org/index.php

> >>>

> >> no. no new interfaces are required.

> >>

> >

> > Good to know that.

> >

> > Your CPU controller supports guarantee ?

> >

> |t does, but CPU controller is not so simple as memory one.

Hmm... the reason | asked is that the UBC infrastructure doesn't provide
guarantee support and Kirill mentioned there is no changes required to
UBC if you have to move your CPU controller to be under UBC.

>From your reply it does look like you need to make some changes (add
guarantee support) to UBC, if you want to move the CPU controller to be
under UBC.

> > Do you have a i/o controller ?

> >

> >

>>> BUT: | remind you the talks at OKS/OLS and in previous UBC discussions.
> >> |t was noted that having a separate interfaces for CPU, I/O bandwidth
> >>

> >

> > But, it will be lot simpler for the user to configure/use if they are

> > together. We should discuss this also.

> >

> IMHO such unification may only imply that one syscall is used to pass

> configuration info into kernel.

> Each controller has specific configurating parameters different from the

> other ones. E.g. CPU controller must assign a "weight" to each group to

> share CPU time accordingly, but what is a "weight" for memory controller?
> |O may operate on "bandwidth" and it's not clear what is a "bandwidth" in
> Kb/sec for CPU controller and so on.

>

> [snip]

> >> The question is - whether web server is multithreaded or not...

> >> |f it is not - then no problem here, you can change current

> >> context and new resources will be charged accordingly.

> >>

> >> And current BC code is _able to handle it with _minor_ changes.

> >> (One just need to save bc not on mm struct, but rather on vma struct

> >> and change mm->bc on set_bc_id()).

> >>

> >> However, no one (can some one from CKRM team please?) explained so far
> >> what to do with threads. Consider the following example.

> >>

Page 152 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> >> 1. Threaded web server spawns a child to serve a client.

> >> 2. child thread touches some pages and they are charged to child BC
>>> (which differs from parent's one)

> >> 3. child exits, but since its mm is shared with parent, these pages

>>> stay mapped and charged to child BC.

> >>

> >> So the question is: what to do with these pages?

> >> - should we recharge them to another BC?

> >> - leave them charged?

> >>

> >

> > Leave them charged. It will be charged to the appropriate UBC when they
> > touch it again.

> >

> Do you mean that page must be re-charged each time someone touches it?

What | meant is that to leave them charged, and if when they are
ummapped and mapped later, charge it to the appropriate BC.

Chandra Seetharaman | Be careful what you choose....
- sekharan@us.ibm.com | you may get it.

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Chandra Seetharaman on Thu, 07 Sep 2006 19:29:15 GMT

View Forum Message <> Reply to Message

On Thu, 2006-09-07 at 11:29 +0400, Pavel Emelianov wrote:
<snip>

> >> BUT: | remind you the talks at OKS/OLS and in previous UBC discussions.
> >> |t was noted that having a separate interfaces for CPU, 1/0 bandwidth
> >>

> >

> > But, it will be lot simpler for the user to configure/use if they are

> > together. We should discuss this also.

> >

> IMHO such unification may only imply that one syscall is used to pass

> configuration info into kernel.

> Each controller has specific configurating parameters different from the

> other ones. E.g. CPU controller must assign a "weight" to each group to

> share CPU time accordingly, but what is a "weight" for memory controller?
> |O may operate on "bandwidth" and it's not clear what is a "bandwidth" in

Page 153 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=665
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6085#msg_6085
https://new-forum.openvz.org/index.php?t=post&reply_to=6085
https://new-forum.openvz.org/index.php

> Kb/sec for CPU controller and so on.

CKRM/RG handles this by eliminating the units from the interface and
abstracting them to be "shares". Each resource controller converts the
shares to its own units and handles properly.

User can specify the quantities simply as a percentage. CPU controller
would treat it as cycles/ticks (within a time), memory controller would
treat it as number of pages, and I/O controller would treat it as
bandwidth, and so on...

Chandra Seetharaman | Be careful what you choose....
- sekharan@us.ibm.com | you may get it.

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Pavel Emelianov on Fri, 08 Sep 2006 07:22:47 GMT

View Forum Message <> Reply to Message

Chandra Seetharaman wrote:

[snip]
>>>> The question is - whether web server is multithreaded or not...

>>>> [f it is not - then no problem here, you can change current

>>>> context and new resources will be charged accordingly.

>>>>

>>>> And current BC code is _able_to handle it with _minor_ changes.
>>>> (One just need to save bc not on mm struct, but rather on vma struct
>>>> and change mm->bc on set_bc_id()).

>>>>

>>>> However, no one (can some one from CKRM team please?) explained so far
>>>> what to do with threads. Consider the following example.

>>>>

>>>> 1. Threaded web server spawns a child to serve a client.

>>>> 2, child thread touches some pages and they are charged to child BC
>>>> (which differs from parent's one)

>>>> 3, child exits, but since its mm is shared with parent, these pages
>>>> stay mapped and charged to child BC.

>>>>

>>>> So the question is: what to do with these pages?

>>>> - should we recharge them to another BC?

>>>> - leave them charged?

Page 154 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=725
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6095#msg_6095
https://new-forum.openvz.org/index.php?t=post&reply_to=6095
https://new-forum.openvz.org/index.php

>>>>

>>>>

>>> | eave them charged. It will be charged to the appropriate UBC when they
>>> touch it again.

>>>

>>>

>> Do you mean that page must be re-charged each time someone touches it?
>>

>

> What | meant is that to leave them charged, and if when they are

> ummapped and mapped later, charge it to the appropriate BC.

>

In this case multithreaded apache that tries to serve each domain in

separate BC will fill the memory with BC-s, held by pages allocated

and mapped in threads.

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Pavel Emelianov on Fri, 08 Sep 2006 07:26:34 GMT

View Forum Message <> Reply to Message

Chandra Seetharaman wrote:

> On Thu, 2006-09-07 at 11:29 +0400, Pavel Emelianov wrote:

> <snip>

>

>

>>>> BUT: | remind you the talks at OKS/OLS and in previous UBC discussions.
>>>> |t was noted that having a separate interfaces for CPU, I/0 bandwidth
>>>>

>>>>

>>> But, it will be lot simpler for the user to configure/use if they are

>>> together. We should discuss this also.

>>>

>>>

>> |IMHO such unification may only imply that one syscall is used to pass
>> configuration info into kernel.

>> Each controller has specific configurating parameters different from the
>> other ones. E.g. CPU controller must assign a "weight" to each group to
>> share CPU time accordingly, but what is a "weight" for memory controller?
>> |0 may operate on "bandwidth" and it's not clear what is a "bandwidth" in
>> Kb/sec for CPU controller and so on.

>>

>

> CKRM/RG handles this by eliminating the units from the interface and

> abstracting them to be "shares". Each resource controller converts the

> shares to its own units and handles properly.

>

Page 155 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=725
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6096#msg_6096
https://new-forum.openvz.org/index.php?t=post&reply_to=6096
https://new-forum.openvz.org/index.php

That's what I'm talking about - common syscall/ioct/etc and each controller
parses its input itself. That's OK for us.

[snip]

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Pavel Emelianov on Fri, 08 Sep 2006 07:33:00 GMT

View Forum Message <> Reply to Message

Chandra Seetharaman wrote:

> On Thu, 2006-09-07 at 00:47 +0530, Balbir Singh wrote:

>

> <snip>

>> Some not quite so urgent ones - like support for guarantees. | think
>> this can

>

> IMO, guarantee support should be considered to be part of the

> infrastructure. Controller functionalities/implementation will be

> different with/without guarantee support. In other words, adding

> guarantee feature later will cause re-implementations.

I'm afraid we have different understandings of what a "guarantee” is.
Don't we?

Guarantee may be one of

1. container will be able to touch that number of pages

2. container will be able to sys_mmap() that number of pages

3. container will not be killed unless it touches that number of pages
4. anything else

Let's decide what kind of a guarantee we want.

>> be worked out as we make progress.

>>

>>> | agree with these requirements and lets move into this direction.

