
Subject: Re: BC: resource beancounters (v2)
Posted by Andrey Savochkin on Fri, 25 Aug 2006 16:30:26 GMT
View Forum Message <> Reply to Message

On Fri, Aug 25, 2006 at 07:30:03AM -0700, Andrew Morton wrote:
> On Fri, 25 Aug 2006 15:49:15 +0400
> Kirill Korotaev <dev@sw.ru> wrote:
>
> > Andrey Savochkin wrote already a brief summary on vm resource management:
> >
> > ------------- cut ----------------
> > The task of limiting a container to 4.5GB of memory bottles down to the
> > question: what to do when the container starts to use more than assigned
> > 4.5GB of memory?
> >
> > At this moment there are only 3 viable alternatives.
> >
> > A) Have separate memory management for each container,
> > with separate buddy allocator, lru lists, page replacement mechanism.
> > That implies a considerable overhead, and the main challenge there
> > is sharing of pages between these separate memory managers.
> >
> > B) Return errors on extension of mappings, but not on page faults, where
> > memory is actually consumed.
> > In this case it makes sense to take into account not only the size of used
> > memory, but the size of created mappings as well.
> > This is approximately what "privvmpages" accounting/limiting provides in
> > UBC.
> >
> > C) Rely on OOM killer.
> > This is a fall-back method in UBC, for the case "privvmpages" limits
> > still leave the possibility to overload the system.
> >
>
> D) Virtual scan of mm's in the over-limit container
>
> E) Modify existing physical scanner to be able to skip pages which
> belong to not-over-limit containers.

I've actually tried (E), but it didn't work as I wished.

It didn't handle well shared pages.
Then, in my experiments such modified scanner was unable to regulate
quality-of-service. When I ran 2 over-the-limit containers, they worked
equally slow regardless of their limits and work set size.
That is, I didn't observe a smooth transition "under limit, maximum
performance" to "slightly over limit, a bit reduced performance" to
"significantly over limit, poor performance". Neither did I see any fairness

Page 1 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=123
https://new-forum.openvz.org/index.php?t=rview&th=1005&goto=5661#msg_5661
https://new-forum.openvz.org/index.php?t=post&reply_to=5661
https://new-forum.openvz.org/index.php

in how containers got penalized for exceeding their limits.

My explanation of what I observed is that
 - since filesystem caches play a huge role in performance, page scanner will
 be very limited in controlling container's performance if caches
 stay shared between containers,
 - in the absence of decent disk I/O manager, stalls due to swapin/swapout
 are more influenced by disk subsystem than by page scanner policy.
So in fact modified page scanner provides control over memory usage only as
"stay under limits or die", and doesn't show many advantages over (B) or (C).
At the same time, skipping pages visibly penalizes "good citizens", not only
in disk bandwidth but in CPU overhead as well.

So I settled for (A)-(C) for now.
But it certainly would be interesting to hear if someone else makes such
experiments.

Best regards

Andrey

Page 2 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

