
Subject: Re: CUDA support inside containers
Posted by abufrejoval on Wed, 16 Nov 2016 02:37:23 GMT
View Forum Message <> Reply to Message

Yes, the module is loaded and working on the hardware node: I'm testing in parallel doing strace
via the CUDA device info utililty outside and inside to see where things start going wrong.

One of the first things the Nvidia runtime is doing is to check for the presence of the nvidia*
loadable modules scanning /proc/modules and that file is always empty inside containers as far as
Internet searches tell me. It then goes and tries to load a matching nvidia0 module which neither
exists nor would make sense inside containers, I guess.

I couldn't actually find any information on how the GPU code is represented to a user process and
perhaps there are good reasons details are somewhat scarce as process isolation and security
are somewhat lower on the priority list for CUDA. I also wonder how process scheduling is done
for GPU side processes and how that is coordinated with CPU side processes. I don't wonder too
much, though, because I can only imagine that being ugly.

It generally seems to work, as I've run quite a few CUDA code samples in parallel without any
evident problems: Resource contention could become an issue, given that GPU VRAM tends to
be far more limited and then lack virtual memory management. Could be useful to manage CUDA
memory limits on containers eventually.

Somehow I doubt the GPU uses paged virtual memory for its own code but I see DMA access
from the GPU to normal 'CPU' memory mention in documents and that reminds me of some of the
earliest classical security exploits on mainframes, where virtual channel programs would happily
deliver you the clear text password file, virtual memory and OS security successfully hid from you.

I guess GPU memory would eventually be MMAPed to CPU address space and at least provide
process isolation for CPU access via PTEs. Hopefully the GPU code then doesn't start copying
data across process boundaries of distinct CUDA users, neither for CPU side memory nor for
GPU side memory. Could be interesting for people trying to attack usage of CUDA for Blockchain
type cryptography.

Long term I'm just hoping AMD style HSA will become the norm and GPU code will run in normally
managed virtual HBM2 memory.

Short term I guess I need to find some way to either disable the CUDA sanity check or fake a
/proc/modules file which makes the CUDA runtime happy enough.

Page 1 of 1 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=13447
https://new-forum.openvz.org/index.php?t=rview&th=13201&goto=52628#msg_52628
https://new-forum.openvz.org/index.php?t=post&reply_to=52628
https://new-forum.openvz.org/index.php

