
Subject: Re: [PATCH][RFC] incorrect direct io error handling (v3)
Posted by Andrew Morton on Thu, 25 Jan 2007 21:34:05 GMT
View Forum Message <> Reply to Message

On Wed, 24 Jan 2007 22:05:06 +0300
Dmitriy Monakhov <dmonakhov@sw.ru> wrote:

> incorrect direct io error handling (v3)
> Changes from v2:
> - Remove BUG_ON(!mutex_is_locked(..)) for non blkdev.
> - vmtruncate() called from generic_file_aio_write().
> - depends on patch titled:
> [PATH][RFC] mm: Move common segments checks to separate function

drat, I skipped that patch due to rejects, and because Nick is working on
things in the same area.

> LOG:
> If generic_file_direct_write() has fail (ENOSPC condition) inside
> __generic_file_aio_write_nolock() it may have instantiated
> a few blocks outside i_size. And fsck will complain about wrong i_size
> (ext2, ext3 and reiserfs interpret i_size and biggest block difference as error),
> after fsck will fix error i_size will be increased to the biggest block,
> but this blocks contain gurbage from previous write attempt, this is not
> information leak, but its silence file data corruption. This issue affect
> fs regardless the values of blocksize or pagesize.
> We need truncate any block beyond i_size after write have failed , do in simular
> generic_file_buffered_write() error path. Initialy i've proposed do it in
> __generic_file_aio_write_nolock() with explicit guarantee i_mutex always held,
> but not everybody was agree with it. So we may safely call vmtruncate() inside
> generic_file_aio_write(), here i_mutex already locked.
>
> TEST_CASE:
> open("/mnt/test/BIG_FILE", O_WRONLY|O_CREAT|O_DIRECT, 0666) = 3
> write(3, "aaaaaaaaaaaaaaa"..., 104857600) = -1 ENOSPC (No space left on device)
>
> #stat /mnt/test/BIG_FILE
> File: `/mnt/test/BIG_FILE'
> Size: 0 Blocks: 110896 IO Block: 1024 regular empty file
> <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<^^^^^^^^file size is less than biggest block idx
>
> Device: fe07h/65031d Inode: 14 Links: 1
> Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)
> Access: 2007-01-24 20:03:38.000000000 +0300
> Modify: 2007-01-24 20:03:38.000000000 +0300
> Change: 2007-01-24 20:03:39.000000000 +0300
>

Page 1 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=120
https://new-forum.openvz.org/index.php?t=rview&th=1849&goto=9850#msg_9850
https://new-forum.openvz.org/index.php?t=post&reply_to=9850
https://new-forum.openvz.org/index.php

> #fsck.ext3 -f /dev/VG/test
> e2fsck 1.39 (29-May-2006)
> Pass 1: Checking inodes, blocks, and sizes
> Inode 14, i_size is 0, should be 56556544. Fix<y>? yes
> Pass 2: Checking directory structure
>
> Signed-off-by: Dmitriy Monakhov <dmonakhov@openvz.org>
> -------
>

diff --git a/mm/filemap.c b/mm/filemap.c
> index d01abb6..96840e5 100644
> --- a/mm/filemap.c
> +++ b/mm/filemap.c
> @@ -2058,8 +2058,9 @@ generic_file_direct_write(struct kiocb *
> 	/*
> 	 * Sync the fs metadata but not the minor inode changes and
> 	 * of course not the data as we did direct DMA for the IO.
> -	 * i_mutex is held, which protects generic_osync_inode() from
> -	 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
> +	 * i_mutex may not being held, if so some specific locking
> +	 * ordering must protect generic_osync_inode() from livelocking.
> +	 * AIO O_DIRECT ops attempt to sync metadata here.
> 	 */
> 	if ((written >= 0 || written == -EIOCBQUEUED) &&
> 	 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
> @@ -2365,6 +2366,17 @@ ssize_t generic_file_aio_write(struct ki
> 			&iocb->ki_pos);
> 	mutex_unlock(&inode->i_mutex);
>
> +	if (unlikely(ret < 0 && (file->f_flags & O_DIRECT))) {
> +		ssize_t cnt = generic_segment_checks(nr_segs, iov, VERIFY_READ);
> +		loff_t isize = i_size_read(inode);
> +		/*
> +		 * generic_file_direct_write() may have instantiated a few
> +		 * blocks outside i_size. Trim these off again.
> +		 */
> +		if (cnt > 0 && (pos + cnt > isize))
> +			vmtruncate(inode, isize);
> +	}
> +

vmtruncate() really wants i_mutex to be held. Can't we do that here?

Page 2 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

