Subject: Re: [PATCH] incorrect direct io error handling
Posted by David Chinner on Mon, 18 Dec 2006 22:15:15 GMT

View Forum Message <> Reply to Message

On Mon, Dec 18, 2006 at 04:22:44PM +0300, Dmitriy Monakhov wrote:
> diff --git a/mm/filemap.c b/mm/filemap.c

> index 8332c77..7c571dd 100644

> --- a/mm/filemap.c

> +++ b/mm/filemap.c

> @@ -2044,8 +2044,9 @@ generic_file_direct_write(struct kiocb *
> [*

> * Sync the fs metadata but not the minor inode changes and

> * of course not the data as we did direct DMA for the 10.

> - *|_mutex is held, which protects generic_osync_inode() from

> - *livelocking. AIO O_DIRECT ops attempt to sync metadata here.
>+ *|_mutex may not being held (XFS does this), if so some specific locking
>+ * grdering must protect generic_osync_inode() from livelocking.
>+ * AIO O_DIRECT ops attempt to sync metadata here.

> ¥

> if ((written >= 0 || written == -EIOCBQUEUED) &&

> ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {

> @@ -2279,6 +2280,17 @@ ___generic_file_aio_write_nolock(struct k
>

> written = generic_file_direct_write(iocb, iov, &nr_segs, pos,

> ppos, count, ocount);

>+ [*

>+ *|[f hostis not S_ISBLK generic_file_direct_write() may

>+ * have instantiated a few blocks outside i_size files

>+ *Trim these off again.

>+ %

> + if (unlikely(written < 0) && !S_ISBLK(inode->i_mode)) {

>+ |off_tisize =i_size_read(inode);

>+ if (pos + count > isize)

>+ vmtruncate(inode, isize);

>+ }

>+

> f (written < O || written == count)

> goto out;

You comment in the first hunk that i_mutex may not be held here,
but there's no comment in __generic_file_aio_write_nolock() that the
i_mutex must be held for IS_ISBLK devices.

> @@ -2341,6 +2353,13 @@ ssize_t generic_file_aio_write_nolock(st
> ssize_tret;

>

> BUG_ON(iocb->ki_pos != pos);

>+ [*

Page 1 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=872
https://new-forum.openvz.org/index.php?t=rview&th=1678&goto=9117#msg_9117
https://new-forum.openvz.org/index.php?t=post&reply_to=9117
https://new-forum.openvz.org/index.php

>+ * generic_file_buffered_write() may be called inside

>+ * generic_file_aio_write_nolock() even in case of

>+ * O_DIRECT for non S_ISBLK files. So i_mutex must be held.
>+ %

> + if (IS_ISBLK(inode->i_mode))

>+ BUG_ON('mutex_is_locked(&inode->i_mutex));

>

> ret=__generic_file_aio_write_nolock(iocb, iov, nr_segs,

> &iocb->ki_pos);

| note that you comment here in generic_file_aio_write_nolock(),
but it's not immediately obvious that this is refering to the
vmtruncate() call in __generic_file_aio_write_nolock().

IOWSs, wouldn't it be better to put this comment and check in
__generic_file_aio_write_nolock() directly above the vmtruncate()
call that cares about this?

> @@ -2383,8 +2402,8 @@ ssize_t generic_file_aio_write(struct ki

> EXPORT_SYMBOL(generic_file_aio_write);

>

> [*

> - * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
> - * went wrong during pagecache shootdown.

> + * May be called without i_mutex for writes to S_ISREG files. XFS does this.

> + * Returns -EIO if something went wrong during pagecache shootdown.

> *

Not sure you need to say "XFS does this" - other filesystems may do this
in the future.....

Cheers,

Dave.

Dave Chinner

Principal Engineer

SGI Australian Software Group

Page 2 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

