Subject: Re: [PATCH] incorrect direct io error handling
Posted by Dmitriy Monakhov on Wed, 10 Jan 2007 14:36:57 GMT

View Forum Message <> Reply to Message

Sorry for long delay (russian holidays are very hard time :))

David Chinner <dgc@sgi.com> writes:

> On Tue, Dec 19, 2006 at 09:07:12AM +0300, Dmitriy Monakhov wrote:
>> David Chinner <dgc@sgi.com> writes:

>> > On Mon, Dec 18, 2006 at 04:22:44PM +0300, Dmitriy Monakhov wrote:
>> >> diff --git a/mm/filemap.c b/mm/filemap.c

>> >> index 8332c77..7c571dd 100644

>> >> --- a/mm/filemap.c

>> >> +++ b/mm/filemap.c

>

> <snip stuff>

>

>> > You comment in the first hunk that i_mutex may not be held here,

>> > hut there's no comment in __generic_file_aio_write_nolock() that the
>> > | _mutex must be held for !S_ISBLK devices.

>> Any one may call directly call generic_file_direct_write() with i_mutex not held.
>

> Only block devices based on the implementation (i.e. buffered I/O is

> done here). but one can't call vmtruncate without the i_mutex held,

> so if a filesystem is calling generic_file_direct_write() it won't

> be able to use ___generic_file_aio_write_nolock() without the i_mutex

> held (because it can right now if it doesn't need the buffered I/O

> fallback path), then

>

>> >

>>>> @@ -2341,6 +2353,13 @@ ssize_t generic_file_aio_write_nolock(st
>>>> ssize tret;

>> >>
>>>> BUG_ON(ioch->ki_pos != pos);
>>>> 4 [*

>>>>+ * generic_file_buffered_write() may be called inside

>>>>+ * generic_file_aio_write_nolock() even in case of

>>>>+ * O_DIRECT for non S_ISBLK files. So i_mutex must be held.
>>>> + ¥/

>> >> + if (IS_ISBLK(inode->i_mode))

>>>>+ BUG_ON(!mutex_is_locked(&inode->i_mutex));

>> >>

>>>> ret=__ generic_file_aio_write_nolock(iocb, iov, nr_segs,
>>>> &iocb->ki_pos);

>> >

>> > | note that you comment here in generic_file_aio_write_nolock(),
>> > put it's not immediately obvious that this is refering to the
>> > ymtruncate() call in __generic_file_aio_write_nolock().

Page 1 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=840
https://new-forum.openvz.org/index.php?t=rview&th=1678&goto=9572#msg_9572
https://new-forum.openvz.org/index.php?t=post&reply_to=9572
https://new-forum.openvz.org/index.php

>> This is not about vmtruncate(). __generic_file_aio_write_nolock() may

>> call generic_file_buffered_write() even in case of O_DIRECT for !S_ISBLK, and
>

> No, the need for i_mutex is currently dependent on doing direct 1/0O

> and the return value from generic_file_buffered_write().

> A filesystem that doesn't fall back to buffered I/O (e.g. XFS) can currently

> use generic_file_aio_write_nolock() without needing to hold i_mutex.

> use generic_file_aio_write_nolock() without needing to hold i_mutex.

But it doesn't use it. XFS implement it's own write method with it's own locking
rules and explicitly call generic_file_direct_write() in case of O_DIRECT.

BTW XFS correctly handling ENOSPC in case of O_DIRECT (fs corruption not happend
after error occur).

>
> Your change prevents that by introducing a vmtruncate() before the
> generic_file_buffered_write() return value check, which means that a
> filesystem now _must_ hold the i_mutex when calling
> generic_file_aio_write_nolock() even when it doesn't do buffered 1/0
> through this path.
Yes it's so. But it is just explicitly document the fact that every fs call
generic_file_aio_write_nolock() with i_mutex held (where is no any fs that
invoke it without i_ mutex). As i understand Andrew Morton think so too:
http://lkml.org/lkml/2006/12/12/67
<snip>
| guess we can make that a rule (document it, add
BUG_ON('mutex_is_locked(..)) if it isn't a blockdev) if needs be. After
really checking that this matches reality for all callers.
<snip>

>

>> generic_file_buffered_write() has documented locking rules (i_mutex held).
>> IMHO it is important to explicitly document this . And after we realize

>> that i_mutex always held, vmtruncate() may be safely called.

>

> | don't think changing the locking semantics of

> generic_file_aio_write_nolock() to require a lock for all

> filesystem-based users is a good way to fix a filesystem specific

> direct 1/0O problem which can be easily fixed in filesystem specific

> code - i.e. call vmtruncate() in ext3_file_write() on failure....

Where are more than 10 filesystems where we have to fix it then.

And fix is almost the same for all fs, so we have to do many copy/paste work
IMHO fix it inside generic_file_aio_write_nolock is realy straightforward way.
What do you think?

>

> Cheers,

>

> Dave.

> -

Page 2 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> Dave Chinner
> Principal Engineer
> SGI Australian Software Group

Page 3 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