>>> But moving so far can't be done without accepting:

>>> 1. core functionality

>>> 2. accounting

>>>

>> Some of the core functionality might be a limiting factor for the requirements.
>> Lets agree on the requirements, | think its a great step forward and then
>> puild the core functionality with these requirements in mind.

>>

>>> Thanks,

>>> Kirill

>>>

Page 156 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=725
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6098#msg_6098
https://new-forum.openvz.org/index.php?t=post&reply_to=6098
https://new-forum.openvz.org/index.php

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Dave Hansen on Fri, 08 Sep 2006 15:30:50 GMT

View Forum Message <> Reply to Message

On Tue, 2006-09-05 at 17:17 -0700, Rohit Seth wrote:

> |I'm wondering why not have different processes to serve different
> domains on the same physical server...particularly when they have
> different database to work on.

This is largely because this is | think how it is done today, and it has

a lot of disadvantages. They also want to be able to account for

traffic on the same database. Think of a large web hosting environment
where you charged everyone (hundreds or thousands of users) by CPU and
I/0 bandwidth used at all levels of a given transaction.

> |s the amount of memory that you save by

> having a single copy that much useful that you are even okay to

> serialize the whole operation (What would happen, while the request for
> foo.com is getting worked on, there is another request for

> foo_bar.com...does it need to wait for foo.com request to get done

> before it can be served).

Let's put it this way. Enterprise databases can be memory pigs. It
isn't feasible to run hundreds or thousands of copies on each machine.

-- Dave

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Dave Hansen on Fri, 08 Sep 2006 15:33:53 GMT

View Forum Message <> Reply to Message

On Wed, 2006-09-06 at 17:06 +0400, Kirill Korotaev wrote:
> |t was discussed multiple times already.
> The key problem here is the objects which do not _belong_ to tasks.

Heh. The original CKRM patches didn't have a strong binding to tasks.
They took it away to make them more mergeable. ;)

-- Dave

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Dave Hansen on Fri, 08 Sep 2006 15:43:41 GMT

Page 157 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=90
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6122#msg_6122
https://new-forum.openvz.org/index.php?t=post&reply_to=6122
https://new-forum.openvz.org/index.php?t=usrinfo&id=90
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6118#msg_6118
https://new-forum.openvz.org/index.php?t=post&reply_to=6118
https://new-forum.openvz.org/index.php?t=usrinfo&id=90
https://new-forum.openvz.org/index.php

View Forum Message <> Reply to Message

On Fri, 2006-09-08 at 11:33 +0400, Pavel Emelianov wrote:
> I'm afraid we have different understandings of what a "guarantee” is.

It appears so.

> Don't we?

> Guarantee may be one of

>

> 1. container will be able to touch that number of pages

> 2. container will be able to sys_mmap() that number of pages

> 3. container will not be killed unless it touches that number of pages

A "death sentence" guarantee? | like it. :)

> 4. anything else
>

> Let's decide what kind of a guarantee we want.

| think of it as: "I will be allowed to use this many total pages, and
they are guaranteed not to fail." (1), | think. The sum of all of the
system's guarantees must be less than or equal to the amount of free
memory on the machine.

If we knew to which NUMA node the memory was going to go, we might as
well take the pages out of the allocator.

-- Dave

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Rohit Seth on Fri, 08 Sep 2006 17:10:37 GMT

View Forum Message <> Reply to Message

On Fri, 2006-09-08 at 08:30 -0700, Dave Hansen wrote:

> On Tue, 2006-09-05 at 17:17 -0700, Rohit Seth wrote:

> > |'m wondering why not have different processes to serve different
> > domains on the same physical server...particularly when they have
> > different database to work on.

>

> This is largely because this is | think how it is done today, and it has
> a lot of disadvantages.

If it has lot of disadvantages then we should try to avoid that
mechanism. Though I think it is okay to allow processes to be moved
around with the clear expectation that it is a very heavy operation (as

Page 158 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6120#msg_6120
https://new-forum.openvz.org/index.php?t=post&reply_to=6120
https://new-forum.openvz.org/index.php?t=usrinfo&id=664
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6125#msg_6125
https://new-forum.openvz.org/index.php?t=post&reply_to=6125
https://new-forum.openvz.org/index.php

| think at least all the anon pages should be moved too along with task)
and should not be generally done.

> They also want to be able to account for

> traffic on the same database. Think of a large web hosting environment
> where you charged everyone (hundreds or thousands of users) by CPU and
> |/O bandwidth used at all levels of a given transaction.

>

> > |s the amount of memory that you save by

> > having a single copy that much useful that you are even okay to

> > serialize the whole operation (What would happen, while the request for
> > foo.com is getting worked on, there is another request for

> > foo_bar.com...does it need to wait for foo.com request to get done

> > pefore it can be served).

>

> Let's put it this way. Enterprise databases can be memory pigs. It

> isn't feasible to run hundreds or thousands of copies on each machine.
>

The extra cost is probably the stack and private data segment...yes

there could be trade offs there depending on how big these segments are.
Though if there are big shared segments then that can be charged to a
single container.

Thanks,
-rohit

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Shailabh Nagar on Fri, 08 Sep 2006 17:26:53 GMT

View Forum Message <> Reply to Message

Rohit Seth wrote:

> On Fri, 2006-09-08 at 08:30 -0700, Dave Hansen wrote:

>> On Tue, 2006-09-05 at 17:17 -0700, Rohit Seth wrote:

>>> |'m wondering why not have different processes to serve different
>>> domains on the same physical server...particularly when they have
>>> different database to work on.

>> This is largely because this is | think how it is done today, and it has
>> a lot of disadvantages.

>

> |If it has lot of disadvantages then we should try to avoid that

> mechanism. Though I think it is okay to allow processes to be moved
> around with the clear expectation that it is a very heavy operation (as
> | think at least all the anon pages should be moved too along with task)
> and should not be generally done.

Page 159 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=746
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6140#msg_6140
https://new-forum.openvz.org/index.php?t=post&reply_to=6140
https://new-forum.openvz.org/index.php

>

>> They also want to be able to account for

>> traffic on the same database. Think of a large web hosting environment
>> where you charged everyone (hundreds or thousands of users) by CPU and
>> /O bandwidth used at all levels of a given transaction.

>>

>>> |s the amount of memory that you save by

>>> having a single copy that much useful that you are even okay to

>>> serialize the whole operation (What would happen, while the request for
>>> foo.com is getting worked on, there is another request for

>>> foo_bar.com...does it need to wait for foo.com request to get done

>>> pefore it can be served).

>> Let's put it this way. Enterprise databases can be memory pigs. It

>> jsn't feasible to run hundreds or thousands of copies on each machine.
>>

>

>

> The extra cost is probably the stack and private data segment...

Also maintenability, licensing, blah, blah.

Replicating the software stack for each service level one

wishes to provide, if avoidable as it seems to be, isn't such a good idea.

Same sort of reasoning for why containers make sense compared to Xen/VMWare
instances.

Memory resources, by their very nature, will be tougher to account when a
single database/app server services multiple clients and we can essentially
give up on that (taking the approach that only limited recharging can ever
be achieved). But cpu atleast is easy to charge correctly and since that will
also indirectly influence the requests for memory & 1/0O, its useful to allow
middleware to change the accounting base for a thread/task.

--Shailabh

> yes

> there could be trade offs there depending on how big these segments are.
> Though if there are big shared segments then that can be charged to a

> single container.

>
> Thanks,
> -rohit

> Using Tomcat but need to do more? Need to support web services, security?
> Get stuff done quickly with pre-integrated technology to make your job easier
> Download IBM WebSphere Application Server v.1.0.1 based on Apache Geronimo

Page 160 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> http://sel.as-us.falkag.net/sel?cmd=Ink&kid=120709&b id=263057&dat=121642
>

> ckrm-tech mailing list
> https://lists.sourceforge.net/lists/listinfo/ckrm-tech

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Balbir Singh on Fri, 08 Sep 2006 18:26:56 GMT

View Forum Message <> Reply to Message

Dave Hansen wrote:

> On Fri, 2006-09-08 at 11:33 +0400, Pavel Emelianov wrote:

>> |'m afraid we have different understandings of what a "guarantee" is.
>

> |t appears so.

>

>> Don't we?

