
Subject: Re: Re: [PATCH 2.6.19-rc3] VFS: per-sb dentry lru list
Posted by dev on Wed, 01 Nov 2006 10:48:06 GMT
View Forum Message <> Reply to Message

Neil Brown wrote:
> On Monday October 30, dev@sw.ru wrote:
>
>>David,
>>
>>
>>>>The proposed fix prevents this issue by using per-sb dentry LRU list. It
>>>>provides very quickly search for the unused dentries for given super block thus
>>>>forcing shrinking always making good progress.
>>>
>>>
>>>We've been down this path before:
>>>
>>> http://marc.theaimsgroup.com/?l=linux-kernel&m=114861109 717260&w=2
>>>
>>>A lot of comments on per-sb unused dentry lists were made in
>>>the threads associated with the above. other solutions were
>>>found to the problem that the above patch addressed, but I don't
>>>think any of them have made it to mainline yet. You might want
>>>to have a bit of a read of these threads first...
>>
>>The major difference between our patch and the one discussed in the link
>>it that we keep both global and per-sb dentry LRU lists.
>>Thus, when needed normal LRU is used and prune logic is unchanged,
>>while umount/remount use per-sb list and do its job faster.
>
>
> Yes, we have been down this path before - several times I think.
> Below is the patch that I like (not tested recently - just rediffed
> and reviewed).
>
> NeilBrown
>
> Subject: Reduce contention in dentry_unused when unmounting.
>
> When we unmount a filesystem we need to release all dentries.
> We currently
> - move a collection of dentries to the end of the dentry_unused list
> - call prune_dcache to prune that number of dentries.
>
> If lots of other dentries are added to the end of the list while
> the prune_dcache proceeds (e.g. another filesystem is unmounted),
> this can involve a lot of wasted time wandering through the
> list looking for dentries that we had previously found.

Page 1 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=19
https://new-forum.openvz.org/index.php?t=rview&th=1390&goto=7970#msg_7970
https://new-forum.openvz.org/index.php?t=post&reply_to=7970
https://new-forum.openvz.org/index.php

>
> This patch allows the dentry_unused list to temporarily be multiple
> lists.
> When unmounting, dentries that are found to require pruning are moved
> to a temporary list, but accounted as though they were on dentry_unused.
> Then this list is passed to prune_dcache for freeing. Any entries
> that are not pruned for whatever reason are added to the end of
> dentry_unused.
>
> Also change shrink_dcache_sb to simply call shrink_dcache_parent.
> This avoids a long walk of the LRU.
>
> Signed-off-by: Neil Brown <neilb@suse.de>
>
> ### Diffstat output
> ./fs/dcache.c | 104 ++++++++++++++++--
> 1 file changed, 30 insertions(+), 74 deletions(-)
>
> diff .prev/fs/dcache.c ./fs/dcache.c
> --- .prev/fs/dcache.c	2006-10-31 15:22:10.000000000 +1100
> +++ ./fs/dcache.c	2006-10-31 15:37:22.000000000 +1100
> @@ -384,8 +384,8 @@ static void prune_one_dentry(struct dent
> /**
> * prune_dcache - shrink the dcache
> * @count: number of entries to try and free
> - * @sb: if given, ignore dentries for other superblocks
> - * which are being unmounted.
> + * @list: If given, remove from this list instead of
> + * from dentry_unused.
> *
> * Shrink the dcache. This is done when we need
> * more memory, or simply when we need to unmount
> @@ -394,11 +394,21 @@ static void prune_one_dentry(struct dent
> *
> * This function may fail to free any resources if
> * all the dentries are in use.
> + *
> + * Any dentries that were not removed due to the @count
> + * limit will be splice on to the end of dentry_unused,
> + * so they should already be founded in dentry_stat.nr_unused.
> */
>
> -static void prune_dcache(int count, struct super_block *sb)
> +static void prune_dcache(int count, struct list_head *list)
> {
> +	int have_list = list != NULL;
> +
> 	spin_lock(&dcache_lock);

Page 2 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> +	if (!have_list)
> +		/* use the dentry_unused list */
> +		list = &dentry_unused;
> +
> 	for (; count ; count--) {
> 		struct dentry *dentry;
> 		struct list_head *tmp;
> @@ -406,23 +416,11 @@ static void prune_dcache(int count, stru
>
> 		cond_resched_lock(&dcache_lock);
>
> -		tmp = dentry_unused.prev;
> -		if (sb) {
> -			/* Try to find a dentry for this sb, but don't try
> -			 * too hard, if they aren't near the tail they will
> -			 * be moved down again soon
> -			 */
> -			int skip = count;
> -			while (skip && tmp != &dentry_unused &&
> -			 list_entry(tmp, struct dentry, d_lru)->d_sb != sb) {
> -				skip--;
> -				tmp = tmp->prev;
> -			}
> -		}
> -		if (tmp == &dentry_unused)
> +		tmp = list->prev;
> +		if (tmp == list)
> 			break;
> 		list_del_init(tmp);
> -		prefetch(dentry_unused.prev);
> +		prefetch(list->prev);
> 		dentry_stat.nr_unused--;
> 		dentry = list_entry(tmp, struct dentry, d_lru);
>
> @@ -455,7 +453,7 @@ static void prune_dcache(int count, stru
> 		 * If this dentry is for "my" filesystem, then I can prune it
> 		 * without taking the s_umount lock (I already hold it).
> 		 */
> -		if (sb && dentry->d_sb == sb) {
> +		if (have_list) {
> 			prune_one_dentry(dentry);
> 			continue;
> 		}
> @@ -485,68 +483,25 @@ static void prune_dcache(int count, stru
> 		list_add(&dentry->d_lru, &dentry_unused);
> 		dentry_stat.nr_unused++;
> 	}
> +	/* split any remaining entries back onto dentry_unused */

