Subject: Re: [PATCH RFC] sched: boost throttled entities on wakeups
Posted by Vladimir Davydov on Thu, 18 Oct 2012 10:39:01 GMT

View Forum Message <> Reply to Message

There is an error in the test script: | forgot to initialize cpuset.mems of test cgroups - without it it is
impossible to add a task into a cpuset cgroup.

Sorry for that.
Fixed version of the test script is attached.
On Oct 18, 2012, at 11:32 AM, Vladimir Davydov wrote:

> |f several tasks in different cpu cgroups are contending for the same resource
> (e.g. a semaphore) and one of those task groups is cpu limited (using cfs

> bandwidth control), the priority inversion problem is likely to arise: if a cpu

> limited task goes to sleep holding the resource (e.g. trying to take another

> semaphore), it can be throttled (i.e. removed from the runqueue), which will

> result in other, perhaps high-priority, tasks waiting until the low-priority

> task continues its execution.

>

> The patch tries to solve this problem by boosting tasks in throttled groups on
> wakeups, i.e. temporarily unthrottling the groups a woken task belongs to in

> order to let the task finish its execution in kernel space. This obviously

> should eliminate the priority inversion problem on voluntary preemptable

> kernels. However, it does not solve the problem for fully preemptable kernels,
> although | guess the patch can be extended to handle those kernels too (e.g. by
> boosting forcibly preempted tasks thus not allowing to throttle).

>

> | wrote a simple test that demonstrates the problem (the test is attached). It

> creates two cgroups each of which is bound to exactly one cpu using cpusets,
> sets the limit of the first group to 10% and leaves the second group unlimited.
> Then in both groups it starts processes reading the same (big enough) file

> along with a couple of busyloops in the limited groups, and measures the read
> time.

>

> |'ve run the test 10 times for a 1 Gb file on a server with > 10 Gb of RAM and
> 4 cores x 2 hyperthreads (the kernel was with CONFIG_PREEMPT_VOLUNTARY=y). Here
> are the results:

>

> without the patch 40.03 +- 7.04 s

> with the patch 8.42 +- 0.48 s

>

> (Since the server's RAM can accommodate the whole file, the read time was the
> same for both groups)

>

> | would appreciate if you could answer the following questions regarding the

> priority inversion problem and the proposed approach:

Page 1 of 2 ---- Generated from OpenVZ Forum


https://new-forum.openvz.org/index.php?t=usrinfo&id=6457
https://new-forum.openvz.org/index.php?t=rview&th=11219&goto=48479#msg_48479
https://new-forum.openvz.org/index.php?t=post&reply_to=48479
https://new-forum.openvz.org/index.php

>
> 1) Do you agree that the problem exists and should be sorted out?

>

> 2) If so, does the general approach proposed (unthrottling on wakeups) suits
> you? Why or why not?

>
> 3) If you think that the approach proposed is sane, what you dislike about the

> patch?

>

> Thank you!

>

P> J——

> include/linux/sched.h | 8 ++

> kernel/sched/core.c | 8 ++

> kernel/sched/fair.c | 182 +++++++++++++++++++++++++++++H++H++H+++H++HH+HH+++-
> kernel/sched/features.h | 2+

> kernel/sched/sched.h | 6 ++

> 5 files changed, 204 insertions(+), 2 deletions(-)

>

> <sched-boost-throttled-entities-on-wakeups.patch><ioprio_inv_test.sh ><ATT00001.c>

File Attachnents

1) toprio_inv_test.sh, downl oaded 1590 ti nes

Page 2 of 2 ---- Generated from OpenVZ Forum


https://new-forum.openvz.org/index.php?t=getfile&id=1054
https://new-forum.openvz.org/index.php