>> Guarantee may be one of

>>

>> 1. container will be able to touch that number of pages

>> 2. container will be able to sys_mmap() that number of pages

>> 3. container will not be killed unless it touches that number of pages
>

> A "death sentence" guarantee? | like it. :)

>

>> 4, anything else

>>

>> Let's decide what kind of a guarantee we want.

| think of guarantees w.r.t resources as the lower limit on the resource.
Guarantees and limits can be thought of as the range (guarantee, limit]
for the usage of the resource.

>

> | think of it as: "I will be allowed to use this many total pages, and

> they are guaranteed not to fail." (1), I think. The sum of all of the

> system's guarantees must be less than or equal to the amount of free
> memory on the machine.

>

Yes, totally agree.

> |f we knew to which NUMA node the memory was going to go, we might as
> well take the pages out of the allocator.

>

> -- Dave

>

Page 161 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=675
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6131#msg_6131
https://new-forum.openvz.org/index.php?t=post&reply_to=6131
https://new-forum.openvz.org/index.php

Balbir Singh,
Linux Technology Center,
IBM Software Labs

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Chandra Seetharaman on Fri, 08 Sep 2006 19:07:22 GMT

View Forum Message <> Reply to Message

On Fri, 2006-09-08 at 11:22 +0400, Pavel Emelianov wrote:

> Chandra Seetharaman wrote:

>

> [snip]

> >>>> The question is - whether web server is multithreaded or not...

> >>>> |f it is not - then no problem here, you can change current

> >>>> context and new resources will be charged accordingly.

> >>>>

> >>>> And current BC code is _able_ to handle it with _minor_ changes.

> >>>> (One just need to save bc not on mm struct, but rather on vma struct
> >>>> and change mm->bc on set_bc_id()).

> >>>>

> >>>> However, no one (can some one from CKRM team please?) explained so far
> >>>> what to do with threads. Consider the following example.

> >>>>

> >>>> 1. Threaded web server spawns a child to serve a client.

> >>>> 2. child thread touches some pages and they are charged to child BC
>>>>> (which differs from parent's one)

> >>>> 3. child exits, but since its mm is shared with parent, these pages
>>>>> stay mapped and charged to child BC.

> >>>>

> >>>> S0 the question is: what to do with these pages?

> >>>> - should we recharge them to another BC?

> >>>> - |eave them charged?

> >>>>

> >>>>

> >>> | eave them charged. It will be charged to the appropriate UBC when they
> >>> touch it again.

> >>>

> >>>

> >> Do you mean that page must be re-charged each time someone touches it?
> >>

> >

> > What | meant is that to leave them charged, and if when they are

> > ummapped and mapped later, charge it to the appropriate BC.

> >

Page 162 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=665
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6132#msg_6132
https://new-forum.openvz.org/index.php?t=post&reply_to=6132
https://new-forum.openvz.org/index.php

> In this case multithreaded apache that tries to serve each domain in
> separate BC will fill the memory with BC-s, held by pages allocated
> and mapped in threads.

| do not understand how the memory will be filled with BCs. Can you
explain, please.

Chandra Seetharaman | Be careful what you choose....
- sekharan@us.ibm.com | you may get it.

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Chandra Seetharaman on Fri, 08 Sep 2006 19:10:41 GMT

View Forum Message <> Reply to Message

On Fri, 2006-09-08 at 11:26 +0400, Pavel Emelianov wrote:

> Chandra Seetharaman wrote:

> > On Thu, 2006-09-07 at 11:29 +0400, Pavel Emelianov wrote:

> > <snip>

> >

> >

> >>>> BUT: | remind you the talks at OKS/OLS and in previous UBC discussions.
> >>>> |t was noted that having a separate interfaces for CPU, 1/0 bandwidth
> >>>>

> >>>>

> >>> But, it will be lot simpler for the user to configure/use if they are

> >>> together. We should discuss this also.

> >>>

> >>>

> >> IMHO such unification may only imply that one syscall is used to pass

> >> configuration info into kernel.

> >> Each controller has specific configurating parameters different from the
> >> other ones. E.g. CPU controller must assign a "weight" to each group to
> >> share CPU time accordingly, but what is a "weight" for memory controller?
> >> |0 may operate on "bandwidth" and it's not clear what is a "bandwidth" in
> >> Kb/sec for CPU controller and so on.

> >>

> >

> > CKRM/RG handles this by eliminating the units from the interface and

> > abstracting them to be "shares". Each resource controller converts the

> > shares to its own units and handles properly.

> >

> That's what I'm talking about - common syscall/ioct/etc and each controller
> parses its input itself. That's OK for us.

Page 163 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=665
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6133#msg_6133
https://new-forum.openvz.org/index.php?t=post&reply_to=6133
https://new-forum.openvz.org/index.php

Yes, we can eliminate the "units"(KBs, cycles/ticks, pages etc.,) from
the interface and use a (unitless) number to specify the amount of
resource a resource group/container uses.

> Using Tomcat but need to do more? Need to support web services, security?

> Get stuff done quickly with pre-integrated technology to make your job easier

> Download IBM WebSphere Application Server v.1.0.1 based on Apache Geronimo
> http://sel.as-us.falkag.net/sel?cmd=Ink&kid=120709&b id=263057&dat=121642

>

> ckrm-tech mailing list

> https://lists.sourceforge.net/lists/listinfo/ckrm-tech

Chandra Seetharaman | Be careful what you choose....
- sekharan@us.ibm.com | you may get it.

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Chandra Seetharaman on Fri, 08 Sep 2006 19:23:44 GMT

View Forum Message <> Reply to Message

On Fri, 2006-09-08 at 11:33 +0400, Pavel Emelianov wrote:

> Chandra Seetharaman wrote:

> > On Thu, 2006-09-07 at 00:47 +0530, Balbir Singh wrote:

> >

> > <snip>

> >> Some not quite so urgent ones - like support for guarantees. | think
> >> this can

> >

> > MO, guarantee support should be considered to be part of the

> > infrastructure. Controller functionalities/implementation will be

> > different with/without guarantee support. In other words, adding

> > guarantee feature later will cause re-implementations.

> I'm afraid we have different understandings of what a "guarantee” is.
> Don't we?

may be (I am not sure :), lets get it clarified.
> Guarantee may be one of

>
> 1. container will be able to touch that number of pages

Page 164 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=665
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6134#msg_6134
https://new-forum.openvz.org/index.php?t=post&reply_to=6134
https://new-forum.openvz.org/index.php

> 2. container will be able to sys_mmap() that number of pages
> 3. container will not be killed unless it touches that number of pages
> 4. anything else

| would say (1) with slight modification
"container will be able to touch _at least that number of pages”

Note that it is not only in the context of memory alone, it is generic
across resources.

For CPU it will be, "container will get _at least_ X ticks in Y seconds"

For number of tasks it will be, "container will get _at least_ X active
tasks at any point of time" and so on.

And as Dave pointed, sum of guarantees of all containers _can not_
exceed the total amount of that resource available at the system level.

>

> Let's decide what kind of a guarantee we want.

> >> be worked out as we make progress.

> >>

> >>> | agree with these requirements and lets move into this direction.

> >>> But moving so far can't be done without accepting:

> >>> 1. core functionality

> >>> 2, accounting

> >>>

> >> Some of the core functionality might be a limiting factor for the requirements.
> >> Lets agree on the requirements, | think its a great step forward and then
> >> puild the core functionality with these requirements in mind.

> >>

> >>> Thanks,

> >>> Kirill

> >>>

> Using Tomcat but need to do more? Need to support web services, security?

> Get stuff done quickly with pre-integrated technology to make your job easier

> Download IBM WebSphere Application Server v.1.0.1 based on Apache Geronimo
> http://sel.as-us.falkag.net/sel?cmd=Ink&kid=120709&b id=263057&dat=121642

>

> ckrm-tech mailing list

> https://lists.sourceforge.net/lists/listinfo/ckrm-tech

Chandra Seetharaman | Be careful what you choose....

