Subject: Re: [PATCH] incorrect direct io error handling
Posted by David Chinner on Wed, 20 Dec 2006 14:26:31 GMT

View Forum Message <> Reply to Message

On Tue, Dec 19, 2006 at 09:07:12AM +0300, Dmitriy Monakhov wrote:

> David Chinner <dgc@sgi.com> writes:

> > On Mon, Dec 18, 2006 at 04:22:44PM +0300, Dmitriy Monakhov wrote:
> >> diff --git a/mml/filemap.c b/mm/filemap.c

> >> index 8332c77..7c571dd 100644

> >> --- a/mml/filemap.c

> >> +++ b/mml/filemap.c

<snip stuff>

> > You comment in the first hunk that i_mutex may not be held here,

> > put there's no comment in __generic_file_aio_write_nolock() that the

> > |_mutex must be held for IS_ISBLK devices.

> Any one may call directly call generic_file_direct_write() with i_mutex not held.

Only block devices based on the implementation (i.e. buffered I/O is
done here). but one can't call vmtruncate without the i_mutex held,
so if a filesystem is calling generic_file_direct_write() it won't

be able to use ___generic_file_aio_write_nolock() without the i_mutex
held (because it can right now if it doesn't need the buffered 1/0
fallback path), then

> >
>>> @@ -2341,6 +2353,13 @@ ssize_t generic_file_aio_write_nolock(st
>>> ssize tret;

> >>
>>> BUG_ON(iocb->ki_pos != pos);
>>> 4+ [*

>>>+ * generic_file_buffered_write() may be called inside

>>>+ * generic_file_aio_write_nolock() even in case of

>>>+ * O_DIRECT for non S_ISBLK files. So i_mutex must be held.
>>> 4+ %

> >> + if (IS_ISBLK(inode->i_mode))

>>>+ BUG_ON(!mutex_is_locked(&inode->i_mutex));

> >>
>>> ret=__ generic_file_aio_write_nolock(iocb, iov, nr_segs,
>>> &iocb->ki_pos);

> >

> > | note that you comment here in generic_file_aio_write_nolock(),

> > put it's not immediately obvious that this is refering to the

> > vmtruncate() call in __generic_file_aio_write_nolock().

> This is not about vmtruncate(). __generic_file_aio_write_nolock() may

> call generic_file_buffered_write() even in case of O_DIRECT for IS_ISBLK, and

Page 1 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=872
https://new-forum.openvz.org/index.php?t=rview&th=1678&goto=9171#msg_9171
https://new-forum.openvz.org/index.php?t=post&reply_to=9171
https://new-forum.openvz.org/index.php

No, the need for i_mutex is currently dependent on doing direct 1/0

and the return value from generic_file_buffered_write().

A filesystem that doesn't fall back to buffered I/O (e.g. XFS) can currently
use generic_file_aio_write_nolock() without needing to hold i_mutex.

Your change prevents that by introducing a vmtruncate() before the
generic_file_buffered_write() return value check, which means that a
filesystem now _must_ hold the i_mutex when calling
generic_file_aio_write_nolock() even when it doesn't do buffered I/0O
through this path.

> generic_file_buffered_write() has documented locking rules (i_mutex held).
> |IMHO it is important to explicitly document this . And after we realize
> that i_mutex always held, vmtruncate() may be safely called.

| don't think changing the locking semantics of
generic_file_aio_write_nolock() to require a lock for all
filesystem-based users is a good way to fix a filesystem specific
direct I/0O problem which can be easily fixed in filesystem specific
code - i.e. call vmtruncate() in ext3_file_write() on failure....

Cheers,

Dave.

Dave Chinner

Principal Engineer

SGI Australian Software Group

Page 2 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