Page 3 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> +	if (have_list)
> +		list_splice(list, dentry_unused.prev);
> 	spin_unlock(&dcache_lock);
> }
>
> -/*
> - * Shrink the dcache for the specified super block.
> - * This allows us to unmount a device without disturbing
> - * the dcache for the other devices.
> - *
> - * This implementation makes just two traversals of the
> - * unused list. On the first pass we move the selected
> - * dentries to the most recent end, and on the second
> - * pass we free them. The second pass must restart after
> - * each dput(), but since the target dentries are all at
> - * the end, it's really just a single traversal.
> - */
> -
> /**
> * shrink_dcache_sb - shrink dcache for a superblock
> * @sb: superblock
> *
> * Shrink the dcache for the specified super block. This
> - * is used to free the dcache before unmounting a file
> - * system
> + * is used to reduce the dcache presence of a file system
> + * before re-mounting, and when invalidating the device
> + * holding a file system.
> */
>
> void shrink_dcache_sb(struct super_block * sb)
> {
> -	struct list_head *tmp, *next;
> -	struct dentry *dentry;
> -
> -	/*
> -	 * Pass one ... move the dentries for the specified
> -	 * superblock to the most recent end of the unused list.
> -	 */
> -	spin_lock(&dcache_lock);
> -	list_for_each_safe(tmp, next, &dentry_unused) {
> -		dentry = list_entry(tmp, struct dentry, d_lru);
> -		if (dentry->d_sb != sb)
> -			continue;
> -		list_move(tmp, &dentry_unused);
> -	}
> -
> -	/*

Page 4 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> -	 * Pass two ... free the dentries for this superblock.
> -	 */
> -repeat:
> -	list_for_each_safe(tmp, next, &dentry_unused) {
> -		dentry = list_entry(tmp, struct dentry, d_lru);
> -		if (dentry->d_sb != sb)
> -			continue;
> -		dentry_stat.nr_unused--;
> -		list_del_init(tmp);
> -		spin_lock(&dentry->d_lock);
> -		if (atomic_read(&dentry->d_count)) {
> -			spin_unlock(&dentry->d_lock);
> -			continue;
> -		}
> -		prune_one_dentry(dentry);
> -		cond_resched_lock(&dcache_lock);
> -		goto repeat;
> -	}
> -	spin_unlock(&dcache_lock);
> +	shrink_dcache_parent(sb->s_root);
<<<< AFAICS, doing so you introduced a leak of anonymous dentries.

d_alloc_anon() calls d_alloc() with parent == NULL, i.e. dentries have no parent
and are not linked to the sb->s_root...
BTW, looking at it, I found that s_anon field on super block is not used any more.
we can add BUG_ON(!hlist_empty(&sb->s_anon)) in generic_shutdown_super to avoid such
issues like this.

maybe we can fix it adding something like:
while (!list_empty(&sb->s_anon)))
 prune_dcache(MAX_INT, &sb->s_anon);

> }
>
> /*
> @@ -739,7 +694,7 @@ positive:
>
> /*
> * Search the dentry child list for the specified parent,
> - * and move any unused dentries to the end of the unused
> + * and move any unused dentries to the end of a new unused
> * list for prune_dcache(). We descend to the next level
> * whenever the d_subdirs list is non-empty and continue
> * searching.
> @@ -751,7 +706,7 @@ positive:
> * drop the lock and return early due to latency
> * constraints.
> */

Page 5 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> -static int select_parent(struct dentry * parent)
> +static int select_parent(struct dentry * parent, struct list_head *new)
> {
> 	struct dentry *this_parent = parent;
> 	struct list_head *next;
> @@ -775,7 +730,7 @@ resume:
> 		 * of the unused list for prune_dcache
> 		 */
> 		if (!atomic_read(&dentry->d_count)) {
> -			list_add_tail(&dentry->d_lru, &dentry_unused);
> +			list_add_tail(&dentry->d_lru, new);
> 			dentry_stat.nr_unused++;
> 			found++;
> 		}
> @@ -819,9 +774,10 @@ out:
> void shrink_dcache_parent(struct dentry * parent)
> {
> 	int found;
> +	LIST_HEAD(list);
>
> -	while ((found = select_parent(parent)) != 0)
> -		prune_dcache(found, parent->d_sb);
> +	while ((found = select_parent(parent, &list)) != 0)
> +		prune_dcache(found, &list);
> }
>
> /*
>

Page 6 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