Page 165 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Rohit Seth on Fri, 08 Sep 2006 21:43:54 GMT

View Forum Message <> Reply to Message

On Fri, 2006-09-08 at 12:23 -0700, Chandra Seetharaman wrote:

> On Fri, 2006-09-08 at 11:33 +0400, Pavel Emelianov wrote:

> > Chandra Seetharaman wrote:

> > > On Thu, 2006-09-07 at 00:47 +0530, Balbir Singh wrote:

>>>

> > > <snip>

> > >> Some not quite so urgent ones - like support for guarantees. | think
> > >> this can

>>>

> > > |MO, guarantee support should be considered to be part of the

> > > infrastructure. Controller functionalities/implementation will be

> > > different with/without guarantee support. In other words, adding

> > > guarantee feature later will cause re-implementations.

> > |'m afraid we have different understandings of what a "guarantee” is.
>> Don't we?

>

> may be (I am not sure :), lets get it clarified.

>

> > Guarantee may be one of

> >

>> 1. container will be able to touch that number of pages

>> 2. container will be able to sys_mmap() that number of pages

>> 3. container will not be killed unless it touches that number of pages
>> 4. anything else

>

> | would say (1) with slight modification

> "container will be able to touch _at least_that number of pages”

>

Does this scheme support running of tasks outside of containers on the
same platform where you have tasks running inside containers. If so
then how will you ensure processes running out side any container will
not leave less than the total guaranteed memory to different containers.

-rohit

Page 166 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=664
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6136#msg_6136
https://new-forum.openvz.org/index.php?t=post&reply_to=6136
https://new-forum.openvz.org/index.php

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Pavel Emelianov on Mon, 11 Sep 2006 06:56:59 GMT

View Forum Message <> Reply to Message

Balbir Singh wrote:

> Dave Hansen wrote:

>> On Fri, 2006-09-08 at 11:33 +0400, Pavel Emelianov wrote:

>>> |'m afraid we have different understandings of what a "guarantee” is.
>>

>> |t appears so.

>>

>>> Don't we?

>>> Guarantee may be one of

>>>

>>> 1. container will be able to touch that number of pages

>>> 2. container will be able to sys_mmap() that number of pages

>>> 3. container will not be killed unless it touches that number of

>>> pages

>>

>> A "death sentence" guarantee? | like it. :)

>>

>>> 4. anything else

>>>

>>> Let's decide what kind of a guarantee we want.

>

> | think of guarantees w.r.t resources as the lower limit on the resource.
> Guarantees and limits can be thought of as the range (guarantee, limit]

> for the usage of the resource.
>

>>
>> | think of it as: "I will be allowed to use this many total pages, and

>> they are guaranteed not to fail." (1), | think. The sum of all of the

>> system's guarantees must be less than or equal to the amount of free
>> memory on the machine.

>

> Yes, totally agree.

Such a guarantee is really a limit and this limit is even harder than
BC's one :)

E.g. | have a node with 1Gb of ram and 10 containers with 100Mb
guarantee each.
| want to start one more. What shall | do not to break guarantees?

>
>> |If we knew to which NUMA node the memory was going to go, we might as

>> well take the pages out of the allocator.
>>

Page 167 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=725
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6163#msg_6163
https://new-forum.openvz.org/index.php?t=post&reply_to=6163
https://new-forum.openvz.org/index.php

>> -- Dave
>>

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Pavel Emelianov on Mon, 11 Sep 2006 07:02:06 GMT

View Forum Message <> Reply to Message

Chandra Seetharaman wrote:

> On Fri, 2006-09-08 at 11:22 +0400, Pavel Emelianov wrote:

>

>> Chandra Seetharaman wrote:

>>

>> [snip]

>>

>>>>>> The question is - whether web server is multithreaded or not...
>>>>>> |f it is not - then no problem here, you can change current

>>>>>> context and new resources will be charged accordingly.

>>>>>>

>>>>>> And current BC code is _able_ to handle it with _minor_ changes.
>>>>>> (One just need to save bc not on mm struct, but rather on vma struct
>>>>>> and change mm->bc on set_bc_id()).

>>>>>>

>>>>>> However, no one (can some one from CKRM team please?) explained so far
>>>>>> what to do with threads. Consider the following example.

>>>>>>

>>>>>> 1. Threaded web server spawns a child to serve a client.

>>>>>> 2. child thread touches some pages and they are charged to child BC
>>>>>> (which differs from parent's one)

>>>>>> 3. child exits, but since its mm is shared with parent, these pages
>>>>>> stay mapped and charged to child BC.

>>>>>>

>>>>>> S0 the question is: what to do with these pages?

>>>>>> - should we recharge them to another BC?

>>>>>> - |eave them charged?

>>>>>>

>>>>>>

>>>>>>

>>>>> | eave them charged. It will be charged to the appropriate UBC when they
>>>>> touch it again.

>>>>>

>S>5>>>

>>>>>

>>>> Do you mean that page must be re-charged each time someone touches it?
>>>>

>>>>

>>> What | meant is that to leave them charged, and if when they are

Page 168 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=725
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6165#msg_6165
https://new-forum.openvz.org/index.php?t=post&reply_to=6165
https://new-forum.openvz.org/index.php

>>> ummapped and mapped later, charge it to the appropriate BC.
>>>
>>>
>> |n this case multithreaded apache that tries to serve each domain in
>> separate BC will fill the memory with BC-s, held by pages allocated
>> and mapped in threads.
>>
>
> | do not understand how the memory will be filled with BCs. Can you
> explain, please.
>
Sure. At the beginning | have one task with one BC. Then
1. A thread is spawned and new BC is created,;
2. New thread touches a new page (e.g. maps a new file) which is charged
to new BC

(and this means that this BC's must stay in memory till page is
uncharged);
3. Thread exits after serving the request, but since it's mm is shared
with parent

all the touched pages stay resident and, thus, the new BC is still
pinned in memory.
Steps 1-3 are done multiple times for new pages (new files).
Remember that we're discussing the case when pages are not recharged.

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Balbir Singh on Mon, 11 Sep 2006 07:54:06 GMT

View Forum Message <> Reply to Message

Pavel Emelianov wrote:

> Balbir Singh wrote:

>> Dave Hansen wrote:

>>> On Fri, 2006-09-08 at 11:33 +0400, Pavel Emelianov wrote:
>>>> |'m afraid we have different understandings of what a "guarantee" is.
>>> |t appears so.

>>>

>>>> Don't we?

>>>> Guarantee may be one of

>>>>

>>>> 1. container will be able to touch that number of pages

>>>> 2. container will be able to sys_mmap() that number of pages
>>>> 3. container will not be killed unless it touches that number of
>>>> pages

>>> A "death sentence" guarantee? | like it. :)

>>>

>>>> 4. anything else

>>>>

Page 169 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=675
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6169#msg_6169
https://new-forum.openvz.org/index.php?t=post&reply_to=6169
https://new-forum.openvz.org/index.php

>>>> |et's decide what kind of a guarantee we want.

>> | think of guarantees w.r.t resources as the lower limit on the resource.
>> Guarantees and limits can be thought of as the range (guarantee, limit]
>> for the usage of the resource.

>>

>>> | think of it as: "I will be allowed to use this many total pages, and
>>> they are guaranteed not to fail.” (1), I think. The sum of all of the
>>> system's guarantees must be less than or equal to the amount of free
>>> memory on the machine.

>> Yes, totally agree.

>

> Such a guarantee is really a limit and this limit is even harder than

> BC's one)

>

> E.g. | have a node with 1Gb of ram and 10 containers with 1700Mb

> guarantee each.

> | want to start one more. What shall | do not to break guarantees?

Don't start the new container or change the guarantees of the existing ones

to accommodate this one :) The QoS design (done by the administrator) should
take care of such use-cases. It would be perfectly ok to have a container

that does not care about guarantees to set their guarantee to 0 and set

their limit to the desired value. As Chandra has been stating we need two
parameters (guarantee, limit), either can be optional, but not both.

>
>>> |f we knew to which NUMA node the memory was going to go, we might as
>>> well take the pages out of the allocator.

