
Subject: Re: [PATCH] incorrect error handling inside generic_file_direct_write
Posted by Dmitriy Monakhov on Tue, 12 Dec 2006 09:20:59 GMT
View Forum Message <> Reply to Message

Andrew Morton <akpm@osdl.org> writes:

> On Mon, 11 Dec 2006 16:34:27 +0300
> Dmitriy Monakhov <dmonakhov@openvz.org> wrote:
>
>> OpenVZ team has discovered error inside generic_file_direct_write()
>> If generic_file_direct_IO() has fail (ENOSPC condition) it may have instantiated
>> a few blocks outside i_size. And fsck will complain about wrong i_size
>> (ext2, ext3 and reiserfs interpret i_size and biggest block difference as error),
>> after fsck will fix error i_size will be increased to the biggest block,
>> but this blocks contain gurbage from previous write attempt, this is not
>> information leak, but its silence file data corruption.
>> We need truncate any block beyond i_size after write have failed , do in simular
>> generic_file_buffered_write() error path.
>>
>> Exampe:
>> open("mnt2/FILE3", O_WRONLY|O_CREAT|O_DIRECT, 0666) = 3
>> write(3, "aaaaaa"..., 4096) = -1 ENOSPC (No space left on device)
>>
>> stat mnt2/FILE3
>> File: `mnt2/FILE3'
>> Size: 0 Blocks: 4 IO Block: 4096 regular empty file
>> >>>>>>>>>>>>>>>>>>>>>>^^^^^^^^^^ file size is less than biggest block idx
>> Device: 700h/1792d Inode: 14 Links: 1
>> Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)
>>
>> fsck.ext2 -f -n mnt1/fs_img
>> Pass 1: Checking inodes, blocks, and sizes
>> Inode 14, i_size is 0, should be 2048. Fix? no
>>
>> Signed-off-by: Dmitriy Monakhov <dmonakhov@openvz.org>
>> ----------
>>
>> diff --git a/mm/filemap.c b/mm/filemap.c
>> index 7b84dc8..bf7cf6c 100644
>> --- a/mm/filemap.c
>> +++ b/mm/filemap.c
>> @@ -2041,6 +2041,14 @@ generic_file_direct_write(struct kiocb *
>> 			mark_inode_dirty(inode);
>> 		}
>> 		*ppos = end;
>> +	} else if (written < 0) {
>> +		loff_t isize = i_size_read(inode);
>> +		/*

Page 1 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=840
https://new-forum.openvz.org/index.php?t=rview&th=1633&goto=8966#msg_8966
https://new-forum.openvz.org/index.php?t=post&reply_to=8966
https://new-forum.openvz.org/index.php

>> +		 * generic_file_direct_IO() may have instantiated a few blocks
>> +		 * outside i_size. Trim these off again.
>> +		 */
>> +		if (pos + count > isize)
>> +			vmtruncate(inode, isize);
>> 	}
>>
>
> XFS (at least) can call generic_file_direct_write() with i_mutex not held.
> And vmtruncate() expects i_mutex to be held.
>
> I guess a suitable solution would be to push this problem back up to the
> callers: let them decide whether to run vmtruncate() and if so, to ensure
> that i_mutex is held.
>
> The existence of generic_file_aio_write_nolock() makes that rather messy
> though.
This means we may call generic_file_aio_write_nolock() without i_mutex, right?
but call trace is :
 generic_file_aio_write_nolock()
 ->generic_file_buffered_write() /* i_mutex not held here */
but according to filemaps locking rules: mm/filemap.c:77
 ..
 * ->i_mutex			(generic_file_buffered_write)
 * ->mmap_sem		(fault_in_pages_readable->do_page_fault)
 ..
I'm confused a litle bit, where is the truth?

Page 2 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

