
Subject: Re: OverlayFS (was Re: CUDA support inside containers)
Posted by abufrejoval on Tue, 22 Nov 2016 08:42:43 GMT
View Forum Message <> Reply to Message

khorenko wrote on Mon, 21 November 2016 17:11abufrejoval wrote on Mon, 21 November 2016
15:18I guess OverlayFS is what I need to selectively replicate /proc and /sys contents from the
host to make the CUDA runtime happy.

I remember reading about it on lwn.net and it looks like it's actually been backported from 3.18 to
RHEL/CentOS/(OpenVZ?)7 3.10 kernels to support Docker, but it seems it's kernel only and
missing support from the userland tools ("mount: unknown file system type 'overlayfs'...").

It's quite maddenning, because device access to /dev/nvidia* from inside the container in general
seems to be supported in OpenVZ: I get a 'proper' "invalid argument" when doing a 'cat
/dev/nvidia-uvm' and not the dreaded "permission denied" I get from LXC on the native CentOS.

You can use overlayfs inside a Virtuozzo 7/OpenVZ 7 Container, all you need is to load the
appropriate kernel module on the host.

Did you try to get further with mounting /proc/modules inside a Container with the file with content
from the host's /proc/modules?

I write too much, that's why the answers got lost 

Yes, I did try mounting /proc/modules via a copied file from the host which I then bind mounted as
you suggested.

And then the runtime library just wanted the *next* file which wasn't there. I copied that, too but
eventually I got stuck at /proc/devices, which is a *directory* on the host but an empty *file* on the
guest: I couldn't bind mount a directory over the empty file (nor could I delete the empty file from
the guest's procfs).

That's why I thought I might potentially get there using the overlayfs, which really seems to
support all kinds of dirty tricks.

And there the trouble is, that the Virtuozzo 3.10. kernel supports the overlayfs functionality via its
sys-call interface thanks to Docker running so much quicker with it. But the actual user land tool
'mount' doesn't understand the -t overlayfs parameter: I'd have to go and get one from e.g. a more
up-to-date Fedora and statically compile that against a matching c-library etc.

In short words: All kinds of trouble when ideally Nvidia should offer a run-time library option, which
doesn't do all these 'convenience' checks.

I've sent a request to Nvidia accordingly and I'm hoping for them to fix the issue at the source.

Of course somewhere within Virtuozzo there must be a table which decides which elements in
/proc and /sys are visible to guests and which need translation (e.g. UID or PID mapping).

Page 1 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=13447
https://new-forum.openvz.org/index.php?t=rview&th=13201&goto=52655#msg_52655
https://new-forum.openvz.org/index.php?t=post&reply_to=52655
https://new-forum.openvz.org/index.php


I should be able to patch that code and build a 'matching' CUDA kernel, just to see if that
eventually solves the problem, too.

But I'd invest that effort only, if I could be sure that CUDA enabled Docker workloads also run on
both the host and inside OpenVZ containers, because that would make OpenVZ feature complete
with regards to the environment I need to build. That requires support for the current
docker-engine 1.12.1 on both sides and evidently Docker and OpenVZ don't get along as well as I
had hoped any more. Some tests using older Docker variants had looked rather promising early
this year, but Nvidia has built a docker-plugin, which requires 1.10 or greater.

Essentially I want to support two major 'client' workloads: CUDA enabled Docker images and
CUDA enabled 'IaaS' container.
Ubuntu delivery both, but with--well Ubuntu and LXC both of which require significant relearning
and additional risks.

I really don't want to go down that road, but at the moment I have no choice.

Page 2 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