>>>
>>> -- Dave
>>>

Balbir Singh,

Linux Technology Center,
IBM Software Labs

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Pavel Emelianov on Mon, 11 Sep 2006 08:13:59 GMT

View Forum Message <> Reply to Message

Balbir Singh wrote:
> Pavel Emelianov wrote:

Page 170 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=725
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6170#msg_6170
https://new-forum.openvz.org/index.php?t=post&reply_to=6170
https://new-forum.openvz.org/index.php

>> Balbir Singh wrote:

>>> Dave Hansen wrote:

>>>> On Fri, 2006-09-08 at 11:33 +0400, Pavel Emelianov wrote:

>>>>> |'m afraid we have different understandings of what a "guarantee" is.
>>>> |t appears So.

>>>>

>>>>> Don't we?

>>>>> Guarantee may be one of

>>5>>>

>>>>> 1. container will be able to touch that number of pages

>>>>> 2. container will be able to sys_mmap() that number of pages
>>>>> 3. container will not be killed unless it touches that number of
>>>>> pages

>>>> A "death sentence"” guarantee? | like it. :)

>>>>

>>>>> 4. anything else

>>5>>>

>>>>> |et's decide what kind of a guarantee we want.

>>> | think of guarantees w.r.t resources as the lower limit on the

>>> resource.

>>> Guarantees and limits can be thought of as the range (guarantee, limit]
>>> for the usage of the resource.

>>>

>>>> | think of it as: "l will be allowed to use this many total pages, and
>>>> they are guaranteed not to fail." (1), | think. The sum of all of

>>>> the

>>>> system's guarantees must be less than or equal to the amount of free
>>>> memory on the machine.

>>> Yes, totally agree.

>>

>> Such a guarantee is really a limit and this limit is even harder than
>>BC's one :)

>>

>> E.g. | have a node with 1Gb of ram and 10 containers with 100Mb

>> guarantee each.

>> | want to start one more. What shall | do not to break guarantees?

>

> Don't start the new container or change the guarantees of the existing

> ones

> to accommodate this one :) The QoS design (done by the administrator)
> should

> take care of such use-cases. It would be perfectly ok to have a container
> that does not care about guarantees to set their guarantee to 0 and set
> their limit to the desired value. As Chandra has been stating we need two
> parameters (guarantee, limit), either can be optional, but not both.

If | set up 9 groups to have 100Mb limit then | have 100Mb assured (on
1Gb node)

for the 10th one exactly. And | do not have to set up any guarantee as

Page 171 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

it won't affect
anything. So what a guarantee parameter is needed for?

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Balbir Singh on Mon, 11 Sep 2006 08:19:22 GMT

View Forum Message <> Reply to Message

Pavel Emelianov wrote:

> Balbir Singh wrote:

>> Pavel Emelianov wrote:

>>> Balbir Singh wrote:

>>>> Dave Hansen wrote:

>>>>> On Fri, 2006-09-08 at 11:33 +0400, Pavel Emelianov wrote:

>>>>>> |'m afraid we have different understandings of what a "guarantee" is.

>>>>> |t appears So.

>>5>>>

>>>>>> Don't we?

>>>>>> Guarantee may be one of

>>5>>>>

>>>>>> 1. container will be able to touch that number of pages
>>>>>> 2. container will be able to sys_mmap() that number of pages
>>>>>> 3. container will not be killed unless it touches that number of
>S>5>5>>> pages

>>>>> A "death sentence" guarantee? | like it. :)

>>5>>>

>>>>>> 4. anything else

>S>5>>>>

>>>>>> |et's decide what kind of a guarantee we want.

>>>> | think of guarantees w.r.t resources as the lower limit on the

>>>> resource.

>>>> Guarantees and limits can be thought of as the range (guarantee, limit]
>>>> for the usage of the resource.

>>>>

>>>>> | think of it as: "I will be allowed to use this many total pages, and
>>>>> they are guaranteed not to fail." (1), | think. The sum of all of
>>>>> the

>>>>> gystem's guarantees must be less than or equal to the amount of free
>>>>> memory on the machine.

>>>> Yes, totally agree.

>>> Such a guarantee is really a limit and this limit is even harder than
>>> BC's one :)

>>>

>>> E.g. | have a node with 1Gb of ram and 10 containers with 100Mb
>>> guarantee each.

>>> | want to start one more. What shall | do not to break guarantees?
>> Don't start the new container or change the guarantees of the existing

Page 172 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=675
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6172#msg_6172
https://new-forum.openvz.org/index.php?t=post&reply_to=6172
https://new-forum.openvz.org/index.php

>> ones

>> to accommodate this one :) The QoS design (done by the administrator)
>> should

>> take care of such use-cases. It would be perfectly ok to have a container
>> that does not care about guarantees to set their guarantee to 0 and set
>> their limit to the desired value. As Chandra has been stating we need two
>> parameters (guarantee, limit), either can be optional, but not both.

> |If | set up 9 groups to have 100Mb limit then | have 100Mb assured (on

> 1Gb node)

> for the 10th one exactly. And | do not have to set up any guarantee as

> it won't affect

> anything. So what a guarantee parameter is needed for?

This use case works well for providing guarantee to one container. What if
| want guarantees of 1200Mb and 200Mb for two containers? How do | setup
the system using limits?

Even | restrict everyone else to 700Mb. With this | cannot be sure that
the remaining 300Mb will be distributed as 100Mb and 200Mb.

Balbir Singh,
Linux Technology Center,
IBM Software Labs

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Srivatsa Vaddagiri on Mon, 11 Sep 2006 10:21:52 GMT

View Forum Message <> Reply to Message

On Mon, Sep 11, 2006 at 12:13:59PM +0400, Pavel Emelianov wrote:

> If | set up 9 groups to have 100Mb limit then | have 100Mb assured (on
> 1Gb node)

> for the 10th one exactly. And | do not have to set up any guarantee as
> it won't affect

> anything. So what a guarantee parameter is needed for?

| presume you are talking of hard-limiting each group to 100 MB here. In
which case, wont the 100MB (reserved for 10th group) be unutilized
untill 10th group is started (it may never be started for that matter!).

IMO it would be better to go and use that free 100 MB for reclaimable memory
and give that up when 10th group is started.

Page 173 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=667
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6177#msg_6177
https://new-forum.openvz.org/index.php?t=post&reply_to=6177
https://new-forum.openvz.org/index.php

Regards,
vatsa

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Srivatsa Vaddagiri on Mon, 11 Sep 2006 13:04:28 GMT

View Forum Message <> Reply to Message

On Mon, Sep 11, 2006 at 11:02:06AM +0400, Pavel Emelianov wrote:
> Sure. At the beginning | have one task with one BC. Then
> 1. A thread is spawned and new BC is created;

Why do we have to create a BC for every new thread? A new BC is needed
for every new service level instead IMO. And typically there wont be
unlimited service levels.

> 2. New thread touches a new page (e.g. maps a new file) which is charged
> to new BC

> (and this means that this BC's must stay in memory till page is

> uncharged);

> 3. Thread exits after serving the request, but since it's mm is shared

> with parent

> all the touched pages stay resident and, thus, the new BC is still

> pinned in memory.

> Steps 1-3 are done multiple times for new pages (new files).

> Remember that we're discussing the case when pages are not recharged.

Regards,
vatsa

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added
user memory)
Posted by Chandra Seetharaman on Mon, 11 Sep 2006 18:25:07 GMT

View Forum Message <> Reply to Message

On Fri, 2006-09-08 at 14:43 -0700, Rohit Seth wrote:
<snip>

> > > Guarantee may be one of

>>>

>>> 1. container will be able to touch that number of pages

>>> 2. container will be able to sys_mmap() that number of pages

Page 174 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=667
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6188#msg_6188
https://new-forum.openvz.org/index.php?t=post&reply_to=6188
https://new-forum.openvz.org/index.php?t=usrinfo&id=665
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6195#msg_6195
https://new-forum.openvz.org/index.php?t=post&reply_to=6195
https://new-forum.openvz.org/index.php

>>> 3. container will not be killed unless it touches that number of pages
>>> 4. anything else

> >

> > | would say (1) with slight modification

>> "container will be able to touch _at least_ that number of pages"

> >

>

> Does this scheme support running of tasks outside of containers on the
> same platform where you have tasks running inside containers. If so

> then how will you ensure processes running out side any container will
> not leave less than the total guaranteed memory to different containers.
>

There could be a default container which doesn't have any guarantee or
limit. When you create containers and assign guarantees to each of them
make sure that you leave some amount of resource unassigned. That
unassigned resources can be used by the default container or can be used
by containers that want more than their guarantee (and less than their
limit). This is how CKRM/RG handles this issue.

