
Subject: Re: [patch00/05]: Containers(V2)- Introduction
Posted by Paul Jackson on Wed, 20 Sep 2006 19:48:13 GMT
View Forum Message <> Reply to Message

Peter wrote:
> > Which comes naturally with cpusets.
>
> How are shared mappings dealt with, are pages charged to the set that
> first faults them in?

Cpusets does not attempt to manage how much memory a task can allocate,
but where it can allocate it. If a task can find an existing page to
share, and avoid the allocation, then it entirely avoids dealing with
cpusets in that case.

Cpusets pays no attention to how often a page is shared. It controls
which tasks can allocate a given free page, based on the node on which
that page resides. If that node is allowed in a tasks 'nodemask_t
mems_allowed' (a task struct field), then the task can allocate
that page, so far as cpusets is concerned.

Cpusets does not care who links to a page, once it is allocated.

Every page is assigned to one specific node, and may only be allocated
by tasks allowed to allocate from that node.

These cpusets can overlap - which so far as memory goes, roughly means
that the various mems_allowed nodemask_t's of different tasks can overlap.

Here's an oddball example configuration that might make this easier to
think about.

 Let's say we have a modest sized NUMA system with an extra bank
 of memory added, in addition to the per-node memory. Let's say
 the extra bank is a huge pile of cheaper (slower) memory, off a
 slower bus.

 Normal sized tasks running on one or more of the NUMA nodes just
 get to fight for the CPUs and memory on those nodes allowed them.

 Let's say an occassional big memory job is to be allowed to use
 some of the extra cheap memory, and we use the idea of Andrew
 and others to split that memory into fake nodes to manage the
 portion of memory available to specified tasks.

 Then one of these big jobs could be in a cpuset that let it use
 one or more of the CPUs and memory on the node it ran on, plus
 some number of the fake nodes on the extra cheap memory.

Page 1 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=231
https://new-forum.openvz.org/index.php?t=rview&th=1165&goto=6619#msg_6619
https://new-forum.openvz.org/index.php?t=post&reply_to=6619
https://new-forum.openvz.org/index.php

 Other jobs could be allowed, using cpusets, to use any combination
 of the same or overlapping CPUs or nodes, and/or other disjoint
 CPUs or nodes, fake or real.

Another example, restating some of the above.

 If say some application happened to fault in a libc.so page,
 it would be required to place that page on one of the nodes
 allowed to it. If an other application comes along later and
 ends up wanting shared references to that same page, it could
 certainly do so, regardless of its cpuset settings. It would
 not be allocating a new page for this, so would not encounter
 the cpuset constraints on where it could allocate such a page.

--
 I won't rest till it's the best ...
 Programmer, Linux Scalability
 Paul Jackson <pj@sgi.com> 1.925.600.0401

Page 2 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