-rohit

V VVVYV

> Using Tomcat but need to do more? Need to support web services, security?

> Get stuff done quickly with pre-integrated technology to make your job easier

> Download IBM WebSphere Application Server v.1.0.1 based on Apache Geronimo
> http://sel.as-us.falkag.net/sel?cmd=Ink&kid=120709&b id=263057&dat=121642

>

> ckrm-tech mailing list

> https://lists.sourceforge.net/lists/listinfo/ckrm-tech

Chandra Seetharaman | Be careful what you choose....
- sekharan@us.ibm.com | you may get it.

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Chandra Seetharaman on Mon, 11 Sep 2006 18:44:22 GMT

View Forum Message <> Reply to Message

On Mon, 2006-09-11 at 10:56 +0400, Pavel Emelianov wrote:

Page 175 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=665
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6197#msg_6197
https://new-forum.openvz.org/index.php?t=post&reply_to=6197
https://new-forum.openvz.org/index.php

<snip>

> >> | think of it as: "I will be allowed to use this many total pages, and

> >> they are guaranteed not to fail." (1), | think. The sum of all of the

> >> system's guarantees must be less than or equal to the amount of free
> >> memory on the machine.

> >

> > Yes, totally agree.

>

> Such a guarantee is really a limit and this limit is even harder than
> BC's one)

>

> E.g. | have a node with 1Gb of ram and 10 containers with 100Mb
> guarantee each.

In the first place system administrator should not be configuring it
that way, Then they are using it as a strict hard limit than guarantee
(as the resources guaranteed to one container is _not_ available to
others).

Besides, the above configuration is clearly _not_ work conservative.

They should use both guarantee and limit to associate resources to a
container/RG.

> | want to start one more. What shall | do not to break guarantees?
CKRM/RG handles it this way:

Amount of a resource a child RG gets is the ratio of its share value to
the parent's total # of shares. Children's resource allocation can be
changed just by changing the parent's total # of shares.

If you case about initial situation would be:
Total memory in the system 100MB
parent's total # of shares: 100 (1 share == 1MB)
10 children with # of shares: 10 (i.e each children has 10MB)

When | want to add another child, just change parent's total # of shares
to be say 125:

Total memory in the system 100MB

parent's total # of shares: 125 (1 share == 0.8MB)

10 children with # of shares: 10 (i.e each children has 8MB)
Now you are left with 25 shares (or 20MB) that you can assign to new
child(ren) as you please.

<snip>

Page 176 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Chandra Seetharaman | Be careful what you choose....
- sekharan@us.ibm.com | you may get it.

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Chandra Seetharaman on Mon, 11 Sep 2006 18:47:09 GMT

View Forum Message <> Reply to Message

On Mon, 2006-09-11 at 11:02 +0400, Pavel Emelianov wrote:
<snip>

> >> |n this case multithreaded apache that tries to serve each domain in
> >> separate BC will fill the memory with BC-s, held by pages allocated
> >> and mapped in threads.

> >>

> >

> > | do not understand how the memory will be filled with BCs. Can you
> > explain, please.

> >

> Sure. At the beginning | have one task with one BC. Then

> 1. A thread is spawned and new BC is created,;

You do not have to create a new BC for each new thread, just associate
the thread to an existing appropriate BC.

> 2. New thread touches a new page (e.g. maps a new file) which is charged
>to new BC

> (and this means that this BC's must stay in memory till page is

> uncharged);

> 3. Thread exits after serving the request, but since it's mm is shared

> with parent

> all the touched pages stay resident and, thus, the new BC is still

> pinned in memory.

> Steps 1-3 are done multiple times for new pages (new files).

> Remember that we're discussing the case when pages are not recharged.

> Using Tomcat but need to do more? Need to support web services, security?

> Get stuff done quickly with pre-integrated technology to make your job easier

> Download IBM WebSphere Application Server v.1.0.1 based on Apache Geronimo
> http://sel.as-us.falkag.net/sel?cmd=Ink&kid=120709&b id=263057&dat=121642

>

> ckrm-tech mailing list

Page 177 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=665
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6198#msg_6198
https://new-forum.openvz.org/index.php?t=post&reply_to=6198
https://new-forum.openvz.org/index.php

> https://lists.sourceforge.net/lists/listinfo/ckrm-tech

Chandra Seetharaman | Be careful what you choose....
- sekharan@us.ibm.com | you may get it.

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Chandra Seetharaman on Mon, 11 Sep 2006 18:49:50 GMT

View Forum Message <> Reply to Message

On Mon, 2006-09-11 at 12:13 +0400, Pavel Emelianov wrote:

<snip>

> >

> > Don't start the new container or change the guarantees of the existing

> > ones

> > to accommodate this one :) The QoS design (done by the administrator)
> > should

> > take care of such use-cases. It would be perfectly ok to have a container
> > that does not care about guarantees to set their guarantee to 0 and set
> > their limit to the desired value. As Chandra has been stating we need two
> > parameters (guarantee, limit), either can be optional, but not both.

> |f | set up 9 groups to have 100Mb limit then | have 100Mb assured (on

> 1Gb node)

> for the 10th one exactly. And | do not have to set up any guarantee as

> it won't affect

> anything. So what a guarantee parameter is needed for?

| do not think it is that simple since

- there is typically more than one class | want to set guarantee to
- 1 will not able to use both limit and guarantee

- Implementation will not be work-conserving.

Also, How would you configure the following in your model ?

5 classes: Class A(10, 40), Class B(20, 100), Class C (30, 100), Class D
(5, 100), Class E(15, 50); (class_name(guarantee, limit))

"Limit only" approach works for DoS prevention. But for providing QoS
you would need guarantee.

Chandra Seetharaman | Be careful what you choose....

Page 178 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=665
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6199#msg_6199
https://new-forum.openvz.org/index.php?t=post&reply_to=6199
https://new-forum.openvz.org/index.php

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added
user memory)
Posted by Rohit Seth on Mon, 11 Sep 2006 19:10:31 GMT

View Forum Message <> Reply to Message

On Mon, 2006-09-11 at 11:25 -0700, Chandra Seetharaman wrote:

> On Fri, 2006-09-08 at 14:43 -0700, Rohit Seth wrote:

> <snip>

>

> > > > Guarantee may be one of

>>>>

>>>> 1. container will be able to touch that number of pages

>>>> 2. container will be able to sys_mmap() that number of pages
>>>> 3. container will not be killed unless it touches that number of pages
>>>> 4. anything else

>>>

> > > | would say (1) with slight modification

>>> "container will be able to touch _at least_ that number of pages”
>>>

> >

> > Does this scheme support running of tasks outside of containers on the
> > same platform where you have tasks running inside containers. If so

> > then how will you ensure processes running out side any container will
> > not leave less than the total guaranteed memory to different containers.
> >

>

> There could be a default container which doesn't have any guarantee or
> limit.

First, | think it is critical that we allow processes to run outside of
any container (unless we know for sure that the penalty of running a
process inside a container is very very minimal).

And anything running outside a container should be limited by default
Linux settings.

> When you create containers and assign guarantees to each of them

> make sure that you leave some amount of resource unassigned.
AMANA This will force the "default” container

with limits (indirectly). IMO, the whole guarantee feature gets defeated

the moment you bring in this fuzziness.

> That
> unassigned resources can be used by the default container or can be used

Page 179 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=664
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6200#msg_6200
https://new-forum.openvz.org/index.php?t=post&reply_to=6200
https://new-forum.openvz.org/index.php

> by containers that want more than their guarantee (and less than their
> limit). This is how CKRM/RG handles this issue.

>

>

It seems that a single notion of limit should suffice, and that limit
should more be treated as something beyond which that resource
consumption in the container will be throttled/not_allowed.

-rohit

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4)
(added user memory)
Posted by Chandra Seetharaman on Mon, 11 Sep 2006 19:42:05 GMT

View Forum Message <> Reply to Message

On Mon, 2006-09-11 at 12:10 -0700, Rohit Seth wrote:

> On Mon, 2006-09-11 at 11:25 -0700, Chandra Seetharaman wrote:

> > On Fri, 2006-09-08 at 14:43 -0700, Rohit Seth wrote:

> > <snip>

> >

> > > > > Guarantee may be one of

>>>>>

>>>>> 1. container will be able to touch that number of pages

>>>>> 2 container will be able to sys_mmap() that number of pages
>>>>> 3. container will not be killed unless it touches that number of pages
>>>>> 4. anything else

>>>>

> > > > | would say (1) with slight modification

>>>> "container will be able to touch _at least that number of pages"
>>>>

>>>

> > > Does this scheme support running of tasks outside of containers on the
> > > same platform where you have tasks running inside containers. If so

> > > then how will you ensure processes running out side any container will
> > > not leave less than the total guaranteed memory to different containers.
>>>

> >

> > There could be a default container which doesn't have any guarantee or
> > [imit.

>

> First, | think it is critical that we allow processes to run outside of

> any container (unless we know for sure that the penalty of running a

> process inside a container is very very minimal).

When | meant a default container | meant a default "resource group”. In
case of container that would be the default environment. | do not see

Page 180 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=665
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6201#msg_6201
https://new-forum.openvz.org/index.php?t=post&reply_to=6201
https://new-forum.openvz.org/index.php

any additional overhead associated with it, it is only associated with
how resource are allocated/accounted.

>
> And anything running outside a container should be limited by default
> Linux settings.

note that the resource available to the default RG will be (total system
resource - allocated to RGSs).

>

> > When you create containers and assign guarantees to each of them
> > make sure that you leave some amount of resource unassigned.

> AMANA This will force the "default” container

> with limits (indirectly). IMO, the whole guarantee feature gets defeated

You _will_ have limits for the default RG even if we don't have
guarantees.

> the moment you bring in this fuzziness.

Not really.

- Each RG will have a guarantee and limit of each resource.

- default RG will have (system resource - sum of guarantees)

- Every RG will be guaranteed some amount of resource to provide QoS
- Every RG will be limited at "limit" to prevent DoS attacks.

- Whoever doesn't care either of those set them to don't care values.

>

> > That

> > unassigned resources can be used by the default container or can be used
> > py containers that want more than their guarantee (and less than their
> > |imit). This is how CKRM/RG handles this issue.

> >

> >

>

> |t seems that a single notion of limit should suffice, and that limit

> should more be treated as something beyond which that resource

> consumption in the container will be throttled/not_allowed.

As | stated in an earlier email "Limit only" approach can prevent a
system from DoS attacks (and also fits the container model nicely),
whereas to provide QoS one would need guarantee.

Without guarantee, a RG that the admin cares about can starve if
all/most of the other RGs consume upto their limits.

>
> -rohit

Page 181 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> Using Tomcat but need to do more? Need to support web services, security?

> Get stuff done quickly with pre-integrated technology to make your job easier

> Download IBM WebSphere Application Server v.1.0.1 based on Apache Geronimo
> http://sel.as-us.falkag.net/sel?cmd=Ink&kid=120709&b id=263057&dat=121642

>

> ckrm-tech mailing list

> https://lists.sourceforge.net/lists/listinfo/ckrm-tech

Chandra Seetharaman | Be careful what you choose....
- sekharan@us.ibm.com | you may get it.

Subject: Re: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added
user memory)
Posted by kir on Mon, 11 Sep 2006 19:47:24 GMT

View Forum Message <> Reply to Message

Rohit Seth wrote:

> On Mon, 2006-09-11 at 11:25 -0700, Chandra Seetharaman wrote:

>

>> On Fri, 2006-09-08 at 14:43 -0700, Rohit Seth wrote:

>> <snip>

>>

>>

>>>>> Guarantee may be one of

>>>>>

>>>>> 1. container will be able to touch that number of pages

>>>>> 2, container will be able to sys_mmap() that number of pages
>>>>> 3. container will not be killed unless it touches that number of pages
>>>>> 4. anything else

>>>>>

>>>> | would say (1) with slight modification

>>>> "container will be able to touch _at least_ that number of pages"
>>>>

>>>>

>>> Does this scheme support running of tasks outside of containers on the
>>> same platform where you have tasks running inside containers. If so
>>> then how will you ensure processes running out side any container will
>>> not leave less than the total guaranteed memory to different containers.
>>>

>>>

>> There could be a default container which doesn't have any guarantee or

Page 182 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=4
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6202#msg_6202
https://new-forum.openvz.org/index.php?t=post&reply_to=6202
https://new-forum.openvz.org/index.php

>> |imit.

>>

>

> First, | think it is critical that we allow processes to run outside of

> any container (unless we know for sure that the penalty of running a

> process inside a container is very very minimal).

>

(1) there is a set of processes running outside of any container. In
OpenVZ we call that "VEOQ" or "host system", probably Chandra meant that
by "default container”.

(2) The host system is used to manage the containers (start/stop/set
parameters/create/destroy).

(3) the penalty of running a process inside a container is indeed very low.

> And anything running outside a container should be limited by default
> Linux settings.

>

(4) due to (2), it is not recommended to run anything but the tasks used
to manage the containers -- otherwise your gonna have security problems
(5) "Default Linux settings" do not cover everything (for example --
dentry cache), thus the need for beancounters.

>> When you create containers and assign guarantees to each of them
>> make sure that you leave some amount of resource unassigned.

>>

> AAM This will force the "default” container

> with limits (indirectly). IMO, the whole guarantee feature gets defeated
> the moment you bring in this fuzziness.

>

>

>> That

>> unassigned resources can be used by the default container or can be used
>> py containers that want more than their guarantee (and less than their
>> [imit). This is how CKRM/RG handles this issue.

>>

>>

>>

>

> |t seems that a single notion of limit should suffice, and that limit

> should more be treated as something beyond which that resource

> consumption in the container will be throttled/not_allowed.

>

Beancounters have a notion of "barrier" and "limit". For some parameters
they are the same, but for some parameters they differ -- and there is
some "safety gap" between the barrier and the limit. The problem is for
some types of resources you can not throttle or deny -- the only way is

to kill the process. The one (but not the only one) example is process
stack expansion. See more at http://wiki.openvz.org/UBC (and follow the
menu at the right side).

https://new-forum.openvz.org/index.php

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4)
(added user memory)
Posted by Rohit Seth on Mon, 11 Sep 2006 23:58:19 GMT

View Forum Message <> Reply to Message

On Mon, 2006-09-11 at 12:42 -0700, Chandra Seetharaman wrote:
> On Mon, 2006-09-11 at 12:10 -0700, Rohit Seth wrote:
> > On Mon, 2006-09-11 at 11:25 -0700, Chandra Seetharaman wrote:

> > > There could be a default container which doesn't have any guarantee or
> > > [imit.

> >

> > First, | think it is critical that we allow processes to run outside of

> > any container (unless we know for sure that the penalty of running a
> > process inside a container is very very minimal).

>

> When | meant a default container | meant a default "resource group”. In
> case of container that would be the default environment. | do not see

> any additional overhead associated with it, it is only associated with

> how resource are allocated/accounted.

>

There should be some cost when you do atomic inc/dec accounting and
locks for add/remove resources from any container (including default
resource group). No?

> >

> > And anything running outside a container should be limited by default
> > Linux settings.

>

> note that the resource available to the default RG will be (total system
> resource - allocated to RGS).

| think it will be preferable to not change the existing behavior for
applications that are running outside any container (in your case
default resource group).

> >

> > > When you create containers and assign guarantees to each of them
> > > make sure that you leave some amount of resource unassigned.

> > AN This will force the "default” container

> > with limits (indirectly). IMO, the whole guarantee feature gets defeated
>

> You _will_ have limits for the default RG even if we don't have

> guarantees.

>

> > the moment you bring in this fuzziness.

>

> Not really.

Page 184 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=664
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6204#msg_6204
https://new-forum.openvz.org/index.php?t=post&reply_to=6204
https://new-forum.openvz.org/index.php

- Each RG will have a guarantee and limit of each resource.

- default RG will have (system resource - sum of guarantees)

- Every RG will be guaranteed some amount of resource to provide QoS
- Every RG will be limited at "limit" to prevent DoS attacks.

- Whoever doesn't care either of those set them to don't care values.

VVVYVYVYV

For the cases that put this don't care, do you depend on existing
reclaim algorithm (for memory) in kernel?

> >

> > > That

> > > unassigned resources can be used by the default container or can be used
> > > py containers that want more than their guarantee (and less than their
> > > limit). This is how CKRM/RG handles this issue.

>>>

>>>

> >

> > |t seems that a single notion of limit should suffice, and that limit

> > should more be treated as something beyond which that resource

> > consumption in the container will be throttled/not_allowed.

>

> As | stated in an earlier email "Limit only" approach can prevent a

> system from DoS attacks (and also fits the container model nicely),

> whereas to provide QoS one would need guarantee.

>

> Without guarantee, a RG that the admin cares about can starve if

> all/most of the other RGs consume upto their limits.

>

> >

If the limits are set appropriately so that containers total memory
consumption does not exceed the system memory then there shouldn't be
any QoS issue (to whatever extent it is applicable for specific

scenario).

-rohit

Subject: Re: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added
user memory)
Posted by Rohit Seth on Tue, 12 Sep 2006 00:28:58 GMT

View Forum Message <> Reply to Message

On Mon, 2006-09-11 at 23:48 +0400, Kir Kolyshkin wrote:

> Rohit Seth wrote:

> > On Mon, 2006-09-11 at 11:25 -0700, Chandra Seetharaman wrote:
> >

Page 185 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=664
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6207#msg_6207
https://new-forum.openvz.org/index.php?t=post&reply_to=6207
https://new-forum.openvz.org/index.php

> >> On Fri, 2006-09-08 at 14:43 -0700, Rohit Seth wrote:

> >> <snip>

> >>

> >>

> >>>>> Guarantee may be one of

> >>>>>

>>>>>> 1. container will be able to touch that number of pages

>>>>>> 2. container will be able to sys_mmap() that number of pages
>>>>>> 3. container will not be killed unless it touches that number of pages
> >>>>> 4. anything else

> >>>>>

> >>>> | would say (1) with slight modification

>>>>> "container will be able to touch _at least_ that number of pages”

> >>>>

> >>>>

> >>> Does this scheme support running of tasks outside of containers on the
> >>> same platform where you have tasks running inside containers. If so
> >>> then how will you ensure processes running out side any container will
> >>> not leave less than the total guaranteed memory to different containers.
> >>>

> >>>

> >> There could be a default container which doesn't have any guarantee or
> >> |imit.

> >>

> >

> > First, | think it is critical that we allow processes to run outside of

> > any container (unless we know for sure that the penalty of running a

> > process inside a container is very very minimal).

> >

> (1) there is a set of processes running outside of any container. In

> OpenVZ we call that "VEO" or "host system”, probably Chandra meant that
> by "default container”.

> (2) The host system is used to manage the containers (start/stop/set

> parameters/create/destroy).

> (3) the penalty of running a process inside a container is indeed very low.
>

> > And anything running outside a container should be limited by default

> > Linux settings.

> >

> (4) due to (2), it is not recommended to run anything but the tasks used

> to manage the containers -- otherwise your gonna have security problems

Just like you want to run those special threads outside of any
container, some sysadmin might be interested in running different
processes that they don't want to bind to any container limits.

| think it is critical that you provide the capability to have tasks
running outside any container. Whether sysadmin wants to do it or not

Page 186 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

for a system is a different thing.

-rohit

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Balbir Singh on Tue, 12 Sep 2006 09:53:38 GMT

View Forum Message <> Reply to Message

Rohit Seth wrote:

> If the limits are set appropriately so that containers total memory

> consumption does not exceed the system memory then there shouldn't be
> any QoS issue (to whatever extent it is applicable for specific

> scenario).

>

> -rohit

>

What if the guarantee and limits are subject to change? Consider many groups,
with changing limits - how do we provide guarantees then?

Limit is the upper bound on resource utilization and guarantee is the lower
bound. In a dynamic system, how can we provide a lower bound on a resource
for a group by manipulating the upper bounds on the rest of the groups?

Consider a system with 1GB of ram and two groups such that they need a guarantee
of 100MB and 200MB of memory. How would you setup limits to ensure that

the guarantees are met? The remaining groups will be limited to 700MB, but

how do we ensure that these classes get 100MB and 200MB of the remaining 300MB
respectively?

Balbir Singh,
Linux Technology Center,
IBM Software Labs

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Pavel Emelianov on Tue, 12 Sep 2006 10:24:25 GMT

View Forum Message <> Reply to Message

Srivatsa Vaddagiri wrote:
> On Mon, Sep 11, 2006 at 11:02:06AM +0400, Pavel Emelianov wrote:

Page 187 of 250 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=675
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6220#msg_6220
https://new-forum.openvz.org/index.php?t=post&reply_to=6220
https://new-forum.openvz.org/index.php?t=usrinfo&id=725
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6221#msg_6221
https://new-forum.openvz.org/index.php?t=post&reply_to=6221
https://new-forum.openvz.org/index.php

>
>> Sure. At the beginning | have one task with one BC. Then

>> 1. A thread is spawned and new BC is created;

>>

>

> Why do we have to create a BC for every new thread? A new BC is needed
> for every new service level instead IMO. And typically there wont be

> unlimited service levels.

>

That's the scenario we started from - each domain is served in a separate

BC with *threaded* Apache.

>

>> 2. New thread touches a new page (e.g. maps a new file) which is charged
>>to new BC

>> (and this means that this BC's must stay in memory till page is

>> uncharged);

>> 3. Thread exits after serving the request, but since it's mm is shared

>> with parent

>> all the touched pages stay resident and, thus, the new BC is still

>> pinned in memory.

>> Steps 1-3 are done multiple times for new pages (new files).

>> Remember that we're discussing the case when pages are not recharged.
>>

>

>

>

Subject: Re: [ckrm-tech] [PATCH] BC: resource beancounters (v4) (added user
memory)
Posted by Srivatsa Vaddagiri on Tue, 12 Sep 2006 10:29:43 GMT

View Forum Message <> Reply to Message

On Tue, Sep 12, 2006 at 02:24:25PM +0400, Pavel Emelianov wrote:

> Srivatsa Vaddagiri wrote:

> > 0On Mon, Sep 11, 2006 at 11:02:06AM +0400, Pavel Emelianov wrote:
> >

> >> Sure. At the beginning | have one task with one BC. Then

>>> 1. A thread is spawned and new BC is created,;

> >>

> >

> > Why do we have to create a BC for every new thread? A new BC is needed
> > for every new service level instead IMO. And typically there wont be

> > unlimited service levels.

> >

> That's the scenario we started from - each domain is served in a separate
> BC with *threaded* Apache.

Page 188 of 250 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=667
https://new-forum.openvz.org/index.php?t=rview&th=1062&goto=6222#msg_6222
https://new-forum.openvz.org/index.php?t=post&reply_to=6222
https://new-forum.openvz.org/index.php

Sure ..but you can still meet that requirement by creating fixed set of
BCs (for each domain) and let each new thread be associated with a
corresponding BC (w/o requiring to create BC for every new thread),
depending on which domain's request it is serving?

> >

> >> 2. New thread touches a new page (e.g. maps a new file) which is charged
> >>to new BC

>>> (and this means that this BC's must stay in memory till page is

> >> uncharged);

> >> 3. Thread exits after serving the request, but since it's mm is shared

> >> with parent

>>> all the touched pages stay resident and, thus, the new BC is still

> >> pinned in memory.

> >> Steps 1-3 are done multiple times for new pages (new files).

> >> Remember that we're discussing the case when pages are not recharged.
> >>

> >

> >

> >

> Using Tomcat but need to do more? Need to support web services, security?

> Get stuff done quickly with pre-integrated technology to make your job easier

> Download IBM WebSphere Application Server v.1.0.1 based on Apache Geronimo
> http://sel.as-us.falkag.net/sel?cmd